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Abstract. Linear detector required at direct-sequence code division multiple ac-
cess (DS-CDMA) communication systems is classically designed based on the min-
imum mean squares error (MMSE) criterion, which can efficiently be implemented
using the standard adaptive algorithms, such as the least mean square (LMS) al-
gorithm. As the probability distribution of the linear detector’s soft output is
generally non-Gaussian, the MMSE solution can be far away from the optimal
minimum bit error rate (MBER) solution. Adopting a non-Gaussian approach nat-
urally leads to the MBER linear detector. Based on the approach of Parzen win-
dow or kernel density estimation for approximating the probability density function
(p.d.f.), a stochastic gradient adaptive MBER algorithm, called the least bit error
rate (LBER), is developed for training a linear multiuser detector. A simplified or
approximate LBER (ALBER) algorithm is particularly promising, as it has a com-
putational complexity similar to that of the classical LMS algorithm. Furthermore,
this ALBER algorithm can be extended to the nonlinear multiuser detection.

1 Introduction

DS-CDMA constitutes an attractive multiuser scheme that allows users to
transmit at the same carrier frequency. However, this creates multiuser inter-
ference (MUI) which, if not controlled, can seriously degrade the quality of
reception. Multiuser detection provides an effective means to combating MUI
[1],[2]. In a DS-CDMA communication system, the objective of the receiver
is to detect the transmitted information bits of one (at mobile-end) or many
(at base station) users. The first case is concerned with communication from
base station to mobile and is commonly called downlink. This chapter con-
siders multiuser detection at mobile. In the downlink scenario, a mobile has
a very limited computing power, and computational complexity is a critical
issue. Typically, a linear detector is employed at the receiver to meet the
strict real-time computational constraint.

A variety of linear multiuser detectors have been proposed [2]-[8]. A very
simple linear detector is the matched filter (MF) with the detector weight
vector being set to the user spreading code. However, multipath distortions,
which are often encountered in DS-CDMA systems, can seriously degrade the
performance of the MF. Another linear detector structure is called the zero-
forcing (ZF) detector. As this ZF solution ignores the noise, it suffers from
a serious noise enhancing problem. Moreover, other interfering user codes
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required in calculating the ZF solution may not be available to the detector,
and it is not known how to adaptively implement the ZF solution. The most
popular linear multiuser detector is the MMSE detector, as it usually provides
good performance and can readily be implemented using standard adaptive
filter techniques such as the LMS algorithm.

The ultimate performance criterion of a detector is its bit error rate
(BER). Although for the linear detector a small mean square error (MSE) is
associated with a small BER, the MMSE solution is generally not the MBER
one. This is obvious, since in order for the MMSE solution to be the MBER
solution the detector’s soft output should be Gaussian distributed. The con-
ditional p.d.f. of the linear detector output is however a sum of Gaussian
distributions and therefore non-Gaussian. In the situation where only a few
strong interfering users exist, the MMSE solution can be considerably inferior
to the MBER one. A non-adaptive MBER linear multiuser detector is consid-
ered in [9] based on gradient optimization for narrow-band Gaussian CDMA
channels which do not introduce intersymbol interference (ISI). There are a
few adaptive MBER linear multiuser detectors in the literature [10]-[12].

The adaptive MBER algorithm given in [10] uses a difference approxima-
tion to estimate the gradient of one-sample error probability. Its main draw-
back is very slow convergence, particularly in the situation where the error
rate is very low. Furthermore, the computational complexity of the algorithm
is high and is in the order O(M?), M being the detector length. The adaptive
MBER algorithm reported in [11], called the approximate MBER (AMBER)
detector, is appealing due to its computational simplicity. It is a stochastic
gradient algorithm that is identical to the signed-error LMS algorithm [13],
except in the vicinity of the decision boundary where it is modified to con-
tinue updating the weights when the signed-error LMS algorithm would not.
The AMBER algorithm therefore can continuously update when the detector
weight vector has reached the regions of very low error rate.

This chapter considers the adaptive MBER algorithm based on a density
approximation approach [12], called the LBER algorithm. Previous studies
have shown that this LBER algorithm outperforms the AMBER. algorithm
in terms of convergence speed and steady-state BER misadjustment, in both
the linear multiuser detection application [12] and the single-user equalization
application [14],[15]. Although the computational requirement of this LBER
linear detector is considerably higher than the AMBER linear detector, its
complexity is still in the order O(M). Furthermore, as will be shown in this
chapter, a simplified LBER algorithm called the ALBER has a similar per-
formance to the full LBER algorithm and yet has a complexity similar to the
very simple LMS algorithm. An added advantage of this ALBER algorithm
is that it can be extended to the nonlinear multiuser detector.

A basic assumption for a linear detector to work adequately is that the
two classes of signal states related to the transmitted bit being +1 and —1,
respectively, are linearly separable. Multipath distortions however may result
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in linearly inseparable situation. In the nonlinear separable case, a nonlin-
ear multiuser detector is required to achieve good performance. Classically,
training a nonlinear detector is based on the LMS algorithm. Previous work
[16],[17] has shown that a nonlinear detector trained by the ALBER algo-
rithm can closely match the theoretical optimal performance.

2 System Model

The discrete-time baseband model of the synchronous DS-CDMA downlink
system supporting N users and transmitting M (> N) chips per bit is de-
picted in Fig. 1, where b;(k) € {£1} denotes the k-th bit of user i, the
unit-length signature sequence for user i is §; = [8;1 -+ 8;m]7 and the
transfer function associated with the channel impulse response (CIR) is

np—1

H(z) = Z hiz ", (1)

The bit vector of N users at bit instant k is b(k) = [by(k) --- by (k)]7,
and the received signal vector obtained by sampling at chip rate is r(k) =
[ri(k) --+ rar(k)]T. It can be shown that the baseband model for r(k) is

b(k)
b(k—1)
r(k) =P } +n(k) = (k) + n(k) (2)
b(k—L+1)
where L is the channel ISI span, £(k) denotes the noise-free received signal
vector, the white Gaussian noise vector n(k) = [ni(k) -+ na (k)] with
E[n(k)nT (k)] = 021, and the M x LN system matrix P is given by
SA 0 -0
P_-H 0 SA . 3)
0
0 0 SA

noise

channel J
rk
e
chip rate
sampler

code filters

Fig. 1. Discrete-time model of synchronous CDMA downlink.
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with the user signature matrix S = [§; --- Sx], the diagonal user signal
amplitude matrix A = diag{A4; --- Anx} and the M x LM CIR matrix

hohi +-+hp,—1 0 -+ 0 000
0 ho hi -+ hp,—1 0 000
H=| . . . (4)
0--0 ho hi o hp—10---0
The channel IST span L depends on the length of the CIR, ny, related to the
length of the chip sequence, M. Forny, =1, L=1;for 1 <np < M, L =2;
for M < np <2M, L = 3; and so on.
Let the Ny, = 25V possible combinations of [bY (k) --- b (k — L + 1)]
be
b(j)(k)
. bW (k—1)
bl = . , 1<j <IN, (5)

bW (k- L+1)
and bgj) the i-th element of b\/) (k). Clearly,
£(k) € R = {r; =PbY, 1<j < Ny} (6)

R is called the set of noise-free received signal states. For user 4, it can be
divided into two subsets depending on the value of b;(k)

A
RS () € R+ bik) = +1). (™)
Consider the linear detector for user 7 which takes the form
y(k) = w'r(k) = w' (8(k) + n(k)) = y(k) + e(k) (8)
where w = [w; -+ was]7 is the detector weight vector and e(k) is Gaussian

with zero mean and variance w’ wo?2. The estimated b;(k) is given by

bk = sent(h) = { T3 VD 20 ©

Obviously, the scalar §(k) can only take values from the set
A _ .
Y={g=w'rj, 1<j <Ny} (10)
which can be divided into two subsets depending on the value of b;(k)
YVE 2 (5H ey bi(k) = £1). (1)

For the linear detector (8) to perform adequately, Y(*) and Y(=) must be
linearly separable. Otherwise, a nonlinear detector should be used. The simple
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MF detector is given by wyr = §;. The most popular solution for the linear
detector (8) is the MMSE one given by

—1
wiamse = (021 +PPT) 7 p; (12)

with p; denoting the i-th column of P. Although user ¢ may not know the
other user codes and therefore may be unable to compute wynvsg directly,
adaptive implementation using the LMS does not require to know the other
user codes. The ZF solution wzp is obtained by setting 02 = 0 in (12).

3 The MBER Linear Multiuser Detector
The conditional p.d.f. of y(k) given b;(k) = +1 is

1 Noy (y —17(-”)2

pyyl+1) = exp
2 ) NagV2ro,VwTw =

(13)

202 wTw

where Ny, = N,/2 is the number of points in Y*) and g](.“ € Y. Thus,

the conditional BER of the linear detector given b;(k) = +1 is

0 1 Ny
Praw) = [ pl+Ddy= =Y Quatw) ()
—00 s j=1
where ) ) () 7+
o onVWTw o, vVwTw onVWTw
and
o0 == [Tew(-%)a (16)
T) = — xp | —— | du
Vo /. P 2
Similarly, the conditional p.d.f. of y(k) given b;(k) = —1 is
2
Ny — g
1 (y Y; )
—1) = exp | ——————"— 17
py(y| ) NSbmgn\/m; p QU%WTW ( )

) 1 Ny
Pe-w) = [ n0l-Ddy =53 QW) (9
where 5O @)
i (w) =~ = (19)
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Because of the symmetric distribution of YV, Pg,_(w) = Pg_4(w). Thus, the
BER of the linear detector with the weight vector w is

Pp(w) = Pp i (w) =

1 Ny
> Qgi+(w)). (20)
Nsb ;

It is seen that the BER can be evaluated based on a single subset Yy (or
V(). Also the BER is invariant to a positive scaling of the weight vector,
that is, the BER depends on the direction of w only.

The MBER solution is defined as

WMBER = arg min PE(W) (21)

The gradient of Pg(w) with respect to w is

N S(9))?
1 = (yj )
P, = _ N7 7
VEe(W) NgpV2mwoy, ;GXP 202wTw
. 7w st
sgn(bgj)) i =~ J . (22)
(wTw) / wlw

With the gradient, the optimization problem (21) can be solved for itera-
tively using a conjugated gradient algorithm [18],[12] with a resetting of the
search direction to the negative gradient —V Pg(w) every .J iterations. It is
computationally advantageous to normalize w to a unit-length after every
iteration, so that the gradient can be simplified as

()
VPy(w) = B sga(o”) (7w 7).

1 Ny
_ E ex
Ng/2mo, o P 202

(23)
It is obvious that, if Y(7) is used for the BER evaluation, one only needs to
substitute gj](-+) and f'§-+) by gj](-f) and 1"5-7) in the gradient formula.

Unlike the MMSE solution (12), there exists no close-form solution for
wymBER- For wyvse to achieve the MBER, the p.d.f. (13) or (17) must be
Gaussian. If the number of users is large, this p.d.f. will be close to Gaussian,
and the BER difference between wyvsg and wysgr is expected to be small,
if any gap exists. If however, there exist only a few interferers, it is likely that
the BER difference between wyvsg and wysgr will be large. Whether the
MMSE solution can achieve a BER close to the MBER, also depends on the
CIR. Before turning to the adaptive MBER algorithm, consider the following
simple example, which provides some insights to the MBER solutions.
Example 1. This is a simplest system with two equal-power users and two
chips per bit. The two chip codes are (+1,+1) and (+1, —1), respectively, and
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| 2
+ MMSE solution
* MBER solution

Fig. 2. Bit error rate surface of user-one detector for a simple two-user system with
two chips per bit and SNR;=25 dB given in Example 1.

05 O
S, s w[1]

the transfer function of the CIR at chip rate is H(z) = 1+ 0.8271 + 0.6272.
The signal to noise ratio for user 1is SNR; = 25 dB. The log,,(BER) surface
for user 1 is plotted in Fig. 2. Some general observations can be drawn from
Fig. 2. The MBER solutions form a half line in the weight space, with one end
of the line approaching the original and the other end approaching infinity.
Any point in this half line is a global MBER solution. The point marked in
the MBER solution half line is the unit-length one. The origin of the weight
space is the singular (discontinuity) point of the BER surface. The MMSE
solution for this example is also depicted in Fig. 2. For the MMSE solution,
log,,(BER) = —3.88, while for a MBER one, log,,(BER) = —5.56.

4 Adaptive MBER Algorithms

The p.d.f. of y(k) is explicitly given by

Ny _\2
1 (v —9;)
= exp | ———— 24
by (y) N, ,_27ran T ; p ( 202wlw (24)

and the BER can alternatively be expressed as

1 &
Pe(w) = 5 3 Q(g5(w) (25)
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where y; € Y and
(@)
sgu(b;)g;
gi(w) = =— = (26)
onVWIw
In reality, the p.d.f. of y(k) is unknown. A widely used approach to approxi-
mate a p.d.f. is known as the kernel density estimate [19]-[21].

Given a block of K training samples {r(k),b;(k)}, a kernel density or
Parzen window estimate of the p.d.f. (24) is given by:

o 1 > (y—y(k)?

=1

where the kernel width p,, is related to the noise standard deviation o, [20].
From this estimated p.d.f., the estimated BER is given by

R 1 &
Pp(w) = 22> Q (3r(w)) (28)
k=1
with o
(o) = I, (29)

The gradient of Pg(w) is

K

. 1 2(k
V) = e 2 (i)
%mmw»<@ﬁ@;ﬂ— f?w>- (30)

By substituting VPg(w) with VPg(w) in the conjugate gradient updating
mechanism, a block-data adaptive algorithm can readily be obtained [12].
4.1 Least Bit Error Rate Algorithm

To derive a sample-by-sample adaptive algorithm, consider a single-sample
estimate of py (y)

py(y, k) = m exp (‘%) . (31)

Using the instantaneous stochastic gradient

v&mmﬁg@@mnm< w@>>Qymw__dm>,@”

V27mpy 2p2wlw WTW)3/2 wlw
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—~._  MBER ——

log10(BER)
=)

-15

-20

0 5 10 15 20 25 30
User 1 SNR (dB)

Fig. 3. Linear detector bit error rates for user 1 of Example 2. SNR,;, 1 < i < 4,
are identical.

T

with a re-scaling to ensure w* w = 1, gives rise to the LBER algorithm:

w(k+1)=w(k)+ MM exp (- y2(k)> (r(k) —y(k)w(k)), (33)

V2mpn, 203
w(k+1) = wik+1) (34)

Wkt Dwk+ 1)

where the adaptive gain p and the kernel width p,, are the two algorithm
parameters that need to be set appropriately.

4.2 Approximate Least Bit Error Rate Algorithm

In the kernel density estimate (27), a variable width p,vVwTw is used. This
is because the true standard deviation of y(k) is o, VwTw, which depends
on the detector weight vector. If an approximation is made by using a con-
stant width p, in a kernel density estimate, computational complexity can
be reduced considerably. Formally, this is to use the kernel density estimate

e LS (k)
) = e e (U ) £

k=1

as an approximation of the true density (24), and to use

_ 1 &
Pp(w) = - > Q (Gr(w)) (36)
k=1
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Fig. 4. Conditional probability density function p,(y|+1): (a) the MMSE detector
and (b) the MBER, detector, for user 1 of Example 2. SNR; = 16 dB, 1 < i < 4,
and the weight vector is normalized to a unit-length.

v )y ()
- Sgn0; Y
du(w) = 2 (37)
Pn
as a BER estimate. The gradient of Pr(w) has a much simpler form.
Adopting this approach, an approximate LBER algorithm is obtained:

w(k+1) = w(k) + usgj%k” exp (—22?) r(k). (38)

For this ALBER algorithm, there is no need to normalize w after each update,
and the algorithm has a similar complexity to the LMS algorithm.

5 Simulation Study

The adaptive MBER algorithms discussed in the previous section are inves-
tigated using computer simulation.

Example 2. This is a 4-user system with 8 chips per bit. The four user code
sequences are (+1,+1,+1,+1,—1,—-1,—1,-1), (+1,—1,+1,—1,—1,+1,—1,
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Fig. 5. Learning curves (solid: training and dashed: decision directed adaptation)
of the LBER algorithm for user 1 of Example 2. SNR; = 16 dB, 1 < ¢ < 4,
w(0) = wumumsE, adaptive gain g = 0.05 and width p2 = 402. Two curves are
indistinguishable.

+1)) (+1; +1; _1; _1; _1; _1; +]-7 +1) and (+]~7 _]-7 _]-7 +]-7 _]-7 +]-7 +]-) _1)7
respectively. The four users have equal signal power and the transfer function
of the CIR at chip rate is

H(z) =044+0.72'4+04z2"2 (39)

The linear detector for user 1 is considered. Fig. 3 compares the BER perfor-
mance of the MMSE detector with that of the MBER, detector. The MBER
solution is obtained using the conjugate gradient algorithm with a periodic
resetting of search direction. It can be seen that for this case the BERs of
the two detectors are considerably different. Given the user 1 SNR to be
SNR; = 16 dB, Fig. 4 depicts the conditional p.d.f.s, p,(y| + 1), for the

1e-3

te-d MMSE

[0

T

m \

S 1e5

& k

5

1e-6

1e-7 MBER

0 200 400 600 800 1000

sample

Fig. 6. Learning curves (solid: training and dashed: decision directed adaptation)
of the LBER algorithm for user 1 of Example 2. SNR; = 16 dB, 1 < ¢ < 4,
w(0) =[0.01 0.01 0.01 —0.01 —0.01 —0.01 —0.01 0.01]7, adaptive gain p = 0.05
and width p2 = 402. Two curves are indistinguishable.
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Fig. 7. Learning curves (solid: training and dashed: first 80-sample training followed

by decision directed adaptation) of the LBER algorithm for user 1 of Example 2.

SNR; = 16 dB, 1 < i < 4, w(0) = wwmr, adaptive gain g = 0.05 and width
2 2

Pn =20,

MMSE and MBER detectors. It can be see that the conditional p.d.f. of the
MMSE detector resembles a Gaussian. This is not surprising. The conditional
p.d.f. py(y| + 1) is a sum of Gaussian distributions. The MMSE solution can
be viewed to set the parameter vector w of p,(y| + 1) in such a way that
this non-Gaussian distribution looks like a Gaussian distribution. The non-
Gaussian nature of p,(y|+1) is clearly demonstrated in the case of the MBER
solution. The two adaptive MBER. algorithms, the LBER and ALBER, are
next studied. In the investigation, all the results are averaged over 100 runs.

Fig. 5 shows the learning curves of the LBER . algorithm, given SNR; =
16 dB and w(0) = wymse, where the adaptive gain ¢ = 0.05 and the width
parameter p2 = 402 ~ 0.1. There are in fact two indistinguishable learning
curves in Fig. 5, the solid one indicates the training performance, and the
dashed one is the decision-directed performance with by (k) being substituted
by the detector’s decisions by (k). It is well known that the BER surface is
highly complicated and may contain local minima. Our experience has sug-
gested that initializing w(0) to the MMSE solution is generally a bad choice
for the LBER algorithm, as the convergence speed is generally slow and the
steady-state BER misadjustment is relatively large for this initial condition.
The training and decision-directed learning curves for the LBER algorithm
given w(0) = [0.01 0.01 0.01 —0.01 —0.01 —0.01 —0.01 0.01]” are shown in
Fig. 6. It can be seen that for this choice of w(0) the algorithm has a much
faster convergence rate and a smaller steady-state BER misadjustment. Un-
like the MMSE solution, the MF is known to a detector and can conveniently
be used as w(0). With w(0) = wy, the two learning curves of the LBER
algorithm are illustrated in Fig. 7. It can be seen that the algorithm performs
better with the MF solution as w(0) than with the MMSE solution as w(0).

The learning curves of the ALBER algorithm with w(0) set to the MMSE
solution and MF one are depicted in Figs. 8 and 9, respectively. Comparing
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Fig. 8. Learning curves (solid: training and dashed: decision directed adaptation)
of the ALBER algorithm for user 1 of Example 2. SNR; = 16 dB, 1 < i < 4,
w(0) = wumumsE, adaptive gain g = 0.2 and width p2 = 2502. Two curves are
indistinguishable.

Figs. 8 and 9 with Figs. 5 and 7, it can be seen that this approximate
LBER algorithm does not seem to result in performance degradation. In
fact, the ALBER algorithm appears to be less sensitive to the choice of initial
condition, and the algorithm with w(0) set to the MMSE solution performs
better than the LBER algorithm with the same initial condition. The ALBER
algorithm has an added advantage of simpler computational requirements.

Example 3. This example investigate the near-far effect to the adaptive
MBER algorithm. The system has two users with the two user chip codes
given by (+1,+1,—1,—1) and (+1,—1,—1,+41), respectively. The transfer

1e-1

1e-2 \
% 1e-3
g
5 1e-4 \ MMSE
Z 1e5

e
1e-6
16-7 MBER
0 500 1000 1500 2000
sample

Fig. 9. Learning curves (solid: training and dashed: first 80-sample training followed

by decision directed adaptation) of the ALBER algorithm for user 1 of Example

2. SNR; = 16 dB, 1 < ¢ < 4, w(0) = wur, adaptive gain g = 0.5 and width
2 2

Pn = 250,.
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Fig.10. Comparison of bit error rates of various linear detectors for user 1 of
Example 3. SNR; = 16 dB with varying SIR.

function of the CIR at chip rate is given by
H(z) =1.0+0.252"1 +0.527>. (40)

The linear detector for user 1 is considered. With a fixed user 1 signal power
A; and a fixed SNR; = 16 dB, the interfering user 2 power A, is varied to pro-
vide different desired signal to interference ratios (SIR). Fig. 10 summarizes
the performance of various detectors.

Example 4. The settings of this example are identical to Example 2, except
that the three-path channel

H(Z) = hg + hlzfl + h2272 (41)

is a Rayleigh fading one with the normalized Doppler frequency f; = 7.69 x
10~7. Transmission is organized into frames, and a frame consists of 37 train-
ing bits and 112 data bits. Decision-directed adaptation is employed during
data transmission. The channel is assumed to be frame faded, that is, the
channel is kept constant within a frame. A typical set of the channel taps
is shown in Fig. 11. Linear detector for user 1 is considered. Fig. 12 depicts
the performance of the two adaptive algorithms, the LBER and LMS, in
comparison with the benchmark of the theoretical MMSE performance.

6 Extension to the nonlinear multiuser detector

If we are not restricting to the class of linear detector, then the optimal
detector for the system model described in Section 2 can easily be shown to
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Fig.11. A typical set of channel fading paths for Example 4.

be the following Bayesian detector [22]

N . r(k) — ;|2
(k) = Jae(i) = 3 gyt e (- ZEIE)

2
202

where r; € R and j3; is a positive constant incorporating a priori probability
of r;. Since all the states in R are equiprobable, all the 3; have the same
value. The hard decision is made by quantizing yg(k) according to the rule
(9). Although this Bayesian detector provides the best performance, it is
computationally very expensive. Furthermore, the set of the channel states
r; are unknown and have to be learned by some means.

Consider the general nonlinear detector for user ¢, which has the form

y(k) = f(x(k); w) (43)

where the detector map f is realized for example by a neural network and
the vector w consists of all the adjustable parameters of the detector. Classi-
cally, adaptive training of such a nonlinear structure is based on the MMSE
principle and typically implemented using the LMS algorithm

y(k) = Fe(ky wik — 1))
w(k) = wik — 1) + pu(bik) — y(k)) Lrdwti1) } 44
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Average SNR;

Fig. 12. Performance comparison of three user-1 detectors for Example 4. For the
two adaptive algorithms, w(0) = wr.

However, the true performance criterion should be the BER, and we consider
how to construct an adaptive MBER algorithm.
By linearizing the detector (43) around t(k), it can be approximated as

y(k) = g(k) + e(k) (45)
where
g(k) = f(r(k);w) (46)
can only take the value from the set
YE{g = fEw), 1<) <N} (47)
and ) -
e(h) = | PLELI ) (48)
is Gaussian with zero mean and variance
o2 Ny, P T OF(F::
j=1

The p.d.f. of y(k) can then be approximated by

P ~ er"p( Sty )
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and the BER of the detector is approximately

1 &
W) N E;Q(gj(‘”)) (51)
where ) "
() — Sgn(b] )g; _ sgn(by’ )f(r w)

Using the kernel density estimate (35) with a constant p2 to approximate
the density (50) naturally leads to the ALBER algorithm

y(k) = f(e(k); w(k — 1)) . (53)
w(k) = w(k — 1) 4 p280LR) \1/12(—:[)(5)) exp (— y2,§§f)) 8f(r(k)3;vv:(k_1))

for training the nonlinear detector (43). The derivative 2 a_ depends on the
particular detector map employed. For example, consider the radial basis
function (RBF) detector of the form

y(k) = freF(T Zai exp( M) (54)

The parameter vector w contains all the RBF weights a;, widths ; and

centers c¢;. The dimension of w is therefore n. x (M + 2). The derivatives

8f RBE are given in the forms

2

Apee = oxp (- Ir-all)
binpr _ ek —es 2 ) etk —es] :
Dgse — o exp (—llzel ) IMbal b 1< j<n, (55)
Ofnmr _ Ir(h) ;1% ) £k)—c,

J;RTLJ_?F_2ajexp( o )r o

Example 5. The settings of this example are identical to Example 2, except
that this time the detector for user 2 is considered. For user 2, R(*) and
R(=) are almost linearly inseparable, and a linear detector has poor BER
performance, as is shown in Fig. 13. For this example, the linear MMSE
solution and the linear MBER one produce the same BER. The BERs of
the optimal Bayesian detector is also shown in Fig. 13. Note that in this
example the number of channel states N, = 256, and the Bayesian detector
is highly complex. The performance of the 64-center RBF detector trained
by the ALBER algorithm (53) is depicted in Fig. 13. It can be seen that the
performance of this ALBER RBF detector is very close to the full optimal
Bayesian performance. Interestingly, in the simulation it is observed that the
same 64-center RBF detector under the identical conditions but trained by
the LMS algorithm (44), although converged well in the MSE, often results
in a BER near 0.5. This confirms with the results given in [16],[17].
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Fig. 13. Linear and nonlinear detector bit error rates for user 2 of Example 5.
SNR;, 1 <i < 4, are identical. The RBF detector has 64 centers.

7 Conclusions

Adaptive multiuser detection has been considered based on the principle of
minimizing the BER. It has clearly been demonstrated that, even for the
linear detector, the MBER solution can be considerably better than the clas-
sical MMSE solution at least for certain situations. A fully adaptive MBER
approach has been developed for training the linear detector. In particular,
the ALBER algorithm has a computational complexity similar to that of the
very simple LMS algorithm. Furthermore, it has been shown how to extend
the adaptive MBER, approach to the nonlinear multiuser detector.
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