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ABSTRACT

In this paper, we present a 2-stage approach to con-
nected curve grouping. The algorithm is experimented and
demonstrated on crack-detected images of paintings. Some
features are left undetected and this tends to produce dis-
connected curves. In order to extract high-level features
for content-based application, these supposedly connected
curves have to be grouped together. It is one of the many
steps needed to produce a content-based platform for dig-
ital analysis of crack patterns in paintings particularly for
classification purpose. The prime objective of the grouping
algorithm is to segment or partition areas of an image to
produce reliable representations of content. The first stage
of the algorithm utilizes the Minimum Bounding Rectangle
(MBR) of a crack network as means of finding overlapping
features. We demonstrate the use of the both the rotated
and the un-rotated MBR. In the second stage, curve char-
acteristics represented by the rotated MBR such as the di-
mension ratio, the axis of minimuminertia, object centroid
and node density are used as features for an N-dimensional
clustering.
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1 Introduction

Image processing techniques have now been implemented
for analysis, preservation and restoration of artwork. We
have been witnessing significant growth in the number of
research done on image processing related to arts ranging
from quality evaluation of art images, image processing
tool for art analysis, virtual enhancement as well as restora-
tion, image retrieval and as an aid for conservation.
Craquelure in paintings is a very important element in
judging authenticity, use of material or environmental and
physical impact because these can lead to different craque-
lure patterns [3]. Although most conservation of fine art-
work relies on manual inspection of deterioration signs, the
ability to screen the whole collection semi-automatically is
believed to be a useful contribution to preservation. Crack
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formations are influenced by factors including aging and
physical impacts which also relate to the wooden frame-
work of the paintings. It is hoped that the mass screening
of craquelure patterns will help to establish a better plat-
form for conservators to identify the cause of damage.

In [1] and [2] we present steps taken to implement a
content-based analysis of crack pattern in paintings. Cracks
are first detected using a morphological top-hat operator
and grid-based automatic thresholding. From a 1-pixel
wide representation of crack pattern, we generate a statis-
tical structure of global and local features from a chain-
code based representation. A well structured model of the
crack patterns allows post-processing to be performed such
as pruning and high-level feature extraction. At this point
each crack network represents a single content as far as
content-based analysis is concern. We call this represen-
tation a sub-content. Figure 1 shows sample of an image
containing cracks and its crack-detected version.

(b) crack-detected image

(a) original image

Figure 1. Example of crack-detected image

Questions exist at this point whether the sub-content
is sufficient to describe a meaningful pattern. By percep-
tual means, it is not sufficient as the name suggests. The
reasons for this are two-fold. Firstly, the crack detection
process is an inherently unreliable process which results in
segmentation errors such as line fragmentation. Secondly,
crack patterns should be thought as combination of con-
nected curves rather than just single connected curves. Fur-
thermore, the regions covered by a sub-content is too small
to offer meaningful features for the purposes of crack clas-
sification, information query and result representation.



Kelly et al [7] performed grouping of straight line-
segments which are his objects of interest using eigenclus-
tering. In our work, the object of interest may range from
a straight line, a curve, combination of connected straight
lines, combination of curves and up to the worst possible
case which is a mixture of straight lines and curves.

The Minimum Bounding Rectangle (MBR) or in some
literature known as the Minimum Enclosing Rectangle has
been used extensively for various applications such as
Computer Graphics [10] and Spatial Database Systems
[5, 11]. In our work we consider 2 rectangle-shaped ap-
proximation which are the Minimum Bounding Rectan-
gle (MBR) and the Rotated Minimum Bounding Rectan-
gle (RMBR). The scope of our work considers having vari-
able number of sub-content in a single image. Perceptu-
ally, these sub-content might possibly be fragments of a
bigger entity of which we call a content or an object. On
the other hand, they can also be a content or an object inde-
pendently. The main aim of this paper is to investigate the
use of these conservative approximations [6] not only as
means of crack network approximation, but also to provide
reliable features for pattern description.

In this paper, we show how crack patterns are grouped
using a 2-stage process. The first stage uses the MBR or
the RMBR as means of finding sub-content overlap and the
second stage utilizes the features related to the RMBR as
meaningful features used for clustering. Theoretical and
experimental analysis are provided to show the effective-
ness of the algorithm.

2 Conservative Shape Approximation

If reliable image segmentation is available, a popular ap-
proach to object classification is based on analyzing the
boundaries of the extracted regions which offers 2 main
benefits. Firstly, it allows simple and efficient computa-
tion of descriptors while secondly it offers a wide choice of
techniques for classification based on a vector of properties
[6].

Another approach for shape representation is to de-
fine a set of standard shapes such as rectangles, circles or
ellipses against which input regions are compared. These
representations are known as conservative approximations
[5]. Anapproximation is considered conservative if an only
if each point inside the contour of the original object is also
in the conservative approximations. Several known conser-
vative representations are the minimum bounding rectangle
(MBR), the rotated minimum bounding rectangle (RMBR),
the convex hull (CH), the minimum bounding m-corner
(MBMC), the minimum bounding circle (MBC) and the
minimum bounding ellipse (MBE) [5, 4]. These approx-
imations differ in terms of their accuracy, area they cover
and number of required parameters. Table 1 compares them
in terms of the number of required parameters.

This approach allows a more general characterization
of descriptors since detail information about a shape has
been translated into a more simplified representation. De-

spite reduction in shape information, it serves well in high-
volume applications where the spatial objects show a very
complex structure. Computation of spatial operators is very
time-intensive, therefore a simplified shape representation
will allow faster computation.

conservative approx. | MBR | RMBR | CH
no. of parameters 4 5 var

conservative approx. | MBMC | MBC | MBE
no. of parameters 2m 3 5

Table 1. Number of parameters for conservative approxi-
mation.

* Explain the nature of the images used...several ob-
jects in an image...yStart, xStart, yDim, xDim...show math-
ematically.

2.1 Minimum Bounding Rectangle (MBR)

Computation of the MBR is simple and straightforward.
We begin by enclosing an object which is in our scope
of work named a crack network in a rectangle with sides
parallel to the z and y axes of a cartesian coordinate sys-
tem. The crack network is represented in chain form, C =
cocica...c, Where ¢; are octal-valued chain links computed
over j =0,1...,n. Parameters for the MBR are computed
as,

J J
hmin = m,in E Ay hmaz = max E Ay, (1)
g g

J J
Wmin = m,in E Qiz, Wmag = Max E Qg (2)
=0 "

where a;; and a;, are the 2 and y components of the
vector denoted by a;. ao, and ao, are both 0. A, and
Winae are the minimum and maximum pixel coordinates
of the object along the y-axis while w,,;, and w,,., are
the minimum and maximum pixel coordinates of the object
along the x-axis. The MBR is constructed by lines y =
hminv Y= hmazu T = Wmin and z = Wmaz-

2.2 Rotated Minimum Bounding Rectangle
(RMBR)

The computation of RMBR benefits from the concept of
moments [8]. A moment of order (p + ¢) is dependent on
scaling, translation and rotation and in a digital image f, it
is given as
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where 4 and j are pixel coordinates. Since we are
working with binary images, f € 0,1. The first step in-
volves computing the centre of mass or centroid of a crack
network denoted by (7, Z) and calculated as
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Translation invariance is achieved with central mo-
ments,
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A parameter which is crucially important in our work
is the direction or axis of minimuminertia [] § computed as

1 2
0= itan_l <$> . (6)
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The axis of minimum inertia 6 is a property which
makes more sense for elongated objects, however towards
computing the RMBR it is a prerequisite. The sides of the
RMBR, hg and wg can be calculated as

hg = max {y(l) sin@ + z(I) cos 0}
—min {y(!) sinf + z(I) cos 0}, (7

wg = max {y(l) cosd — z(I) sin 6}
—min {y(!) cosf — z(l) sin 9} . (8)

Let L be the number of non-zero pixel in the crack
network, y (I) and z (1) are coordinates of x and y for
0 <1 < L. Figure 2 shows example of a crack network
bounded by its MBR and RMBR.

3 First Stage of Grouping Algorithm

Once the shape approximations have been computed, a
measure of homogeneity has to be established in order to
group objects together.

In doing this, several criterium or characteristics can
be taken into consideration. Prior knowledge as to how
crack network should be grouped does in a way contribute
towards deciding which criterium to employ. For instance,
at this stage, we can not assume that RMBRs with simi-
lar orientation should be grouped together and at the same
time we can not rule out the possibility that they should
not be. It depends on how we expect the end result to
be like. If we expect the end result to be a unidirectional
crack, it is highly desirable to group them. On the other
hand, it is less desirable if we expect a different pattern.
This dilemma makes pattern characteristic less effective as
a grouping rule at this stage of the process.

A criteria based on proximity and object location is
expected to produce visually better results compared to a

(8 MBR

(b) RMBR

Figure 2. Conservative approximation of a crack network

characteristic criteria. By refering to Figure 3(a), B is more
likely to be grouped with A compared to C' although B
and C are closer in resemblance. From observation, it is
more appropriate at this point to assume for merging that 2
RMBRs be evaluated in terms of their distance rather than
their appearance.

3.1 RMBR Merging

We present two merging approaches which benefits from a
structured representation of crack network.

Let CN1=[A1, A2, ..., A,] be a list of crack network
A; where n is the total number of network in the list. We
present two approaches for RMBR merging.

The first algorithm which we call Merge and Expand
(M&E) is an iterative technique. For i=1,2,..n-1, A; is
compared with X;; 1. If a merge rule is satisfied, statisti-
cal values associated with A; and A, are combined and a
new RMBR is computed. At this instance the total num-
ber of network becomes n-1, CN1=[Ay, A3, ..., Ap—1] and
i=1, 3, ...,n-1. If Xy and A2 does not satisfy the merge rule,
A1 is compared with A3 and so on until i=n-1. The pro-
cess iteration is performed until no remaining RMBR pair
satisfy the merge rule.

The second approach is different from the M&E in the
sense that it labels every ‘connected’ RMBR at a first run
and merge their properties later at a second run. We name
this approach the Label and Merge (L&M) technique. For
i=1,2,...m-1, A; is compared With A;11, Aiyra,e s Aign—1. If



any of the RMBR pair satisfy a merge rule, label them with
the same label.
Figure 3 illustrates these two algorithms.
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(b) Label and Merge

Figure 3. Content merging approaches

4 MergeRule: Overlap Test

In our scope of work, proximity can be defined several
ways. To decide whether two approximations should be
merged, there are several decision rules that can be consid-
ered . The first being a measure of distance between two
approximations and the second being an assessment of log-
ical operations between two approximations.

Two approximations should be merged only if the
distance between them is below a threshold. Computing
distance between two approximations is a straightforward
task. The only tricky part of this is to decide on which
two points (or more) of the approximations to be used as
representative points. The simplest option is the centroid.
However, in global terms, finding the right solution is not
as simple because with variable number of crack network
in an image, it is not as straightforward to determine the
optimum distance (threshold) between approximations.

The second technique uses logical operations to de-
cide on merging. Two approximations will only be merged
if they overlap or intersect. In mathematical terms, refering
to Figure ??, we can decide to merge A and B only if AN

B # 0.

Why opt for this test? Speed? Simplicity for real-
time.

4.1 MBR Overlap Test

Let P, and P, be two sets of corner points for A and B
respectively where:

L4 Pa = {hmz’na s Wming » hmazaawmaza} and

L4 Pb = {hminb s Wming hmazb s Wmazxy, }

A and B is merged if one or more of the following condi-
tions are met:

L4 hminb < hmina < hma;ub
Wming S Wming S Wmax,
hminb < hmawa < hmaavb
Wiming S Wmaz, S Wmaz,
hmina S hminb S hmawa
Wming S Wming S Wmaz,
hmina S hmazb S hmaza
Wming < Wmazy < Wmaz,

4.2 RMBR Overlap Test

Let R, and R, be two sets of required parameters of an
RMBR where

e R, :{eaagaajmhmwa}’
L Rb:{eb,gb,.'l_fb,hb,'U)b},

with 0, 4, Z, h and w being the axis of minimum
inertia, y-centroid, z-centroid, RMBR height and RMBR
width respectively. Line intersections and corner points
can be calculated from the five parameters using trigono-
metric computation. From the 10 parameters of the two
RMBRs, 8 corner points and 16 possible line intersections
are computed. Let C, and C; be two sets of corner coordi-
nate points for A and B respectively, where

L4 Ca:{(ya17$a1)7(yamxaz)a-“a(ya47wa4)}v
b Cb:{(ybuxbl)a(ybzaxbz)a---a(yb4axb4)}-

Similarly, let | be a set of all possible intersection co-
ordinate points between A and B, where

o I={(91,%1),(92,%2), ., (J16,%16)}-

Using C,, Cp and | we can determine whether A in-
tersects with B by underlining some logical rules.

We conduct tests on an image containing crack pat-
terns (as shown in Figure 4) by using the algorithms de-
scribed in Section 3 while employing merging rules as ex-
plained in Sections 4.1 and 4.2. The results are as shown in
Figure 6.

As can be seen, Figure 6(a) produces visually good
result, the closest to the expected outcome. It is important
to note that although it produces the best result, it does not
mean that the same technique will work similarly good on



(3) MBR=>MBR (b) RMBR

Figure 5. sub-content before merging approximated by the
MBR and the RMBR

other images. As can be seen from Figure ??(a), the small
RMBRs are supposed to be merged. They, if grouped will
form a unidirectional pattern. However, since their RMBR
do not intersect, they are not grouped at this point. The
next section explains an approach taken to deal with this
situation.

5 Second Stage of Grouping Algorithm

RMBR pairs which are in close proximity with one another
have been merged. However, a second stage is still needed
in order to group RMBRs which does not conform to the
merging rule but still posses great level of similarity with
their neighbours.

Based on early experiments, we identify several fea-
tures as potentially good descriptors for further grouping.
They are the absolute value of the axis of minimum inertia
|6|, the dimensionratio a, the nodedensity 4, the y-centroid
7 and the x-centroid Z. Assuming that in a crack network,
there are  number of nodes or junctions, the node den-
sity § = z/(hg X wg) while the dimension ratio is the ratio
between the height A g and the width wg of an RMBR ex-
pressed as a = hr/wg. These features are arranged as a
feature vector, V = (¢, 2, |9], @, § ) = (v1, v2, v3, V4, V).

5.1 FeatureClustering

Experimentally, every image tested have variable number
of RMBRs. The number of feature vectors associated with

(9 L&M =MBR

(d) L&M =RMBR

Figure 6. Results of merging using M&E, L&M ap-
proaches with MBR, RMBR merging rules.

each image depends on the number of RMBR. To demon-
strate the effectiveness of the features, we perform a 5-
dimensional hierarchical clustering using a variable num-
ber of feature vector V. The features are first normalized
over all RMBR to produce a mean of zero and standard
deviation of zero for each feature element.

Using the euclidean distance as a distance measure
we perform hierarchical clustering on the feature points us-
ing the complete-link algorithm [12, 13].

A dendrogram corresponding to the hierarchically
clustered feature points for the image in Figure 6(a) is as
graphically shown in Figure 7.

distance in 5—dimensional euclidean space

0
34352616192932373611212225 915141718 2101312272024332328303138 3 6 4 5 7 8 1

data sample points

Figure 7. The dendrogram of the clustered data.

We then manually select the number of expected ob-



jects in the image which is 3 or 4 which then yield the fol-
lowing result as illustrated by Figure 8.

(a) 3-class (b) 4-class

Figure 8. Results after 2nd stage of sub-content grouping

6 Conclusionsand Future Work

Perceptual grouping of crack network using a 2-stage ap-
proach has been outlined and explained. We have dis-
cussed the use of conservative approximation in grouping
crack network in the form of connected curves. We exper-
imented techniques of content merging (i.e the Merge and
Expand (M&E) and the Label and Merge (L&M)) using the
overlapping between pairs of either the Minimum Bounding
Rectangle (MBR) or the Rotated Minimum Bounding Rect-
angle (RMBR) as a triggering factor for merging. We also
performed clustering on selected features derived from the
RMBR.

Line/curve grouping and classification is an area of re-
search which takes quite a lot of attention from researchers.
Having said that, looking from a wider scope, with ramifi-
cations and improvements our approach can be of benefit
not only to this particular area, but also to fields such as
data indexing and query/result processing in content-based
retrieval systems.

As for the future, we are looking into improving the
algorithm by embedding adaptive functionalities in certain
parts. Weighted distances can be used in determining the
distance between feature points in the second stage of the
algorithm. Weights can be assigned to an object based on a
characteristic they possess such as their size which in this
case the weighting can be proportional to the size. An
adaptive way of knowing the optimum number of objects
or content in a particular image is also a big challenge at
this point. There are quite a number of adaptive clustering
techniques with variety of advantages and weaknesses.

We are also still investigating the use of *fine’ crack
network features aside from the ones discussed in [1] and
[2]. In this paper we experimented using 'coarse’ features
which are derived from the conservative approximation, i.e
RMBR of a crack network. It is believed, a more detail
description of the object of interest might result in a better
outcome.
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