
Variable-Length Input Huffman Coding for System-on-a-Chip Test
�

Paul. T. Gonciari, Bashir M. Al-Hashimi, and Nicola Nicolici

Paper no. 556

Accepted for publication as a Transaction Brief Paper

Submitted: July 2002, Revised: October 2002, Final manuscript: January 2003

Paul T. Gonciari and Bashir M. Al-Hashimi

Electronic Systems Design Group

Department of Electronics and Computer Science

University of Southampton

Southampton SO17 1BJ, U.K.

Tel: +44-23-8059-3119 / +44-23-8059-3249 Fax: +44-23-8059-2901

Email: {p.gonciari@zepler.org, bmah@ecs.soton.ac.uk}

Nicola Nicolici

Computer-Aided Design and Test Research Group

Department of Electrical and Computer Engineering

McMaster University

1280 Main St. W., Hamilton, ON L8S 4K1, Canada

Tel: +1-905-525-9140 ext. 27598 Fax: +1-905-521-2922

Email: nicola@ece.mcmaster.ca

�

A preliminary version of this paper was published in Design Automation and Test in Europe (DATE) 2002, pp. 604-611

Variable-Length Input Huffman Coding for

System-on-a-Chip Test

Abstract

This paper presents a new compression method for embedded core-based system-on-a-chip test. In

addition to the new compression method, this paper analyzes the three test data compression environ-

ment (TDCE) parameters: compression ratio, area overhead and test application time, and explains the

impact of the factors which influence these three parameters. The proposed method is based on a new

Variable-length Input Huffman Coding scheme, which proves to be the key element that determines all

the factors that influence the TDCE parameters. Extensive experimental comparisons show that, when

compared to three previous approaches [1–3], which reduce some test data compression environment’s

parameters at the expense of the others, the proposed method is capable of improving on all the three

TDCE parameters simultaneously.

1 Introduction

Due to the increased complexity of systems-on-a-chip (SOC), testing is an important factor that drives

time-to-market and the cost of the design [4]. In addition to the standard design for test (DFT) issues

for SOCs [4], a new emerging problem is the cost of the automatic test equipment (ATE) [5–7]. This

is because the cost of ATE grows significantly with the increase in speed (i.e., operating frequency),

channel capacity, and memory size [6]. In order to support the large volume of test data with limited

channel capacity for future SOCs, the ATE requires modifications and additional expenses. Furthermore,

the testing time is also dependent on the volume of test data, thus further increasing the manufacturing

cost of the SOCs [7]. The above problems were previously addressed using
�
a � external-only approaches

(no on-chip overhead is required) or
�
b � internal-only approaches (no off-chip interaction is required).

The external-only approaches
�
a � include test data compaction [8, 9] and methods which reduce the

amount of data transfered from the workstation to the ATE [10, 11]. While these approaches effectively

reduce the volume of test data, they do not reduce the ATE bandwidth requirements. The internal-

only approaches
�
b � are based on built-in self-test (BIST), i.e., pseudo-random and/or deterministic

BIST. To increase the fault coverage of pseudo-random BIST intrusive techniques such as test point

insertion are required [5]. Such techniques are not acceptable in a core-based SOC environment since

they lead to a major core redesign effort. In addition, when intellectual property (IP) protected cores

are targeted, intrusive techniques cannot be applied. To alleviate the above problems related to pseudo-

random BIST, deterministic BIST [12–17] approaches have emerged. These however, may require large

on-chip area in order to achieve high test quality. Therefore, test data compression, a test resource

partitioning variant [6], arises as a possible solution to reducing the speed, the channel capacity and the

memory requirements for ATEs. This solution does not introduce performance penalties and guarantees

full reuse of the existing embedded cores as well as the ATE infrastructure, with modifications required

during system test preparation (compression) and test application (decompression). Prior work with

respect to test data compression is overviewed in the following section.

1.1 Existing approaches to reduce volume of test data

Test data compression is a test resource partitioning scheme whose main target is the reduction of

volume of test data. By introducing on-chip decompression hardware it reduces the load on the ATE, and

1

therefore it simplifies the ATE channel capacity and speed requirements. Test data compression methods

can reduce the volume of test data applied to the core under test (CUT) or the volume of test responses

sent to the ATE. Test response compression is carried out using signature analyzers [18], however, if

diagnosis is necessary special schemes may be required [19, 20]. In this paper, we will focus on the

former due to the large volumes of test data required to test logic cores, assuming signature analyzers

to compress the test output responses. Test data compression methods, which reduce the volume of test

data applied to the CUT, can be classified into approaches
�
i � which extend deterministic BIST [21–25],

�
ii � which exploit the spareness of care bits in the test set [26–28], and

�
iii � which exploit the regularities

within the test set [1–3, 29–33]. The first category [21–25]
�
i � , enhances deterministic BIST approaches,

thus alleviating some of their drawbacks (e.g., area overhead, test application time). However, these

approaches may suffer from inefficient tester channel usage such as ATE inactivity periods which may

increase cost [28]. The second category [26–28]
�
ii � , by exploiting care bit spareness, can reduce the

volume of test data when the percentage of “don’t care” bits is high. However, it suffers from lock-

out situations [12], i.e., the inability of the on-chip decoder to generate a given test pattern, which can

degrade test quality, increase test control complexity, as well as negatively influence test application

time (TAT). These lock-out situations can increase significantly when the percentage of “don’t care” bits

in a test set decreases. Due to these issues the above approaches [26–28] are embedded into the ATPG

procedures, which may be prohibited in the IP-based tool flow, where the system integrator cannot access

the structural information of the embedded cores. The third category [1–3, 29–33]
�
iii � , by exploiting the

regularities within the test set, does not require any ATPG re-runs. Since, ATPG procedures require fault

simulation, which may be prohibited in IP environments, and long ATE inactivity periods can increase

the cost, in this paper we will focus on the third category
�
iii � [1–3, 29–33].

Methods which use test set regularities exploit different features of the test set, such as runs of ’0’s,

and/or small differences between consecutive test vectors. These methods are based on data compression

coding schemes (e.g., run-length, Huffman, Golomb [34]) [1–3, 29, 30] and custom coding schemes [31–

33]. The above coding schemes are implemented using on-chip hardware decoders or on-chip software

decoders. With respect to on-chip hardware decoders, Iyengar et al. [29], proposed a new built-in scheme

for testing sequential circuits based on statistical coding. Results indicate that the method is suitable for

circuits with a relatively small number of primary inputs. To overcome this disadvantage a selective

2

coding (SC) algorithm was proposed [1]. The method splits the test vectors into fixed-length block size

patterns1 and applies Huffman coding to a carefully selected subset. In [30], test vector compression is

performed using run-length coding. The method relies on the fact that successive test vectors in a test

sequence often differ in only a small number of bits. Hence, the initial test set TD is transformed into

Tdi f f , a difference vector sequence, in which each vector is computed as the difference between two

consecutive vectors in the initial test set. Despite its performance, the method is based on variable-to-

fixed-length codes and, as demonstrated in [2], these are less effective than variable-to-variable-length

codes. Chandra and Chakrabarty [2] introduced a compression method based on Golomb codes. Both

methods, [2] and [30], use the difference vector sequence, hence, in order to generate the initial test

set on-chip, a cyclical scan register (CSR) [2, 30] architecture is required. In [3], a new method based

on frequency-directed run-length (FDR) codes is proposed. The coding scheme exploits a particular

pattern distribution, and by means of experimental results it is shown that the compression ratio can

be improved. In [33], a method which exploits the correlation between two consecutive parallel loads

into multiple scan chains has been proposed. Since the method uses multiple scan chains it reduces

the testing time, however, the extra control signals may negatively influence the compression ratio and

control complexity. In addition to the above approaches, which require an on-chip hardware decoder,

methods which assume the existence of an embedded processor [31, 32], hence an on-chip software

decoder, were also proposed. The method in [31] is based on storing the differing bits between two

test vectors, while the method in [32] uses regular geometric shapes formed only from ’0’s or ’1’s to

compress the test data. Regardless of their benefits, in systems where embedded processors are not

available or where embedded processors have access only to a small number of embedded cores, these

on-chip software decoder based methods are not applicable. A particular advantage of methods which

use data compression coding schemes is that they are capable of exploiting the ever increasing gap

between the on-chip test frequency and the ATE operating frequency. While in the past this gap has been

exploited at the cost of multiple ATE channels [35, 36], hence increasing the bandwidth requirements,

approaches which use data compression coding schemes can leverage the frequency ratio without the

penalty of extra ATE channels. This is achieved by moving the serialization of test data from the spatial

1It should be noted that throughout the paper, a pattern refers to an input pattern used in the coding scheme and not to
a test pattern. A coding scheme uses fixed-length patterns if all the input patterns have the same length, otherwise, it uses
variable-length patterns.

3

domain (multiple input channels from the ATE at a low frequency to single scan channel at a high

frequency) to the temporal domain (single input channel from the ATE at a low frequency to single

scan channel at a high frequency). Hence, data can be fed to the internal cores at their corresponding

test frequency without any bandwidth penalty.

1.2 Motivation and contributions

Since so many compression methods have been proposed, an obvious question is why yet another

approach is necessary? When analyzed with respect to the three test data compression environment

parameters, which are compression ratio, area overhead and test application time, previous approaches

trade-off some of the parameters against the others. Therefore, the motivation behind this work is to

understand the factors which influence these parameters and to propose a new approach which, when

compared to previous approaches, allows simultaneous improvement in compression ratio, area overhead

and test application time. This will lead to reduced ATE memory requirements, lower chip area and

shorter time spent on the tester, hence reduced test cost. The three main contributions of this paper are:

� The test data compression environment (TDCE) comprising the compression method and the on-

chip decoder is defined and analyzed with respect to the three TDCE parameters: compression

ratio, area overhead and test application time. The interrelation between different factors which

influence these parameters is discussed and an analysis of previous work with respect to the TDCE

is also given. To the best of our knowledge, this is the first paper which explicitly illustrates the

influences of the various factors on the two main components of TDCE (see Section 2);

� A new coding scheme, Variable-length Input Huffman Coding (VIHC) is proposed and it is shown

that the recently proposed Golomb based method is a particular case of the proposed coding

scheme, leading to constantly lower compression ratios. A new compression algorithm comprising

a new reordering and a new mapping algorithm is also given;

� A new parallel on-chip decoder is proposed. The parallel on-chip decoder has lower area overhead

and it reduces the testing time when compared to the previous approaches. The test application

time is analyzed and it is shown that the derived approximation function is close to the experimen-

tal data. Extensive experimental results show that, when the proposed coding scheme and the new

4

parallel on-chip decoder are combined, the three test data compression environment parameters

can be simultaneously improved with respect to previous work.

The remainder of the paper is organized as follows. Section 2 introduces the test data compression

environment and analyzes three previous approaches with respect to its parameters. Section 3 introduces

the new Variable-length Input Huffman Coding scheme and illustrates the proposed compression algo-

rithm. In Section 4 the proposed on-chip hardware decoder is introduced and the TAT analysis is given.

Section 5 and 6 provide the experimental results and conclusions, respectively.

2 Test data compression environment (TDCE)

To better understand how the volume of test data, the area overhead and the testing time can be

simultaneously reduced, this section introduces the test data compression environment and characterizes

the TDCE with respect to the factors which influence it. Three previous approaches are also analyzed

from the TDCE parameters standpoint. Testing in TDCE implies sending the compressed test data from

the ATE to the on-chip decoder, decompressing the test data on-chip and sending the decompressed test

data to the core under test (CUT). There are two main components in TDCE: the compression method,

used to compress the test set off-chip, and the associated decompression method, based on an on-chip

decoder, used to restore the initial test set on-chip. The on-chip decoder comprises two units: a unit

to identify a compressed code and a unit to decompress it. If the two units can work independently

(i.e., decompressing the current code and identifying a new code can be done simultaneously), then the

decoder is called parallel. Otherwise, the decoder is referred to as serial.

2.1 TDCE characterization

Testing in TDCE is characterized by the following three parameters: (a) compression ratio which

identifies the performance of the compression method, the memory and channel capacity requirements of

the ATE; (b) area overhead imposed by the on-chip decoder (dedicated hardware or on-chip processor);

and (c) test application time given by the time needed to transport and decode the compressed test set.

There are a number of factors which influence the above parameters:

� the mapping and reordering algorithm, which prepares the test set for compression by mapping

the “don’t cares” in the test set to ’0’s or ’1’s, and by reordering the test set;

5

on−chip
architecture

type length
of patternof pattern

TDCE

compression decompression

algorithmmapping reordering

coding scheme

Figure 1. TDCE dependency map

� the compression algorithm, which based on a coding scheme compresses the initial test set;

� the type of input patterns used as input by the coding scheme, which can be of fixed or variable

lengths;

� the length of the pattern which is the maximum allowed input pattern length used in the coding

scheme;

� the type of the on-chip decoder, i.e., the on-chip decoder can be serial or parallel.

The relationship between these factors and the two components of the TDCE is illustrated in Fig-

ure 1. As it can be seen in the figure, the coding scheme not only determines the compression factors

(i.e., mapping/reordering and compression algorithm), but it also influences the decompression factor

(i.e., on-chip architecture). Hence, the coding scheme is a key element that determines the factors that

influence the three TDCE parameters, which are discussed next.

(a) Compression ratio: Using patterns of various types and of various lengths, the compression algo-

rithms exploit different features of the test set. Mapping and reordering the initial test set emphasizes

these features. Therefore, the compression ratio is influenced firstly by the mapping and reordering algo-

rithm, and then by the type of input patterns and the length of the pattern, and finally by the compression

algorithm.

6

(b) Area overhead: Area overhead is influenced firstly by the nature of the decoder, and then by the

type of the input pattern and the length of the pattern. If the decoder is serial then the synchronization

between the two units (code identification and decompression) is already at hand. However, if the de-

coder is parallel, then the two units have to synchronize, which can lead to increased control complexity

and consequently to higher area overhead. Depending on the type of the input pattern different types of

logic are required to generate the pattern on-chip. For example, if the coding scheme uses fixed-length

input patterns, then a shift register is required to generate the patterns, however, if variable-length in-

put patterns (runs of ’0’s for example) are used, then counters can be employed to generate the patterns.

Since the length of the pattern impacts the size of the decoding logic, it also influences the area overhead.

(c) Test application time (TAT): TAT is firstly influenced by the compression ratio, and then by the

type of the on-chip decoder, and the length of the pattern. To illustrate the factors that influence TAT,

consider the ATE operating frequency as the reference frequency. Minimum TAT (minTAT) is given by

the size of the compressed test set in ATE clock cycles. However, this TAT can be obtained only when

the on-chip decoder can always process the currently compressed bit before the next one is sent by the

ATE. In order to do so, the relation between the frequency at which the on-chip decoder works and the

ATE operating frequency has to meet certain conditions. The frequency ratio is the ratio between the on-

chip test frequency (fchip) and the ATE operating frequency (fate). Consider that the optimum frequency

ratio is the frequency ratio for which minTAT is obtained. Since the minTAT is given by the size of the

compressed test set, increasing the compression ratio would imply further reduction in TAT. However,

this reduction happens only if the optimum frequency condition is met. Since real environments cannot

always satisfy the optimum frequency ratio condition, then a natural question is what happens if this

condition is not met? TAT in these cases is dependent on the type of on-chip decoder. If the on-chip

decoder has a serial nature [2, 3], then the TAT is heavily influenced by changes in the frequency ratio.

However, if the decoder has a parallel nature [1], the influences are rather minor. The length of the

pattern determines the pattern distribution and at the same time, the number of clock cycles the on-chip

decoder requires to generate a pattern. Therefore, the length of the pattern determines the optimum

frequency ratio and, hence, it also influences the TAT.

7

2.2 Analysis of previous approaches in TDCE

In this section three representative previous approaches [1–3] are analyzed from the TDCE parameters

standpoint and it is shown that they have improved some of the parameters at the expense of the others.

(i) Selective coding (SC) [1]: This method splits the test vectors into fixed-length input patterns of

size b (block size), and applies Huffman coding to a carefully selected number of patterns while the rest

of the patterns are prefixed. The SC decoder has a parallel nature. Although, due to this parallelism, the

on-chip decoder yields good TAT, the use of fixed-length input patterns and prefixed codes requires shift

registers of length b, which lead to large area overhead. In addition, fixed-length input patterns restrain

the method from exploiting ’0’-mapped test sets. Hence, special pre-processing algorithms [37, 38]

have been proposed to increase the compression attainable with SC. However, these algorithms, which

target the SC fixed-length input pattern principle, further increase the computational complexity of this

method. It is also interesting to note that using SC with Tdi f f allows good compression when the block

size is increased. Hence, due to a fixed-length input pattern the method is restrained from exploiting

’0’-mapped test sets, and the main drawback of this approach is its large area overhead.

(ii) Golomb coding [2]: This method assigns a variable-length Golomb code, of group size mg, to a

run of ’0’s. Golomb codes are composed from two parts, a prefix and a tail, and the tail has the length

given by log2 mg. Using runs of ’0’s as input patterns, the method has two advantages: firstly the decoder

uses counters of length log2 mg instead of shift registers, thus leading to low area overhead; and secondly

it exploits the ’0’-mapped test sets improving the compression ratio. Golomb codes are optimum only

for a particular pattern distribution, hence the coding scheme yields best compression only in particular

cases. Furthermore, since the method in [2] uses a serial on-chip decoder, the TAT is heavily influenced

by changes in the frequency ratio. Therefore, the method’s main drawback is its large TAT.

(iii) Frequency-directed run-length (FDR) coding [3]: The FDR code is composed from two parts,

a prefix and a tail, where both parts have the same length. In order to decompress a FDR code, the

on-chip decoder has to identify the two parts. Because the code is not dependent on a group size, as the

Golomb code, the decoder has to detect the length of the prefix in order to decode the tail. In order to

do so, the FDR code requires a more complicated decoder with fixed area overhead. The code being

8

developed to exploit particular pattern distributions common to most test sets yields good compression

ratios. However, despite the good compression ratios, having a serial on-chip decoder, large TAT is the

main disadvantage of the FDR method.

As illustrated above, current approaches for test data compression efficiently address some of the test

parameters at the expense of the others. Therefore, this paper proposes a new coding scheme and a

new on-chip decoder, which when combined allow simultaneous improvement in all the three TDCE’s

parameters, when compared to previous work.

3 Compression

As illustrated in Section 2.1, the coding scheme is the key component in the TDCE. This section in-

troduces a new Variable-length Input Huffman Coding scheme (Section 3.1) and a new compression al-

gorithm which combines the new coding scheme with a mapping and reordering algorithm (Section 3.2).

3.1 New Variable-length Input Huffman Coding (VIHC) scheme

The proposed coding scheme is based on Huffman coding. Huffman coding is a statistical data-

coding method that reduces the average code length used to represent the unique patterns of a set [34].

It is important to note that the previous approach [1] which uses Huffman coding in test data compres-

sion employs only patterns of fixed-length as input to the Huffman coding algorithm. As outlined in

the previous section fixed-length input patterns restrict exploitation of the test set features for compres-

sion. This problem is overcome by the coding scheme proposed in this section which uses patterns of

variable-length as input to the Huffman algorithm, allowing an efficient exploitation of test sets which

exhibit long runs of ’0’s (Section 3). This fundamental distinction does not influence only the compres-

sion, but it also provides the justification for employing a parallel decoder using counters (Section 4.1).

This will lead not only to significantly lower area overhead, but it will also facilitate TAT reduction

when the compression ratio and frequency ratio are increased (see Section 4.2 and 5). The following

two examples, illustrate the proposed coding scheme and highlight some interesting properties.

Example 1 Figure 2 illustrates the proposed coding scheme for a group size of 4 (mh
� 4). The group

size represents the maximum acceptable number of ’0’s contained in a run of ’0’s. Using the group size,

the initial test vector (tinit) is divided into runs of ’0’s of length smaller than or equal to 4, which are

9

 = 26 bits = 16 bits t tinit cmphm = 4

t cmp

t init 1 01 0000 0000 0000 0001 0000 001

10111001000 1 1 010

(a) Initial test vector

L0 1 000= 1
L1 0011= 01
L2 0101= 001
L3 0111= 0001
L4 0000 14=

CodePattern Occurrence

(b) Dictionary

L0

L1

L2

L3
L40000

0

0

0

1

1

0

1

1

0001

001

1(2)

(2)

(4)

(8)

(1)

(4)

01
(1)

(1)

(1)

(c) Huffman tree

000
001

1 1 1 011
1 010

000
001

1 1 1 011
1 010

1
01

0000 001
0000 0000 0000 0001

VIHC codeGolomb codeRun of 0s

(d) Comparison with Golomb for mh
� 4

Figure 2. VIHC for mh
� 4

referred to as patterns (Figure 2(a)). These patterns are used as input to the Huffman coding scheme,

where for each pattern the number of occurrences is determined. Having the patterns and the number

of occurrences, the first two columns of the dictionary are filled (see Figure 2(b)). Using these two

columns, the Huffman tree2 is built as explained next (see Figure 2(c)). First, the patterns are ordered in

the descending order of their occurrences. Then, the two patterns with the lowest number of occurrences

(L0 and L1) are combined into a new node
�
L0 � L1 � with the number of occurrences given by the sum

of the two patterns’ occurrences. This step is repeated until all the nodes are merged into one single

node. Initially, patterns L2 and L3 are merged into
�
L2 � L3 � , then nodes

�
L0 � L1 � and

�
L2 � L3 � are merged

together, and finally, node L4 is merged with node
� �

L0 � L1 � �

�
L2 � L3 � � . This process is illustrated in

Figure 2(c), where the occurrences of the patterns are also given between brackets. After the tree is

2For a detailed description of the Huffman algorithm, the reader is referred to [34]

10

created, the Huffman code is obtained by assigning binary ’0’s and ’1’s to each segment starting from

the nodes of the Huffman tree (Figure 2(c)). The codes are illustrated in the third column in Figure 2(b).

Using the obtained Huffman code, the initial test vector tinit is compressed into tcmp. It should be noted

that ordering the patterns in the ascending or descending order of their occurrences does not make any

difference to the Huffman tree building algorithm. It is important, however, to always combine the

patterns with the smallest number of occurrences.

One interesting property, which can be easily observed when the proposed VIHC scheme and the

Golomb coding scheme [2] are compared, is that Golomb codes represent a particular case of VIHCs.

This is illustrated in Figure 2(d), where the codes obtained for the runs of ’0’s from tinit in Figure 2(a), are

the same for both coding schemes. Because of this particularity, the compression ratios of the Golomb

coding scheme will be upper bounded by the compression ratios of the VIHC coding scheme for a given

group size. This is illustrated in the following example.

Example 2 Consider the scenario illustrated in Figure 3, where a simple change in the tinit from Fig-

ure 2(a) is performed: the 24th bit is set from 0 to 1. The dictionary and the Huffman tree for this new

scenario are shown in Figure 3(b) and 3(c) respectively. The Golomb and the VIHC codes for this case

are given in Figure 3(d). When tinit is encoded using Golomb coding, the encoded test vector is 19 bits

long (tG
cmp). If the test set is encoded using the proposed VIHC scheme, then the encoded test set is 17

bits long (tV
cmp), which shows the reduction in volume of test data.

In the following we formalize the proposed coding scheme and the properties illustrated using the

previous examples. Let mh be the group size, and L ��� L0 ������� � Lmh � be a set of unique patterns obtained

after the test set was divided into runs of ’0’s of maximum length mh. For the computed set of patterns

L, the set of number of occurrences P ��� n0 ������� � nmh � is determined. n � ∑mh
i � 0 � Li � � ni is the size of

the test set, where �Li � denotes the length of pattern Li. The Huffman codes are obtained using L and

P. For a pattern Li the Huffman code is denoted by ci, and the length of the code is given by wi. The

minimum codeword length min � wi � is referred to as wmin. The size of the compressed test set using a

group size of mh is denoted by H
�
mh � � ∑mh

i � 0 ni
� wi. It should be noted that the terms “Huffman code”

and “codeword” will be used interchangeably and the term “group size” is preferred to “block size”. It

is interesting to note that there are at most mh � 1 patterns and thus mh � 1 leafs in the Huffman tree.

11

 = 26 bits t init = 17 bits t cmp
V t cmp

G = 19 bitshm = 4
t init 1 01 0000 0000 0000 0001 0000 1 01

cmpt V
10101011 1 100 00 011

cmpt G
10111001000 1 1 000 001

(a) Test vectors

L4 0000
L3

L1

L0

1
010
011
00

CodePattern Occurrence

= 4
= 0001 1
= 01 2
= 1 2

(b) Dictionary

L0

0000

0

0

0

1
1

1

0001

01

L3
L4

1

L1
(1)

(2)

(2)

(3)

(5)

(4)

(9)

(c) Huffman tree

1 1 1 011
00101

1 000

1 0000000 1

00
011
1 1 1 010
1 00

0000 0000 0000 0001

Golomb codeRun of 0s VIHC code

(d) Comparison with Golomb for mh
� 4

Figure 3. VIHC, the general case

There are mh patterns formed from runs of ’0’s ending in 1 (L0 ��� � Lmh
� 1) and one pattern formed from

’0’s only (Lmh) as illustrated in Figure 2(b) for mh
� 4.

We observed in Example 1 that Golomb coding is a particular case of VIHC. Hence, for a given

group size and for a particular pattern distribution the VIHC will reduce to the Golomb code. Consider

the following pattern distribution:
�
a � nmh

�
ni0 � ni1 � ����� � ni mh

2 � 1
��� distinct i0 ����� i mh

2
� 1 � mh and

�
b � nk

�
ni � n j ��� i � j � k � mh � i �� j �� k, where mh represents the group size and ni is the number of

occurrences of pattern Li. Based on the above conditions, the Huffman tree illustrated in Figure 4 is

constructed. Condition
�
a � guarantees that the pattern Lmh will be the left-most leaf in the tree (as shown

in Figure 4). Condition
�
b � ensures that the Huffman tree construction algorithm will merge all the

simple patterns first, while the merged patterns are processed afterwards , i.e., it will ensure that the

simple patterns (L0 ����� Lmh
� 1) are on the last level of the tree as illustrated in Figure 4. It should be

12

01

0 0 1 01011

1 0

01

0 1

L(mh−4)L(mh−2)L(mh−1) L(mh−3)

Lmh

L0L3 L1L2

Figure 4. Huffman tree when the Golomb code and the VIHC are equal

noted that even if the patterns Li, with i � mh, appear in a different order than the one illustrated in the

figure, then as long as the above conditions are met, swapping and rearranging the nodes in the Huffman

tree will lead to the tree presented in Figure 4 with no penalties in compression ratio3 [34]. Using the

convention that the left leaf of a node is assigned a ’1’ and the right one a ’0’, it is found that cmh
� 1

and ci
� 0 followed by i represented on log2mh bits. It is clear that if a run of ’0’s of length lower than

mh is compressed, then the code is the same as Golomb’s. If the length of run of ’0’s (l) is greater than

mh, then the assigned Golomb code is given by 1 ��� � 1� ��� ��
l

mh �
0tail, where tail � l �	� l

mh
 represented on log2mh

bits. The same representation is obtained if the code is derived using the proposed VIHC method. Since,

the proposed method can produce other codes as well, depending on the pattern distribution for a given

group size, the Golomb code is a particular case of the proposed coding method.

It is very interesting to note that the above observation ensures that the VIHC decoder proposed in

Section 4.1 can be used to decompress a Golomb compressed test set. Furthermore, if the VIHC coding

obtains the same code as Golomb, the minimum code length is 1, or wmin
� 1. This derives from the

previous observation and can be easily seen in Figures 2(c) and 4. Moreover, as illustrated in Figure 3,

Golomb coding leads to smaller compression ratios when compared to the proposed VIHC scheme. This

is formalized in the following theorem.

3It should be noted that when nk
� ni � n j in condition � b
 , the Huffman algorithm may construct a tree different to the

one shown in Figure 4. However, by rearranging the leafs, the tree in Figure 4 can be obtained without any penalties in
compression ratio [34]

13

Theorem 1 For a given group size, the compression obtained by the Golomb coding is lower than or

equal to the compression obtained by VIHC.

Proof: The above can be easily shown by using the fact that the Huffman code is an optimal code ([34,

Theorem 5.8.1]), i.e., any other code will have the expected length greater than the expected length of

the Huffman code. Since the Golomb code is a particular case of VIHC (the VIHC in this particular

case is referred to as V IHCG), it is optimal only for a particular pattern distribution. For other pattern

distributions the V IHCG code is not optimal, thus the expected length of the V IHCG code is greater.

Based on this fact, and using the same reasoning as in [34, Theorem 5.8.1] the proof of the theorem is

immediate. �

3.2 Compression algorithm based on VIHC

This section presents the compression algorithm which employs the VIHC scheme for compress-

ing the test set. In this work, both the compression of the difference vector sequence (Tdi f f) and the

compression of the initial test sequence (TD) is taken into account. The initial test set (TD) is partially

specified and the test vectors can be reordered. This is because automated test pattern generator (ATPG)

tools specify only a small number of bits in every test vector, thus allowing for greater flexibility during

mapping. In addition, since full scan circuits are targeted, reordering of test vectors is also allowed.

The mapping and reordering occurs in a pre-processing step, which prepares the test set for compression

by mapping the “don’t cares” to ’0’s or ’1’s and reordering the test set such that longer runs of ’0’s

are generated. This is later on exploited by coding schemes based on runs of ’0’s leading to increased

compression ratio. The compression algorithm has three main procedures: i � prepare initial test set,

ii � compute Huffman code and iii � generate decoder information. The first two procedures are used

for compression only, while the last one determines the decoding architecture described in Section 4.

The compression algorithm is illustrated in Algorithm 1. The inputs to the algorithm are the initial test

set (TD) and the type of performed compression (compression_type), which can be either diff, if the re-

ordered difference vector sequence is compressed, or var, if the reordered initial test set is compressed.

It is important to note that the MinTest dynamic compacted test sets [39] used in this paper have on

average 27% specified bits, with up to 100% specified bits per test vector.

14

Algorithm 1 VIHC compression

CompressTestSet(TD, compression_type)
begin
i). Prepare initial test set
1. Mapping

SetDefaultValues(TD ,compression_type)
2. Reordering

T R
D ={tmin}, Remove(tmin,TD), previous_solution=tmin

while not TD empty
tmin = DetermineNextVector(TD ,compression_type)
if compression_type <> diff then T R

D =T R
D � tmin

else T R
D =T R

D � xor � tmin � previous_solution �
Remove(tmin,TD), previous_solution=tmin

ii). Huffman code computation
� L � P � =ConstructDictionary(T R

D)
HC=GenHuffmanCode(L,P)

iii).Generate decoder information
BC=AssociateBinaryCode(HC ,mh)

end

i � Prepare initial test set: As illustrated in the previous section the VIHC method uses runs of ’0’s

as input patterns. The length of these patterns can be increased using this pre-processing procedure.

The procedure consists of two steps. In the first step, for the compression of Tdi f f the “don’t cares”

are mapped to the value of the previous vector on the same position; for the compression of TD, the

“don’t cares” are mapped to ’0’s (SetDefaultValues in Algorithm 1). In the second step the test set is

reordered and denoted by T R
D in the algorithm. The reordering process is illustrated in the algorithm in

step 2. Starting with the test vector which has the minimum number of ’1’s, the next test vector tmin

is determined (procedure DetermineNextVector in the algorithm) such that the following conditions are

met. For Tdi f f , the next test vector is selected such that the number of ’1’s in the difference between

the test vector and the previous_solution is minimum, and the length of the minimum run of ’0’s in the

difference is maximum (i.e., if there are more test vectors which lead to the same number of ’1’s in the

difference with previous_solution, then the one which has the minimum run of ’0’s of maximum length

is selected). For TD, the next test vector is selected such that the length of the minimum run of ’0’s

is maximum. Further on, if the compression_type is diff, the difference between tmin and the previous

solution (previous_solution) is added to the reordered test set (T R
D), otherwise, the selected test vector

(tmin) is added to T R
D . The reordering algorithm has a complexity of O

�
�TD � 2 � , where �TD � represents

15

mh HC BC

4 000 (001,0)
001 (010,0)
010 (011,0)
011 (100,0)
1 (100,1)

Table 1. Core user/vendor information exchange

the number of test vectors in the test set. The mapping and reordering performed in this procedure will

be exploited by the variable-length input patterns used for Huffman code computation in the following

procedure.

ii � Huffman code computation: Based on the chosen group size (mh) the dictionary of variable-

length input patterns L and the number of occurrences P are determined from the reordered test set

(ConstructDictionary in Algorithm 1). This is a mandatory step, because, in contrast to Golomb which

has the codewords precomputed for a given group size, VIHC determines the codewords based on the

group size and the pattern distribution (i.e., the group size determines the pattern distribution and the pat-

tern distribution determines the Huffman codes). Using L and P the Huffman codes (HC) are computed

using a Huffman algorithm [34] (GenHuffmanCode in the algorithm). Having determined the Huffman

codes, the last procedure generates the information required to construct the decoder.

iii � Generate decoder information: This procedure is performed by AssociateBinaryCode in Algo-

rithm 1. For each Huffman code ci a binary code bi is assigned. The binary code is composed from the

length of the initial pattern on � log2
�
mh � 1 ��� bits and a special bit which identifies the cases when the

initial pattern is composed of ’0’s only, or it is a run of ’0’s ending in 1. Thus, bi
�

�
�Li � � 0 � for i � mh,

and bmh
�

�
�Lmh � � 1 � (�Li � denotes the length of pattern Li, see Section 3.1). It should be noted that if the

core provider supplies a test set compressed with the VIHC method, the group size, the Huffman codes

and the corresponding binary codes are the only information required to generate the on-chip decoder.

For the example in Figure 2, Table 1 illustrates the required information. The following section shows

how the binary code is used by the proposed VIHC decoder.

16

Timing and
synchronization

ATE I/O
channel

A
T

E
 M

em
or

y

T
es

t H
ea

d

Core

Wrapper
VIHC
Decoder

Core

Wrapper
VIHC
Decoder

Core

Wrapper
VIHC
Decoder

T
es

t A
cc

es
s

M
ec

ha
ni

sm

SoC

Figure 5. VIHC generic decompression architecture based on [2]

4 Decompression

This section introduces the new on-chip VIHC decoder (Section 4.1) for the VIHC scheme and pro-

vides the TAT analysis for the proposed decoder (Section 4.2). For the remainder of this paper a generic

decompression architecture as shown in Figure 5 is assumed. The VIHC decoder, proposed in Sec-

tion 4.1, uses a novel parallel approach in contrast to the previous Golomb [2] serial decoder. It should

be noted that for the decompression of Tdi f f , a CSR architecture [2, 30] is used after the VIHC decoder

in Figure 5. This work assumes that the ATE is capable of external clock synchronization [36].

4.1 VIHC decoder

A block diagram of the VIHC decoder is given in Figure 6. The decoder comprises a Huffman de-

coder [29] (Huff-decoder) and a Control and Generator Unit (CGU). The Huff-decoder is a finite state

machine (FSM) which detects a Huffman code and outputs the corresponding binary code. The CGU is

responsible for controlling the data transfer between the ATE and the Huff-decoder, generate the initial

pattern and control the scan clock for the CUT. The data in line is the input from the ATE synchronous

with the external clock (ATE clock). When the Huff-decoder detects a codeword, the code line is high

and the binary code is output on the data lines. The special input to the CGU is used to differentiate be-

tween the two types of patterns, composed of ’0’s only (Lmh) and runs of ’0’s ending in 1 (L0 ����� Lmh
� 1).

After loading the code, the CGU generates the pattern (data out) and the internal scan clock for the

17

sync
FSM clk

data out

scan clock

chip test clock

code data

data in

CGU

Huff−decoder (FSM)

special

FSM clock

ATE sync

Figure 6. VIHC decoder

CUT. If the decoding unit generates a new code while the CGU is busy processing the current one, the

ATE sync line is low notifying the ATE to stop sending data and the sync FSM clk is disabled forcing

the Huff-decoder to maintain its current state. Dividing the VIHC decoder in Huff-decoder and CGU,

allows the Huff-decoder to continue loading the next codeword while the CGU generates the current

pattern. Thus, the Huff-decoder is interrupted only if necessary, which is in contrast to the Golomb [2]

and the FDR [3] serial decoders. This leads to reduction in TAT when compared to the Golomb and the

FDR methods, as it will be shown in Section 5. It should be noted that if the ATE responds to the stop

signal with a given latency (i.e., it requires a number of clock cycles before the data stream is stopped or

started), the device interface board between the ATE and the system will have to account for this latency

using a first in first out (FIFO) - like structure. An additional advantage of the proposed on-chip parallel

decoder is that having the two components working in two different clock domains (the Huff-decoder

changes state with the ATE operating frequencies, and the CGU generates data at the on-chip test fre-

quency), it will leverage the frequency ratio between the on-chip test frequency and the ATE operating

frequency. This facilitates data delivery to the CUT at the on-chip test frequency using only one ATE

channel, hence using temporal serialization (see Section 1.1) and therefore better resource usage.

The FSM for the Huffman decoder corresponding to the example from Figure 2 is illustrated in Fig-

ure 7. Starting from state S1, depending on the value of data in the Huff-decoder changes its state. It is

important to note the following:
� after the Huff-decoder detects a codeword it goes back to state S1; for example, if the data in

stream is 001 (first bit first) the Huff-decoder first changes its state from S1 to S2 then, from S2 to

S3 after which back to S1, and sets data and special to the corresponding binary code (
�
010 � 0 � in

this case), and the code line high;
� the number of ATE clock cycles needed to detect a code is equal to the length of the code; for

18

S2

S4

S1

S3

data in/data, code, special

0/001, 1, 0

0/0
11

, 1
, 0

1/1
00

, 1
, 0

1/010, 1, 0

1/xxx, 0, x

0/xxx, 0, x

0/xxx, 0, x

1/100,1,1

Figure 7. FSM for example in Figure 2

D

Q

log 2(mh+1)

data out

scan clock

counter

is_one

is_zero

co
de

chip test clock

FSM clock

lo
ad

da
ta

sp
ec

ia
l

binary code processing block

lo
ad

A
T

E
 s

yn
c

sy
nc

 F
SM

 c
lk

block
sync

(a) CGU

s 0

"1"

control
load

is_zero

is_one

code

syn FSM clkFSM clock

chip test clock

load

cn
t_

cl
ea

r

0

1

ATE sync

(b) Synchronization block

S0

S1

x1/0
1x/1

x0/0

0x/0

cnt_clear, FSM clock/ load

(c) Load control
FSM

Figure 8. CGU for VIHC decoder

example, if the data in stream is 001 (first bit first), the Huff-decoder needs three ATE clock

cycles to identify the code;
� the Huff-decoder has a maximum of mh states for a group size of mh; the number of states in a

Huff-decoder is given by the number of leafs in the Huffman tree minus one; since there are a

maximum of mh � 1 leafs for a group size of mh, the number of states is mh.

A high level view of the CGU is given in Figure 8(a). There are two main components of the CGU:

the binary code processing block and the synchronization block. The binary code processing block

comprises a counter which will hold the length of the initial pattern, and a flip flop which holds the

special bit (see the binary code representation in Section 3.2). Being a parallel decoder, there are two

19

issues to be considered. Firstly, the binary code processing block should be loaded only when a new

code is identified; and secondly, the load of new data is done only when the pattern corresponding to the

already loaded binary code was fully processed. These tasks are controlled by the synchronization block

(sync) illustrated in Figure 8(b). As noted earlier, when the Huff-decoder identifies a code, it will output

the associated binary code and set the code line high. When the code line is high, the sync block will

determine the values of sync FSM clk, load and ATE sync. The key element in the synchronization block

is the load control FSM, whose state diagram is detailed in Figure 8(c). The inputs into the load control

FSM are the cnt_clear and the FSM clock. The cnt_clear will notify the FSM when the current code has

been processed (i.e., the counter’s value is either zero or one) and there is a new code available (i.e., the

code line is high). The FSM clock is used to synchronize the load control FSM with the Huff-decoder

FSM. When cnt_clear is 1, the FSM will change to S1 and set load to 1. After one clock cycle, the FSM

will set load to 0. If FSM clock is 1, the FSM will return to state S0, otherwise it will remain in state S1.

This last condition was added since a new code can only occur after the FSM clock was 1 (this is how

the Huff-decoder is controlled). When the FSM is in state S0, the S0 line in Figure 8(b) together with

the logic behind the multiplexer will ensure that the Huff-decoder continues the load of data from the

ATE once the data has been loaded into the binary code processing block. Hence, stopping the stream of

data from the ATE to the Huff-decoder only when necessary. The load control FSM can be implemented

using one FF and additional logic. The FSM clock signal ensures that the FSM will reach a stable state

after one internal clock cycle, therefore it has to be generated as an one internal clock cycle for each

external clock cycle period. This can be easily achieved by using the same technique as in [36] for the

serial scan enable signal.

When compared to the SC decoder [1], which has an internal buffer and a shift register of size b (the

group size), and a Huffman FSM of at least b states, the proposed decoder has only a � log2
�
mh � 1 � �

counter, two extra latches and a Huffman FSM of at most mh states. Thus, for the same group size

(mh
� b) significant reduction in area overhead is obtained, as it will be seen in Section 5. Similar to

SC [1], the synchronization channel to the ATE can be eliminated if the VIHC codes are padded with

dummy bits such that wmin increases. This however will affect the compression ratio. In addition, both,

VIHC and SC, can eliminate the synchronization channel if the frequency ratio is greater or equal to

their corresponding optimum frequency ratio. For VIHC this is illustrated in the following section.

20

0 0 0 00 0 0 0

100 100 100010data

 hm = 4 α = 4:1

sync FSM clk

ATE clock

chip test clock

pattern 0000 pattern 0000

000 000 100 011 010 001 011100 010 001

Huff−decoder

CGU

cntr

scan clock

load

data out

0 2 3 4 5 6 7 81 9

1data in 1 1

Figure 9. VIHC decoder timing diagram

4.2 Test application time analysis

Because the on-chip decoder has two components working in two different clock domains (i.e., the

Huff-decoder is receiving data with ATE operating frequencies and the CGU generating data at the on-

chip test frequencies), the TAT is influenced by the frequency ratio between the two frequencies: the

on-chip test frequencies and the ATE operating frequencies. To understand the effects of the frequency

ratio on the TAT, this section provides a TAT analysis with respect to the frequency ratio. It is considered

that the data is fed into the Huff-decoder FSM with the ATE operating frequency and that the FSM

reaches a stable state after one on-chip test clock cycle. Analyzing the FSM for the Huffman decoder

it can be observed that the number of ATE clocks needed to identify a codeword ci is equal to the size

of the codeword wi (see Section 3.1). On the other hand, the number of internal clock cycles needed to

generate a pattern is equal to the size of the pattern.

In order to illustrate the functionality of the CGU unit and to provide an example for the TAT analysis

21

described next, Figure 9 shows the timing diagram for a frequency ratio of α � 4, considering mh
� 4.

The diagram corresponds to the generation process of the first two “0000” patterns in Figure 2 (see

Example 1 in Section 3.1). This case was chosen to illustrate the parallelism of the proposed VIHC

decoder and the overlap between generating the last bit of the pattern and loading the next binary code.

The ATE clock, the chip test clock at a ratio of 4 : 1 with respect to the ATE clock, and the sync FSM clk

required to drive the Huff-decoder are shown in the upper part of Figure 9. The data in row illustrates

the data send from the ATE to the VIHC decoder. As detailed in the previous section, the Huff-decoder

reaches a stable state after one internal clock cycle. Hence, the data signals which are loaded into

the CGU unit are valid after one internal clock cycle. The time intervals in which the Huff-decoder

identifies the last bit of a codeword and outputs the binary code (see Section 4.1) are highlighted in the

Huff-decoder row with dashed areas. With the data signals valid, the CGU sets the load signal high

and loads 100 into the counter (cntr row in Figure 9 clock cycle 2). For the next four chip test clock

cycles, the CGU is busy generating pattern “0000”, as illustrated in the figure with the dashed areas in

row CGU. The cntr is decremented and the data-out outputs the patterns’ bits. While cntr is not zero,

the scan clk is generated. At clock cycle 4, the Huff-decoder will identify the next codeword. Again, the

load signal is high and the data signals are loaded into the counter. It is important to note that this occurs

simultaneously with the output of the last bit from the previous pattern. Hence, between two consecutive

counter loads, for α � 4, there are effectively 4 clock cycles in which data can be generated.

Formally, if α �
fchip
fate

is the ratio between the on-chip test frequency (fchip) and the ATE operating

frequency (fate), then after a Huffman code is identified, α � 1 internal clock cycles from the current

ATE cycle can be used to generate a pattern. Thus, in order for the Huff-decoder to run without being

stopped by the CGU, the CGU has to be able to generate the pattern Li in the number of internal clock

cycles remained from the ATE clock in which it was started plus the number of internal clock cycles

needed for the Huff-decoder to identify the next codeword. Or, � Li � �
�
α � 1 � � 1 � α �

�
w j � 1 � , where

w j is the length of the next codeword in bits. With max
�
�Li � � � mh and min � wi � � wmin, the frequency

ratio to obtain the smallest TAT is given by αmax
�

fchip
fate

� mh
wmin

(optimum frequency ratio). The lowest

TAT is given by H
�
mh � � δ, where H

�
mh � is the number of bits in the compressed test set in ATE clock

cycles and δ is the number of extra ATE clocks needed to decode the last codeword. When the frequency

ratio is greater than αmax, an increase in the compression ratio will lead to a reduction in test application

22

time. Thus, an increase in frequency ratio leads to lower test application times when the compression

ratio obtained by the proposed VIHC scheme is greater than the one obtained by SC [1], as it will be

seen in Section 5.

To compute the TAT for the compressed test set for frequency ratios smaller than the optimum fre-

quency ratio, an approximation function with respect to α �
fchip
fate

is given next. The function to compute

the TAT for the VIHC decoder in Section 4.1 is given by

τ
�
α � � H

�
mh � � δ �

mh

∑
i � � wmin � α � ni

�

�
�Li � � wmin

� α
α � (1)

when each pattern is followed by the codeword with the lowest decoding time. In order to give an

approximation to the above function the pattern distribution is analyzed. For example, for the full scan

version of the s5378 ISCAS89 benchmark circuit, Figure 10 illustrates the pattern distribution for mh
�

16 for the MinTest [39] test set. It can be observed that the patterns with length smaller than 4 and

greater than
�
mh � 1 � are the most frequent. Therefore the function can be approximated with

τ
�
α ��� H

�
mh � � δ � no

�

�
mh � wmin

� α
α � (2)

where no is the number of patterns with length mh (the patterns Lmh
� 1 and Lmh). It should be noted that

δ will be ignored since δ � H
�
mh � . In the worst case scenario, for no

�	� n
mh
 1 � (each run of length mh

is assumed to be followed by a run of length 1)

τ
�
α ��� H

�
mh � � n

mh � 1
� mh � wmin

� α
α

(3)

To show that formula (3) provides an approximation for the TAT of the decoder, in Figure 11 a com-

parison between the TAT obtained using the above formula and the TAT obtained by simulating the

compressed test set for circuit s5378 using a group size of 16 is illustrated. The TAT reported in the

figure is in ATE clock cycles. As it can be observed, the difference between the two curves is very small.

It should also be noted that the TAT is minimum for a frequency ratio of 8, since the minimum code

length is 2 (wmin
� 2) in this case. It should be also noted that for frequency ratios greater than αmax the

TAT equals τ
�
αmax � and the synchronization channel which notifies the ATE to start/stop the data stream

is no longer necessary.

23

0

200

400

600

800

1000

1200

1400

1600

L0 L2 L4 L6 L8 L10 L12 L14 L16

Fr
eq

ue
nc

y
of

 o
cc

ur
an

ce

Pattern

Pattern Distribution for s5378

Figure 10. Pattern distribution for s5378 with mh
� 16

10000

12000

14000

16000

18000

20000

22000

24000

26000

28000

30000

1 2 4 6 8 10 12 14 16

T
es

t a
pp

lic
at

io
n

tim
e

Frequency ratio

Simulated TAT
Approximation function

Figure 11. TAT for s5378 with mh
� 16

5 Experimental results

To validate the efficiency of the proposed method, experiments were performed on the full-scan ver-

sion of the largest ISCAS89 benchmark circuits [40]. The test sets used in these experiments were

obtained using MinTest [39] dynamic compaction (also used in [2]). The experiments were performed

on a Pentium III 500MHz workstation with 128 MB DRAM. SC [1], Golomb [2], FDR [3] and the

proposed VIHC method were implemented in C++. First, the proposed compression method is analyzed

from the compression ratio’s point of view. Secondly, an area overhead comparison between the four

on-chip decoders (SC [1], Golomb [2], FDR [3] and the proposed VIHC method) is given. Finally, the

TATs obtained by simulating the four methods’ on-chip decoders are compared. The experiments were

performed for both the difference vector sequence (Tdi f f) and the initial test set (TD). Since SC [1] did

not report compression ratios for the test sets used in this paper the results reported in this section were

24

computed by implementing the SC method and applying it to the MinTest [39] test sets. It should be

noted that SC was applied on the same test set as VIHC after the mapping and reordering algorithm

proposed in this paper (see Section 3.2). In addition, we have considered the number of patterns used

for selective coding as being given by the group size plus one, i.e., for a group size of mh
� 4, 5 patterns

were considered. This is motivated by the pattern distribution obtained with the considered mapping and

reordering algorithm which for mh
� 4 usually leads to the patterns: “0000”, “0001”, “0010”, “0100”

and “1000”, as being the most frequent.

Compression ratio Prior to providing a comparison with previous approaches, let’s analyze the per-

formances of the proposed method. The experiments performed using the Tdi f f and TD test sets are

summarized in Tables 2 and 3 respectively. The tables list, for each ISCAS89 benchmark circuit, the

compression ratio obtained for different group sizes (columns 2 to 8), the maximum obtained compres-

sion (Max), the size of the maximum compressed test set (H
�
Max �), the size of the initial test set in bits,

and the size of the fully compacted MinTest [8] test set. As it can be observed in the tables, the maxi-

mum compression ratio is up to 86.83 for circuit s13207 in Table 2, and up to 83.51 for circuit s13207 in

Table 3. Analyzing the compression ratios vs. group sizes in the tables, it can be easily observed that the

compression ratio tends to increase with the increase in group size. This is illustrated in Figure 12 for

circuit s5378. However, after a group size of 16, the increase in compression ratio up to the maximum

compression ratio is less than 3%. It is interesting to note that this is contrary to the Golomb [2] com-

pression ratio vs. group size trend that tends to have a good compression ratio for one group size, after

which by increasing the group size the compression ratio gets worse. This can be explained by the fact

that the particular pattern distribution for which Golomb leads to an optimum code, and hence to good

compression, is generally not respected (see Section 3.1).

In the following a comparison between the four compression methods (SC [1], Golomb [2], FDR [3]

and the proposed VIHC method) is given. The comparison is summarized in Table 4. The table lists,

the compression obtained with each method for the Tdi f f and TD test sets. It can be easily observed

that except for circuit s35932 in the case of TD, the compression obtained by the proposed compression

method leads to constant improvement in compression ratio. For example, for circuit s38417, in the case

of Tdi f f , the proposed method obtains an increase in compression ratio of 11%, 22% and 13% over SC,

Golomb [2] and FDR [3], respectively. Similarly, for circuit s38417 in the case of TD, the increase in

25

Compression ratio Size of
Group size Size of Size of MinTest

Circuit 4 6 8 12 14 16 Max H � Max � Tdi f f [8]
s5378 51.52 54.46 55.23 55.85 56.66 57.33 60.73 9328 23754 20758
s9234 54.84 58.12 58.75 58.45 58.76 59.02 60.96 15332 39273 25935

s13207 69.02 75.90 79.07 82.03 82.69 83.21 86.83 21758 165200 163100
s15850 60.69 65.67 67.48 68.65 68.86 68.99 72.34 21291 76986 57434
s35932 40.35 49.92 56.97 61.08 62.54 66.47 71.91 7924 28208 19393
s38417 54.51 58.57 59.96 60.86 61.22 61.98 66.38 55387 164736 113152
s38584 56.97 61.21 62.50 63.01 63.00 62.97 66.29 67114 199104 104111

Table 2. VIHC for Tdi f f

Compression ratio Size of
Group size Size of Size of MinTest

Circuit 4 6 8 12 14 16 Max H � Max � TD [8]
s5378 41.13 42.15 42.85 44.85 45.73 46.94 51.78 11453 23754 20758
s9234 45.27 46.14 45.27 46.14 46.02 46.14 47.25 20716 39273 25935

s13207 67.60 74.12 76.92 79.49 80.03 80.36 83.51 27248 165200 163100
s15850 58.01 62.43 63.73 64.42 64.28 64.06 67.94 24683 76986 57434
s35932 29.76 38.73 44.24 47.07 47.89 51.84 56.08 12390 28208 19393
s38417 37.19 40.45 43.78 46.97 47.34 47.79 53.36 76832 164736 113152
s38584 54.43 57.89 58.81 58.90 59.17 59.62 62.28 75096 199104 104111

Table 3. VIHC for TD

compression ratio is 8%, 15% and 10% over SC, Golomb [2] and FDR [3], respectively. It should be

noted that in the case of circuit s35932, for the TD test set, the SC [1] obtains better compression because

of the regular nature of the test set, however, this is an isolated case, as it can be seen in the table. To

illustrate the improvement in compression ratio when using the proposed reordering algorithm over the

one proposed in [2], the table also illustrates the compression ratios obtained when applying Golomb

and FDR on the test sets mapped and reordered with the algorithm given in Section 3.2. These results

are given in the table under the T R
D heading for Golomb and FDR in the case of Tdi f f and TD respectively.

As it can be seen, in the case of Tdi f f the increase in compression ratio when compared to the results

reported in [2] and [3] for the two methods is considerable. For example, for circuit s35932, 23.28% and

39.59% improvement in compression ratio is obtained. In the case of TD, the increase in compression

ratio is small or negligible. This is because, on average, the distribution of the runs of ’0’s in the case of

TD is dependent mainly on the mapping, while the reordering has smaller influence. In order to provide

a fair comparison, we will use the results obtained using the proposed mapping and reordering algorithm

26

35

40

45

50

55
57.33

60.73

2 16 20 40 100 201

C
om

pr
es

si
on

 r
at

io

Group size

Figure 12. Compression ratio vs. group size for s5378 with Tdi f f

Tdi f f TD

SC Golomb FDR SC Golomb FDR
Circuit [1] [2] T R

D [3] T R
D VIHC [1] [3] T R

D [3] T R
D VIHC

s5378 52.33 40.70 51.00 48.19 59.00 60.73 43.64 37.11 37.13 48.02 48.03 51.78
s9234 52.63 43.34 58.08 44.88 58.85 60.96 40.04 45.25 45.27 43.59 43.53 47.25

s13207 77.73 74.78 82.34 78.67 85.50 86.83 74.43 79.74 79.75 81.30 81.30 83.51
s15850 63.49 47.11 66.58 52.87 71.02 72.34 58.84 62.82 62.83 66.22 66.23 67.94
s35932 65.72 N/A 23.28 10.19 49.78 71.91 64.64 N/A N/A 19.37 19.36 56.08
s38417 57.26 44.12 56.72 54.53 64.32 66.38 45.15 28.37 28.38 43.26 43.26 53.36
s38584 58.74 47.71 61.20 52.85 65.27 66.29 55.24 57.17 57.17 60.91 60.92 62.28

Table 4. Best compression comparison

for the remainder of this paper. Since, as illustrated in Figure 12, the increase in compression ratio for

group sizes larger than 16 is small (less than 3% on average), further on the maximum group size for all

the comparisons is considered 16.

To show that the proposed method exploits better the test set for a given group size, in the following a

comparison between the SC, Golomb and VIHC is given, for the group sizes for which SC and Golomb

obtain the best compression ratio for a group size of maximum 16. The comparison between SC and

VIHC is given in Table 5 and the comparison between Golomb and VIHC is given in Table 6. Both

tables list the group size and the compression ratio for which the corresponding method obtained best

compression for the Tdi f f and TD test sets. Analyzing Table 5, it can be easily found that, for the Tdi f f

test set, the proposed compression method (VIHC) obtains always better compression ratios than SC.

For the TD test set, with the exception of the s35932 circuit, the VIHC compression method always

obtains better compression ratios. When compared to Golomb [2] (see Table 6), the proposed VIHC

compression method obtains always better compression ratios. The improvements are up to 20% for TD

in the case of s35932, and up to 29% for Tdi f f for the same circuit. These comparisons have illustrated

27

Tdi f f TD

Group SC Group SC
Circuit size [1] VIHC size [1] VIHC

s5378 12 52.33 55.85 12 43.64 44.85
s9234 10 52.63 58.79 8 40.04 45.27

s13207 16 77.73 83.21 16 74.43 80.36
s15850 16 63.49 68.99 16 58.84 64.04
s35932 16 65.72 66.47 16 64.64 51.84
s38417 12 57.26 60.86 10 45.15 45.25
s38584 14 58.74 63.00 12 55.24 58.90

Table 5. Comparison between SC and VIHC

Tdi f f TD

Group Golomb Group Golomb
Circuit size T R

D VIHC size T R
D VIHC

s5378 8 51.00 55.23 4 37.13 41.13
s9234 8 58.08 58.75 4 45.27 45.27

s13207 16 82.34 83.21 16 79.75 80.36
s15850 8 66.58 67.48 8 62.83 63.73
s35932 4 23.28 40.35 4 N/A 29.76
s38417 8 56.72 59.96 4 28.38 37.19
s38584 8 61.20 62.50 8 57.17 58.81

Table 6. Comparison between Golomb and VIHC

that for a given group size the proposed compression method yields better compression ratios, and hence

it exploits better the test set than the previous approaches. It should be noted that in the case of SC, better

results might be obtained at the cost of extra computational complexity if other mapping algorithms are

used. In the following an area overhead comparison between the proposed on-chip decoder and the three

previously proposed on-chip decoders (SC [1], Golomb [2], FDR [3]) is given.

Area overhead The four on-chip decoders were synthesized using the Synopsys Design Compiler [41].

The results are summarized in Table 7. For all methods, the entire decoder including buffers, shift reg-

isters and counters was synthesized. For SC, VIHC and Golomb, the area overhead was computed for

a group size of 4, 8 and 16. Without loss of generality the decoders for s5378 were synthesized. As

shown in Table 7, the area overhead for SC is up to 3 times greater than the area overhead for VIHC.

The area overhead for Golomb is almost equal to the one of VIHC, and the area overhead for FDR is

constantly greater than the area overhead for VIHC. It is important to note that even though the Golomb

28

Compression Area overhead in tu �
Method Group size

4 8 16

SC [1] 349 587 900
Golomb [2] 125 227 307

FDR [3] 320
VIHC 136 201 296

�

technology units for the lsi10k library (Synopsys Design Compiler)

Table 7. Area overhead comparison for s5378

decoder [2] has lower area overhead for a group size of 4, when compared to the proposed decoder, by

increasing the group size the area overhead of the Golomb’s decoder is greater than the proposed one’s.

This is because, in order to decode the tail part of the code, the Golomb decoder basically implements

the behavior of a counter within the Golomb FSM. It should be noted that for the case when the Tdi f f test

set is used, a CSR architecture is required. Since the CSR has to be of the length of the scan chain fed by

the decoder, the CSR overhead is dominated by the length of the internal scan chain of the targeted core

(e.g., for core s5378 the CSR comprises 179 scan cells), being independent of the chosen compression

method. Hence, a CSR is needed by all four approaches and therefore not considered in the area over-

head comparison given in Table 7. In addition, it has been shown in [30] how the internal scan chains of

neighbouring cores in a SOC can be used to eliminate the need for the CSR. The comparisons provided

until now show that the proposed method improves on the first two TDCE parameters: compression ratio

and area overhead. In the following, the last parameter, the TAT, is compared with the previous work.

Test application time To provide an accurate TAT comparison between the four methods, let’s con-

sider the following experimental setup: the maximum frequency ratio is α � 8 and the maximum ac-

ceptable group size is 16. To compute the TAT, a simulator was implemented based on the TAT analysis

for SC [1], Golomb [2], FDR [3] and the VIHC decoder (Section 4.1). For all decoders it was assumed

that the data is fed into the decoder at ATE operating frequency and the internal FSM reaches a stable

state after one internal clock cycle. In order to provide a fair comparison, we first mapped and reordered

the test sets, applied the compression methods and on the compressed test sets we performed the sim-

ulations for each method. The TATs resulted after the simulation are reported in Table 8. In addition

the table also illustrates the TAT obtained for the fully compacted MinTest test set [8]. It should be

noted that the TAT for the MinTest test set was considered to be the time needed to transfer the data to

29

Circuit Comp. TAT (ATE clock cycles) for Tdi f f TAT (ATE clock cycles) for TD

Method α � 2 α � 4 α � 6 α � 8 α � 2 α � 4 α � 6 α � 8

s5378 MinTest [8] 20758 20758
SC [1] 15835 12412 11323 11323 17259 14323 13387 13387
Golomb [2] 20649 16020 13782 13782 23529 19232 14935 14935
FDR [3] 22263 14678 12968 11679 24933 16803 15259 14039
VIHC 15868 11569 10777 10137 17668 13740 12914 12782

s9234 MinTest [8] 25935 25935
SC [1] 24815 20675 18605 18605 27459 23547 23547 23547
Golomb [2] 31186 23555 19894 19894 35580 28537 21494 21494
FDR [3] 36135 24128 21381 19001 42066 29206 26675 24086
VIHC 24895 17994 16905 16095 27235 23860 21154 21154

s13207 MinTest [8] 163100 163100
SC [1] 89368 53490 45137 36784 91369 57455 49847 42239
Golomb [2] 104440 66381 47783 47481 106169 69190 51272 50847
FDR [3] 107059 63011 49858 41989 116101 70361 57089 48538
VIHC 89865 52769 44180 36065 90920 55229 47319 40048

s15850 MinTest [8] 57434 57434
SC [1] 47256 33844 30975 28106 47186 35432 31687 31687
Golomb [2] 57860 41452 33442 33442 64730 48528 32326 32326
FDR [3] 62419 39628 33767 29488 65020 42270 36732 32362
VIHC 47366 32513 29437 26692 48169 34735 31055 30871

s35932 MinTest [8] 19393 19393
SC [1] 16870 11749 10710 9671 16879 11932 10780 9974
Golomb [2] 31758 26699 21640 21640 42267 38341 34415 34415
FDR [3] 32509 20605 18438 17045 42159 27468 25893 24821
VIHC 17584 12076 10857 9645 19908 15641 14670 13736

s38417 MinTest [8] 113152 113152
SC [1] 105076 78851 70403 70403 116282 98849 90354 90354
Golomb [2] 136554 103140 86974 86974 177074 147530 117986 11798
FDR [3] 144811 93450 81578 73182 186261 123700 113451 10521
VIHC 104642 74293 67940 62625 118989 92777 87914 87002

s38584 MinTest [8] 104111 104111
SC [1] 125141 97892 90020 82148 126309 98019 89124 89124
Golomb [2] 156238 115731 96073 96073 161236 122107 103200 10320
FDR [3] 170143 110982 96677 85687 179530 118628 104630 93260
VIHC 126969 92632 83130 82582 127849 92377 85783 80392

Table 8. TAT comparison

30

the core under test, hence the size of the test set in bits. Analyzing columns 3 to 6 and 7 to 10, it can

be observed that in general for small frequency ratios the SC has slightly better TAT than the proposed

method (e.g., s5378, s15850 and s38584 with α � 2 for both Tdi f f and TD). However, generally the TATs

of the proposed method are better than the ones of the previous methods (SC [1], Golomb [2], FDR [3]).

Exception makes the circuit s35932 in the case of SC. This is because the minimum codeword (wmin)

(see Section 4.2) for SC is 2 and wmin for VIHC is 1, and the compression ratio obtained by SC is almost

equal to VIHC’s in the case of Tdi f f , and greater than VIHC’s in the case of TD. These two combined

lead to smaller TAT in this case. The reduction in TAT when compared to previous methods is detailed

next. It can be observed that overall, in comparison to SC, TAT reduction of up to 12% is obtained for

Tdi f f (e.g., in the case of circuit s9234 for α � 4). Similarly for TD, the TAT is reduced by up to 10%

when compared to SC (e.g., in the case of circuit s9234 for α � 6). When compared to Golomb and

FDR, for the Tdi f f test set, TAT reductions up to 54% and 45% are obtained in the case of circuit s35932.

For TD, the TAT reduction is as high as 59% and 43% for Golomb and FDR respectively. For the rest

of the circuits, in the case of Tdi f f , the TAT ranges from similar values (when frequency ratio increases)

to reduction of up to 27% when compared to Golomb (s38417), and reduction of up to 31% when com-

pared to FDR (s9234). The same applies for TD, where the TAT reduction is up to 26% (s38417) when

compared to Golomb, and up to 36% (s38417) when compared to FDR. Comparing the TAT with the

one obtained by MinTest [8] gives an idea on how the TAT behaves for different frequency ratios when

compared to fully compacted test sets. As it can be easily seen in the table, when compared to MinTest,

the TAT is reduced as much as 77% for the circuit s13207 in the case of Tdi f f for a frequency ratio of

α � 8. Similarly for TD in the case of circuit s13207, TAT reduction up to 77% is obtained for α � 8. It

should be noted that MinTest should improve its TAT if serialization buffers are introduced between the

ATE and the SOC. However this implies the use of multiple ATE channels for one scan channel, which

is avoided by the proposed approach.

Finally the comparisons conducted in this section between the previous compression methods [1–3]

and the proposed VIHC are summarized in Table 9. While FDR [3] gives compression ratios comparable

to VIHC, it leads to both higher TAT and greater area overhead. The main reason that TAT is a disad-

vantage for the FDR method is that, having no group size, the method requires a very high frequency

ratio for which the minimum TAT is obtained (see Section 2). On the other hand, Golomb [2] has similar

31

SC[1] Golomb[2] FDR[3] VIHC

Compression X X
� �

Area overhead X
�

X
�

Test application time
�

X X
�

Table 9. Previous approaches compared to VIHC

area overhead when compared to VIHC at the expense of lower compression ratio and higher TAT. SC

[1], on the other hand, has overall comparable TAT when compared to VIHC. However, this is achieved

at a very high penalty in area overhead which is the main shortcoming of the parallel decoder based on

fixed-length Huffman coding.

6 Concluding remarks

This paper has presented a new compression method called Variable-length Input Huffman Coding

(VIHC). This paper also provides a taxonomy on the factors which influence the three test data com-

pression environment parameters: compression ratio, area overhead and test application time. Unlike

previous approaches [1–3] which reduce some test parameters at the expense of the others, the proposed

compression method is capable of minimizing all the three test data compression parameters simulta-

neously. This is achieved by accounting for multiple interrelated factors that influence the results, such

as pre-processing the test set, the size and the type of the input patterns to the coding algorithm, and

the type of the decoder. The results in Section 5 show that the proposed method obtains constantly bet-

ter compression ratios than [1–3]. Furthermore, by exploiting the variable-length input approach, great

savings in area overhead are achieved (up to threefold reduction when compared to the fixed-length ap-

proach [1]). Moreover, the parallel decoder leads to significant savings in TAT when compared to the

serial decoders [2, 3]. Thus, this paper has shown that the proposed method decreases the ATE memory

and channel capacity requirements by obtaining good compression ratios, and reduces TAT through its

parallel on-chip decoder with low area overhead.

Acknowledgments The authors wish to acknowledge Anshuman Chandra and Dr. Krishnendu Chakrabarty

from Duke University for providing the test sets used in their papers. Thanks are also due to the anony-

mous reviewers for their constructive comments.

32

References

[1] A. Jas, J. Ghosh-Dastidar, and N. A. Touba, “Scan Vector Compression/Decompression Using Sta-

tistical Coding,” in Proceedings IEEE VLSI Test Symposium (VTS), pp. 114–121, IEEE Computer

Society Press, Apr. 1999.

[2] A. Chandra and K. Chakrabarty, “System-on-a-Chip Test Data Compression and Decompression

Architectures Based on Golomb Codes,” IEEE Transactions on Computer-Aided Design, vol. 20,

pp. 113–120, Mar. 2001.

[3] A. Chandra and K. Chakrabarty, “Frequency-Directed Run-Length (FDR) Codes with Application

to System-on-a-Chip Test Data Compression,” in Proceedings IEEE VLSI Test Symposium (VTS),

pp. 114–121, IEEE Computer Society Press, Apr. 2001.

[4] E. J. Marinissen, Y. Zorian, R. Kapur, T. Taylor, and L. Whetsel, “Towards a Standard for Embed-

ded Core Test: An Example,” in Proceedings IEEE International Test Conference (ITC), (Atlantic

City, NJ), pp. 616–627, IEEE Computer Society Press, Sept. 1999.

[5] G. Hetherington, T. Fryars, N. Tamarapalli, M. Kassab, A. Hassan, and J. Rajski, “Logic BIST for

Large Industrial Designs: Real Issues and Case Studies,” in Proceedings IEEE International Test

Conference (ITC), (Atlantic City, NJ), pp. 358–367, IEEE Computer Society Press, Sept. 1999.

[6] Y. Zorian, S. Dey, and M. Rodgers, “Test of Future System-on-Chips,” in Proceedings International

Conference on Computer-Aided Design (ICCAD), (San Jose, CA), pp. 392–398, Nov. 2000.

[7] J. Rajski, “DFT for High-Quality Low Cost Manufacturing Test,” in Proceedings of the Asian Test

Symposium (ATS), (Kyoto, Japan), pp. 3–8, IEEE Computer Society Press, Nov. 2001.

[8] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for combinational circuits,” in Pro-

ceedings International Conference on Computer-Aided Design (ICCAD), pp. 283–289, Nov. 1998.

[9] I. Pomeranz, L. Reddy, and S. Reddy, “COMPACTEST: A method to generate compact test set for

combinational circuits,” IEEE Transactions on Computer-Aided Design, vol. 12, pp. 1040–1049,

July 1993.

33

[10] T. Yamaguchi, M. Tilgner, M. Ishida, and D. S. Ha, “An efficient method for compressing test data

to reduce the test data download time,” in Proceedings IEEE International Test Conference (ITC),

pp. 79–88, IEEE Computer Society Press, 1997.

[11] M. Ishida, D. S. Ha, and T. Yamaguchi, “Compact: A hybrid method for compressing tets data,”

in Proceedings IEEE VLSI Test Symposium (VTS), pp. 62–69, IEEE Computer Society Press, Apr.

1998.

[12] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,” in Proceedings IEEE European

Test Conference (ETC), pp. 237–242, IEEE Computer Society Press, Mar. 1991.

[13] H.-J. Wunderlich and G. Kiefer, “Bit-Flipping BIST,” in Proceedings International Conference on

Computer-Aided Design (ICCAD), (San Jose, CA), Nov. 1996.

[14] N. A. Touba and E. J. McCluskey, “Altering a Pseudorandom Bit Sequence for Scan-Based BIST,”

in Proceedings IEEE International Test Conference (ITC), (Washington, DC), pp. 167–175, IEEE

Computer Society Press, Oct. 1996.

[15] G. Kiefer and H.-J. Wunderlich, “Deterministic BIST with Multiple Scan Chains,” in Proceedings

IEEE International Test Conference (ITC), (Washington, DC), pp. 1057–1064, IEEE Computer

Society Press, Oct. 1998.

[16] J. Rajski, J. Tyszer, and N. Zacharia, “Test data decompression for multiple scan designs with

boundary scan,” IEEE Transactions on Computers, vol. 47, pp. 1188–1200, Nov. 1998.

[17] G. Kiefer, H. Vranken, E. J. Marinissen, and H.-J. Wunderlich, “Application of Deterministic Logic

BIST on Industrial Circuits,” in Proceedings IEEE International Test Conference (ITC), (Atlantic

City, NJ), pp. 105–114, IEEE Computer Society Press, Oct. 2000.

[18] M. L. Bushnell and V. D. Agrawal, Esentials of Electronic Testing for Digital, Memory and Mixed-

Signal VLSI Circuits. Kluwer Academic OPTpublishers, 2000.

[19] J.-F. Li, R.-S. Tzeng, and C.-W. Wu, “Diagnostic data compression techniques for embedded

memories with built-in self-test,” Journal of Electronic Testing: Theory and Applications, vol. 18,

pp. 515–527, Aug. 2002.

34

[20] J. T. Chen, , J. Rajski, J. Khare, O. Kebichi, and W. Maly, “Enabling embedded memory diagnosis

via test response compression,” in Proceedings IEEE VLSI Test Symposium (VTS), (Marina del

Rey, CA), pp. 292–298, IEEE Computer Society Press, May 2001.

[21] D. Das and N. A. Touba, “Reducing Test Data Volume Using External/LBIST Hybrid Test Pat-

terns,” in Proceedings IEEE International Test Conference (ITC), (Atlantic City, NJ), pp. 115–122,

IEEE Computer Society Press, Oct. 2000.

[22] C. Krishna, A. Jas, and N. A. Touba, “Test Vector Encoding Using Partial LFSR Reseeding,”

in Proceedings IEEE International Test Conference (ITC), (Baltimore, MD), pp. 885–893, IEEE

Computer Society Press, Oct. 2001.

[23] A. Jas, C. Krishna, and N. A. Touba, “Hybrid BIST Based on Weighted Pseudo-Random Testing:

A New Test Resource Partitioning Scheme,” in Proceedings IEEE VLSI Test Symposium (VTS),

(Marina del Rey, CA), pp. 2–8, IEEE Computer Society Press, May 2001.

[24] D. Kay and S. Mourad, “Compression technique for interactive BIST application,” in Proceedings

IEEE VLSI Test Symposium (VTS), (Marina del Rey, CA), pp. 9–14, IEEE Computer Society Press,

May 2001.

[25] D. Kay, S. Chung, and S. Mourad, “Embedded Test Control Schemes for Compression in SOCs,”

in Proceedings ACM/IEEE Design Automation Conference (DAC), (New Orleans, Louisiana),

pp. 679–684, IEEE Computer Society Press, June 2002.

[26] R. Dorsch and H.-J. Wunderlich, “Tailoring ATPG for Embedded Testing,” in Proceedings IEEE

International Test Conference (ITC), (Baltimore, MD), pp. 530–537, IEEE Computer Society

Press, Oct. 2001.

[27] I. Bayraktaroglu and A. Orailoglu, “Test Volume and Application Time Reduction Through Scan

Chain Concealment,” in Proceedings ACM/IEEE Design Automation Conference (DAC), vol. 38,

pp. 151–155, June 2001.

35

[28] B. Koenemann, C. Barnhart, B. Keller, T. Snethen, O. Farnsworth, and D. Wheater, “A SmartBIST

variant with Guaranteed Encoding,” in Proceedings of the Asian Test Symposium (ATS), (Kyoto,

Japan), pp. 325–330, IEEE Computer Society Press, Nov. 2001.

[29] V. Iyengar, K. Chakrabarty, and B. Murray, “Deterministic built-in pattern generation for sequen-

tial circuits,” Journal of Electronic Testing: Theory and Applications, vol. 15, pp. 97–114, Au-

gust/October 1999.

[30] A. Jas and N. Touba, “Test Vector Decompression Via Cyclical Scan Chains and Its Application to

Testing Core-Based Designs,” in Proceedings IEEE International Test Conference (ITC), (Wash-

ington, DC), pp. 458–464, IEEE Computer Society Press, Oct. 1998.

[31] A. Jas and N. Touba, “Using an Embedded Processor for Efficient Deterministic Testing of

Systems-on-a-Chip,” in Proceedings International Conference on Computer Design (ICCD),

(Austin, TX), pp. 418–423, Oct. 1999.

[32] A. El-Maleh, S. al Zahir, and E. Khan, “A Geometric-Primitives-Based Compression Scheme for

Testing Systems-on-Chip,” in Proceedings IEEE VLSI Test Symposium (VTS), pp. 114–121, IEEE

Computer Society Press, Apr. 2001.

[33] S. Reda and A. Orailoglu, “Reducing Test Application Time Through Test Data Mutation Encod-

ing,” in Proceedings Design, Automation, and Test in Europe (DATE), (Paris), pp. 387–393, IEEE

Computer Society Press, Mar. 2002.

[34] T. Cover and J. Thomas, Elements of Information Theory. New York: John Wiley & Sons, 1991.

[35] V. D. Agrawal and T. J. Chakraborty, “High-Performance Circuit Testing with Slow-Speed Testers,”

in Proceedings IEEE International Test Conference (ITC), (Montreal, Canada), pp. 302–310, IEEE

Computer Society Press, Apr. 1995.

[36] D. Heidel, S. Dhong, P. Hofstee, M. Immediato, K. Nowka, J. Silberman, and K. Stawiasz, “High-

speed serialiazing/deserializing design-for-test methods for evaluating a 1 ghz microprocessor,” in

Proceedings IEEE VLSI Test Symposium (VTS), pp. 234–238, IEEE Computer Society Press, Apr.

1998.

36

[37] H. Ichihara, A. Ogava, T. Inoue, and A. Tamura, “Dynamic Test Compression Using Statistical

Coding,” in Proceedings of the Asian Test Symposium (ATS), (Kyoto, Japan), pp. 143–148, IEEE

Computer Society Press, Nov. 2001.

[38] H. Ichihara, K. Kinoshita, I. Pomeranz, and S. Reddy, “Test Transformation to Improve Com-

paction by Statistical Encoding,” in Proceedings International Conference on VLSI Design,

pp. 294–299, IEEE Computer Society Press, Jan. 2000.

[39] The University of Illinois. www.crhc.uiuc.edu/IGATE.

[40] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of sequential benchmark circuits,”

in Proceedings International Symposium on Circuits and Systems (ISCAS), pp. 1929–1934, May

1989.

[41] Synopsys Inc., “Design compiler reference manual,” 2002.

37

