The University of Southampton
University of Southampton Institutional Repository

Joint-Detection and Interference Cancellation Based Burst-by-Burst Adaptive CDMA Schemes

Joint-Detection and Interference Cancellation Based Burst-by-Burst Adaptive CDMA Schemes
Joint-Detection and Interference Cancellation Based Burst-by-Burst Adaptive CDMA Schemes
Spread adaptive quadrature amplitude modulated (AQAM) code-division multiple access (CDMA) is proposed as a powerful means of exploiting the time-variant channel capacity fluctuations of wireless channels. It is studied in comparison to variable spreading factor (VSF)-based techniques. These adaptive-rate transmission methods are compared in the context of joint detection and interference cancellation assisted adaptive CDMA (ACDMA) systems. More explicitly, we exploit the time-variant channel quality of mobile channels by switching either the modulation mode (AQAM) or the spreading factor (VSF) on a burst-by-burst basis. The most appropriate modulation mode or spreading factor is chosen based on the instantaneous channel quality estimated. The chosen modem mode or spreading factor is communicated to the remote communicator either through explicit signalling or extracted at the receiver using blind detection techniques. The multiuser joint detector (JD) and the successive interference cancellation (SIC) receiver are compared in the context of these adaptive schemes, with the conclusion that the JD outperformed the SIC receiver in the ACDMA schemes at the cost of increased complexity. Finally, the performance of the uncoded AQAM JD-CDMA scheme is also compared to that of adaptive trellis coded modulation (TCM) assisted AQAM JD-CDMA, which allows us to incorporate adaptive channel coding without any bandwidth expansion.We also show that in the particular scenario studied, adaptiveTCM outperformed adaptive turbo TCM since the system was designed for maintaining a low turbo-interleaver delay. Index Terms—Burst-by-burst adaptive code-division multiple access (CDMA), joint detection CDMA, parallel interference cancellation (PIC), successive interference cancellation (SIC), successive and parallel interference cancellation.
0018-9545
1479-1493
Kuan, E.L.
67ebe8dd-706a-4c9f-ba00-f38ff3da627f
Ng, S.X.
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, L.
66e7266f-3066-4fc0-8391-e000acce71a1
Kuan, E.L.
67ebe8dd-706a-4c9f-ba00-f38ff3da627f
Ng, S.X.
e19a63b0-0f12-4591-ab5f-554820d5f78c
Hanzo, L.
66e7266f-3066-4fc0-8391-e000acce71a1

Kuan, E.L., Ng, S.X. and Hanzo, L. (2002) Joint-Detection and Interference Cancellation Based Burst-by-Burst Adaptive CDMA Schemes. IEEE Transactions on Vehicular Technology, 51 (6), 1479-1493.

Record type: Article

Abstract

Spread adaptive quadrature amplitude modulated (AQAM) code-division multiple access (CDMA) is proposed as a powerful means of exploiting the time-variant channel capacity fluctuations of wireless channels. It is studied in comparison to variable spreading factor (VSF)-based techniques. These adaptive-rate transmission methods are compared in the context of joint detection and interference cancellation assisted adaptive CDMA (ACDMA) systems. More explicitly, we exploit the time-variant channel quality of mobile channels by switching either the modulation mode (AQAM) or the spreading factor (VSF) on a burst-by-burst basis. The most appropriate modulation mode or spreading factor is chosen based on the instantaneous channel quality estimated. The chosen modem mode or spreading factor is communicated to the remote communicator either through explicit signalling or extracted at the receiver using blind detection techniques. The multiuser joint detector (JD) and the successive interference cancellation (SIC) receiver are compared in the context of these adaptive schemes, with the conclusion that the JD outperformed the SIC receiver in the ACDMA schemes at the cost of increased complexity. Finally, the performance of the uncoded AQAM JD-CDMA scheme is also compared to that of adaptive trellis coded modulation (TCM) assisted AQAM JD-CDMA, which allows us to incorporate adaptive channel coding without any bandwidth expansion.We also show that in the particular scenario studied, adaptiveTCM outperformed adaptive turbo TCM since the system was designed for maintaining a low turbo-interleaver delay. Index Terms—Burst-by-burst adaptive code-division multiple access (CDMA), joint detection CDMA, parallel interference cancellation (PIC), successive interference cancellation (SIC), successive and parallel interference cancellation.

Text
elk-sxn-lh-Nov02-TVT.pdf - Other
Download (665kB)

More information

Published date: November 2002
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 258298
URI: http://eprints.soton.ac.uk/id/eprint/258298
ISSN: 0018-9545
PURE UUID: fe892840-3586-4c42-ae82-e892228a4beb
ORCID for S.X. Ng: ORCID iD orcid.org/0000-0002-0930-7194
ORCID for L. Hanzo: ORCID iD orcid.org/0000-0002-2636-5214

Catalogue record

Date deposited: 30 Sep 2003
Last modified: 18 Mar 2024 02:47

Export record

Contributors

Author: E.L. Kuan
Author: S.X. Ng ORCID iD
Author: L. Hanzo ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×