
Inductive Theorem Proving by Program Specialisation:
Generating proofs for Isabelle using Ecce

(Invited Talk)

Helko Lehmann and Michael Leuschel

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{hel99r,mal}@ecs.soton.ac.uk

Abstract. In this paper we discuss the similarities between program specialisation and
inductive theorem proving, and then show how program specialisation can be used to
perform inductive theorem proving. We then study this relationship in more detail for
the particular problem of verifying infinite state systems in order to establish a clear
link between program specialisation and inductive theorem proving. Indeed, Ecce is a
program specialisation system which can be used to automatically generate abstractions
for the model checking of infinite state systems. We show that to verify the abstractions
generated by Ecce we may employ the proof assistant Isabelle. Thereby Ecce is used
to generate the specification, hypotheses and proof script in Isabelle’s theory format.
Then, in many cases, Isabelle can automatically execute these proof scripts and thereby
verify the soundness of Ecce’s abstraction. In this work we focus on the specification
and verification of Petri nets.

1 Introduction

Program specialisation aims at improving the overall performance of programs by performing
source to source transformations. A common approach within functional and logic programming,
known respectively as partial evaluation and partial deduction, is to exploit partial knowledge
about the input. It is achieved through a well-automated application of parts of the Burstall-
Darlington unfold/fold transformation framework.

The relation between program specialisation and theorem proving has already been raised
several times in the literature [28, 10, 29, 27]. In this paper we will examine in closer detail at
the relationship between partial deduction and inductive theorem proving.
Partial Deduction The heart of any technique for partial deduction is a program analysis
phase. Given a program P and an (atomic) goal ← A, one aims to analyse the computation-
flow of P for all instances ← Aθ of ← A. Based on the results of this analysis, new program
clauses are synthesised.

In partial deduction, such an analysis is based on the construction of finite and usually
incomplete1, SLD(NF)-trees. More specifically, following the foundations for partial deduction
developed in [23] (see also [19] for an up-to-date overview), one constructs

– a finite set of atoms S = {A1, . . . , An}, and
– a finite (possibly incomplete) SLD(NF)-tree τi for each (P ∪ {← Ai}),

1 As usual in partial deduction, we assume that the notion of an SLD-tree is generalised [23] to allow
it to be incomplete: at any point we may decide not to select any atom and terminate a derivation.

such that:

1) the atom A in the initial goal ← A is an instance of some Ai in S, and
2) for each goal ← B1, . . . , Bk labelling a leaf of some SLD(NF)-tree τl, each Bi is an instance

of some Aj in S.

The conditions 1) and 2) ensure that together the SLD(NF)-trees τ1, . . . , τn form a complete
description of all possible computations that can occur for all concrete instances ← Aθ of the
goal of interest. At the same time, the point is to propagate the available input data in ← A as
much as possible through these trees, in order to obtain sufficient accuracy. The outcome of the
analysis is precisely the set of SLD(NF)-trees {τ1, . . . , τn}: a complete, and hopefully as precise
as possible, description of the computation-flow. Finally, a code generation phase produces a
resultant clause for each non-failing branch of each tree, which synthesises the computation in
that branch. The approach has been generalised to specialising a set of conjunctions rather
than just atoms in [5]. An overview of control techniques that are used in partial deduction,
such as determinacy, homeomorphic embedding, and characteristic trees, can be found in [19].

Let us illustrate conjunctive partial deduction on the following simple program.

even(0).

even(s(X)) :- odd(X). odd(s(X)) :- even(X).

Conjunctive partial deduction can specialise this program for the query← even(X)∧odd(X)
by constructing the incomplete SLD-tree for it depicted in Fig. 1. The set S mentioned above
would simply be S = {even(X) ∧ odd(X)}. The specialised program we obtain, is:

even_odd(s(X)) :- even_odd(X).

It is immediately obvious that even odd(X) will never succeed, and hence that no number
is even and odd at the same time. The partial evaluator Ecce [22, 5] will basically produce
the same result (slightly more involved as it does not re-order atoms by default) and can also
automatically infer the failure of even odd(X) by applying its bottom up more specific program
construction phase [24] in the post-processing.

even(X),odd(X)

odd(0)

fail

odd(Y),odd(s(Y))

odd(Y),even(Y)

X=0 X=s(Y)

instance
(after re-ordering)

Fig. 1. Specialisation of even-odd

Inductive Theorem Proving Now, the above result corresponds to an inductive proof show-
ing that no number can be both even and odd. The left branch of Fig. 1 corresponds to exam-
ining the base case X = 0, while the right branch corresponds to the induction step whereby

even(s(Y)), odd(s(Y)) is rewritten into the equivalent odd(Y), even(Y) so that the induction
hypothesis can be applied.

In a sense the conjunctive partial deduction has identified a working induction schema
and the bottom-up propagation [24] has performed the induction proper. This highlights a
similarity between partial deduction and inductive theorem proving. Indeed, in the induction
step of an inductive proof one tries to transform the induction assumption(s) for n + 1 using
basic inference rules so as to be able to apply the induction hypothese(s) and complete the proof.
In partial deduction, one tries to transform the atoms in A (or conjunctions for conjunctive
partial deduction) by unfolding so as to be able to “fold” back all leaves. The set of atoms
A thus plays the role of the induction hypotheses and resolution the role of classical theorem
proving. In summary,

– there is a striking similarity between the control problems of partial deduction and inductive
theorem proving. The problem of ensuring A-closedness is basically the same as finding
induction hypotheses where the induction “goes through’.’ Many control techniques have
been developed in either camp (e.g., [2] for inductive theorem proving) and cross-fertilisation
might be possible.

– if basic resolution steps correspond to logical inference rules one may be able to perform
inductive theorem proving directly by partial deduction. For example, Ecce can fully au-
tomatically prove associativity of addition [18] (see also[20])..
The only difference is that resolution is not guaranteed to decrease the induction parameter,
so this is only guaranteed to work if the predicates to be specialised are inductively defined.

In the next sections we show how Ecce can be used to perform inductive theorem proving
as applied to verification tasks and how the induction schemas produced by Ecce can be
automatically translated for the proof assistant Isabelle [25].

2 Infinite Model Checking by Program Specialisation

In recent work it has been shown that logic programming based methods in general, and partial
deduction in particular, can be applied to model checking [4] of infinite state systems. As this
problem can also be tackled by inductive theorem proving [25] we choose this as the basis of
a more formal comparison. Indeed, one of the key issues of model checking of infinite systems
is abstraction [3]. Abstraction allows to approximate an infinite system by a finite one, and if
proper care is taken the results obtained for the finite abstraction will be valid for the infinite
system. This is related to finding proper induction schemas for inductive theorem proving,
which in turn is related to the control problem of partial deduction.

In earlier work we have tried to solve the abstraction problem by applying existing techniques
for the automatic control of (logic) program specialisation, [13] and modelleing the system to be
verified as a logic program by means of an interpreter [9, 16]. Thereby, the interpreter describes
how the states of the system change by executing transitions. By applying partial deduction to
the interpreter we expect a finite abstraction of the possibly infinite state space of the system
to be generated. This abstraction may then be used to verify system properties of interest.
This approach proved to be quite powerful as it was possible to obtain decision procedures
for the coverability problem, if “typical” specialisation algorithms, as for example implemented
in the Ecce system [22, 17], are applied to logic programs that encode Petri nets [15]. It is
even possible to precisely mimic well known Petri net algorithms (by Karp–Miller [11] and by
Finkel [6]) when the program specialisation techniques are slightly weakened. The results of [15]

refer to forward algorithms only, i.e. algorithms which construct, beginning from some initial
state, an abstract representation of the whole reachability tree of a Petri net. However, for some
classes of systems such exhaustive algorithms are not necessary or even not precise enough to
decide coverability [1, 7, 8]. In such cases partial deduction may often be successfully applied as
well [14], thereby mimicking well known backward algorithms [7].

Technically, the dynamic system specified in the input for the partial deduction algorithm
can also be viewed as an inductive system describing the set of finite behaviours, i.e. the set
of finite paths. Thereby, the set of initial states form the inductive base and each transition
represents an inductive step. For the output of the partial deduction algorithm to be a sound
abstraction each of the states reachable by a path must be contained in a state representation of
the output. It is desirable to verify this property if we cannot ensure that the partial deduction
algorithm is correctly implemented. The goal of this work is to show that such proofs can be
generated and executed automatically. To this end we employ the partial deduction system
Ecce for the automatic generation of the theory and the proof scripts. The proof assistant
Isabelle [26] is used to execute the proof scripts.

If we can use Isabelle to verify the soundness of the output of the partial deduction method
we may also ask whether it is possible to generate the hypotheses automatically and thereby
use Isabelle directly as a model checker of infinite systems. To this end, similar to the partial
deduction system, Isabelle needs to perform some kind of abstraction while searching for a
proof of some dynamic property such as safety.

In this paper we focus on the specification and verification of Petri nets. This is due to their
simple representation as a logic program as well as in a Isabelle theory. The following section
describes how we can specify Petri nets in Isabelle. Then we discuss how such specifications
are generated using Ecceand how Ecce output can be translated into Isabelle. In Section 5
we demonstrate how proof scripts can be used in Isabelle for automatic theorem proving. In
Section 6 we demonstrate the complete verification process using an example specification. The
above mentioned automatic generation of hypotheses and some efficiency issues are discussed
in Section 7. The last section gives a conclusion and proposes some further work. All relevant
source code of the Ecce system can be found in the technical report [12].

3 Specification of Petri nets in Isabelle

The proof assistant Isabelle [25] has been developed as a generic system for implementing
logical formalisms. Instead of developing an all new logic for our purposes we will use the
specification and verification methods realised by the implementation of Higher Order Logic
(HOL) in Isabelle. HOL allows to express most mathematical concepts and, in contrast to, for
example, First Order Logic, it allows the specification of and the reasoning about inductively
defined sets. This latter feature is crucial for our purposes. Hence, strictly speaking, we will
develop specifications in Isabelle/HOL. Furthermore, the current Isabelle system provides
the language Isar for the specification of theories and the development of proof scripts. In this
work we will use Isar instead of Isabelle’s implementation language ML since Isar is much
easier to use as it hides most implementation details of Isabelle. However, the possibilities
to develop proof tactics using Isar only are very limited. Consequently we conjecture that for
efficient automatic theorem proving the use of Isar allone is insufficient (see also Section 8).

Isabelle allows specifications as part of theories. A theory can be thought of as a collection
of declarations, definitions, and proofs. Isabelle/HOL is a typed logical language where the base
types resemble those of functional programming languages such as ML. To specify new types

Isabelle provides type constructors, function types, and type variables. We will introdce the
particular concepts as we will use them and refer for additional information to the Isabelle/Isar
Reference Manual2.

Terms are formed by applying functions to arguments, e.g. if f is a function of type τ1 ⇒ τ2

and t a term of type τ1 then ft is a term of type τ2.
Formulas are terms of base type bool. Accordingly, the usual logical operators are defined

as functions whose arguments and domain are of type bool.
We specify the Petri net theory PN as a successor of the theory Main which is provided

by Isabelle/HOL. Main contains a number of basic declarations, definitions, and lemmas
concerning often required basic concepts such as lists and sets. Thereby, every part of the
theory Main becomes automatically visible in PN:

theory PN = Main:

To simplify the specification and to increase readability of the theory we define the type
state which corresponds to a notion in Petri net theory: A state or marking is a vector of
natural numbers representing the number of tokens on the places of a Petri net. The number of
dimensions of the vector corresponds to the number of places of the particular net. In Isabelle
we use the type constructor × to define the type state as a product over the base type nat:

types

state = "nat × nat ×...× nat"

Based on the type state we declare the functions paths, trans, and start. The function
start represents the initial state of the Petri net. Note that since we allow parameters in the
definition of state it actually may represent a set of initial states. The function trans describes
how the firing of a transition can change the state of a Petri net. The additional parameter of
type nat is used to refer to a particular transition of the net. The set of finite possible sequences
of transitons starting in the initial state is represented by paths. Note that the declaration of
trans and paths is independent of the particular considered Petri net.

consts

start :: "nat ⇒ ...⇒ nat ⇒ state"

trans :: "(state × state × nat) set"

paths :: "(state list) set"

By assigning a unique number the transition names are defined as a of enumeration type.
Consequently, for each transition t we include a declaration of the following form:

consts

t :: "nat"

The initial state start is defined by a term term of type state:

defs

start def [simp]: "start list of variables ≡ term"

The optional [simp] controls the strategy of Isabelle’s built-in simplifier to apply this
definition whenever possible. For our purposes term will be always a tuple of terms built using
the unary successor function Suc, 0, and variables appearing in the list of variables (the number
of variables in this list must correspond to the number of parameters in the declaration of start.

2 Lawrence C. Paulson. The Isabelle Reference Manual. http://isabelle. in.tum.de/doc/ref.pdf.

The transition function is defined as a set of transitions of the Petri net. Thereby each
transition is represented as a tuple (x,y,n), where x and y are tuples of terms built by Suc
and variables of the corresponding list of variables. The term n is the name of the transition.

defs

trans def: "trans ≡ {(x,y,n).
(∃ list1 of variables. (x,y,n)= transition1

∨ (∃ list2 of variables. (x,y,n)= transition2

...

∨ (∃ listn of variables. (x,y,n)= transitionn}"

One of the important features of Isabelle/HOL is the possibility of inductive definitions.
We define paths inductively using the following two rules:

inductive paths

intros

zero: "[(start list of variables)] ∈ paths"

step: "[[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

The first rule defines all initial states to be paths. The second rule allows the construction
of new paths by extending an arbitrary path by a new state if there exists a transition from
the state at the head of the path to the new state.

Finally, each transition t is defined as follows, where n is a unique natural number:

defs

t def [simp]: "t ≡ n"

The following example shows the the specification of a Petri net according to this scheme.

Example 1. We encode the Petri net depicted below in Isabelle/HOL. The initial state is
defined by one token on each of the places p2 and p3, and the parameter A representing an
arbitrary number of tokens on place p1 (p1, p2, p3 correspond to the first, second, and third
dimension, respectively, of the state vector.

theory PN = Main:

types

state = "nat × nat × nat × nat × nat"

consts

start :: "nat ⇒ state"

trans :: "(state × state × nat) set"

paths :: "(state list) set"

t1 :: "nat"

t2 :: "nat"

t3 :: "nat"

t4 :: "nat"

defs

start def [simp]: "start ≡ (B,(Suc 0),(Suc 0),0,0)"

trans def: "trans ≡ {(x,y,n).
(∃ E D C B A. (x,y,n)=(((Suc A),(Suc B),(Suc C),D,E),

(A,(Suc B),C,(Suc D),E),t1))

∨ (∃ E D C B A. (x,y,n)=(((Suc A),(Suc B),(Suc C),D,E),

(A,B,(Suc C),D,(Suc E)),t2))

∨ (∃ E D C B A. (x,y,n)=((A,B,C,(Suc D),E),

((Suc A),B,(Suc C),D,E),t3))

∨ (∃ E D C B A. (x,y,n)=((A,B,C,D,(Suc E)),

((Suc A),(Suc B),C,D,E),t4))}"
t1 def [simp]: "t1 ≡ 0"

t2 def [simp]: "t2 ≡ 1"

t3 def [simp]: "t3 ≡ 2"

t4 def [simp]: "t4 ≡ 3"

inductive paths

intros

zero: "[(start B)] ∈ paths"

step: "[[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

2

4 Generating Isabelle theories using Ecce

Since we aim to verify the partial deduction results of Ecce, we have integrated the generation
of the Isabelle theory directly into Ecce. The generated Isabelle theory consists of three
parts:

1. the specification of the Petri net,
2. the specification of the coverability graph as generated by Ecce,
3. the lemma to be verified together with a proof script.

In this section we deal with the first two parts while the third part is discussed in Section 5.

4.1 Generating Petri net specifications from logic programs

The Isabelle theory generator integrated in Ecce assumes that the transitions of a Petri
net are specified by a set of clauses of a ternary predicate. The first parameter represents a
transition name, the second represents the set of states where the transition can be applied,
and the third how the state changes if the transition is executed. Technically, the second and
the third parameter of each clause are lists of the length corresponding to the number of
places. Relying on unification, conditions and changes can be easily expressed. For example,
the condition that at least two tokens are on place p3 in a Petri net with five places is expressed
by the term [X0,X1,s(s(X2)),X3,X4] (thereby s can be interpreted as the successor function
on natural numbers). Similarly, the state change can be expressed: the removal of one token on
place p3 and generation of two tokens on p1 is represented as [s(s(X0)),X1,s(X2),X3,X4].

The initial state is simply represented as a single clause where the last parameter must be
a list of the length corresponding to the number of places. Each element of the list can be
constructed using 0, the unary function s, and variables.

Example 2. The following logic program encodes the Petri net of Example 1.

trans(t1,[s(X0),s(X1),s(X2),X3,X4],[X0,s(X1),X2,s(X3),X4]).
trans(t2,[s(X0),s(X1),s(X2),X3,X4],[X0,X1,s(X2),X3,s(X4)]).
trans(t3,[X0,X1,X2,s(X3),X4],[s(X0),X1,s(X2),X3,X4]).
trans(t4,[X0,X1,X2,X3,s(X4)],[s(X0),s(X1),X2,X3,X4]).

start([B,s(0),s(0),0,0]).

2

The implementation of the theory generator is part of the file “code generator.pro” and can be
found in [12]. The generation is initiated by a call to the clause print specialised
program isa. In a user dialog the name of the file containing the Petri net specification, and
the names of the predicates representing transitions and initial state, respectively are deter-
mined. The Isabelle specification is generated by the subsequent calls of print isa header,
print isa type decl, print isa path decl(Data), and print isa path def(Data) in the
body of print specialised program isa. For example, the Isabelle theory of Example 1
has been generated from the logic program of Example 2.

4.2 Generating specifications of the coverability graph from logic programs

To use partial deduction techniques for model checking we need to specify also the verification
task as a logic program. To this end we may implement the satisfiability relation of some
temporal logic as a logic program. However, the generation of a coverability graph (by partial
deduction or other techniques) is not effective for all tasks that can be expressed with a powerful
temporal logic. However, one of the tasks where it is effective is the checking of safety properties.
To express safety properties we only require the definition of the EU operator of the temporal
logic CTL:

infinite_model_check(basic_safety,Formula) :- start(_,S),
Formula = sat(S,eu(true,p(unsafe))).

sat(E,p(P)) :- prop(E,P).
sat(E,eu(F,G)) :- sat_eu(E,F,G).
sat_eu(E,_F,G) :- sat(E,G).
sat_eu(E,F,G) :- sat(E,F), trans(_Act,E,E2), sat_eu(E2,F,G).

Depending on the safety property we are interested in we define when a state is considered
to be unsafe. For example the clause prop([X0,X1,X2,s(X3),s(X4)],unsafe) defines a state
of a Petri net to be unsafe when there exist at least one token on each of the places p4 and p5.

Note that simply calling the clause infinite model check(basic safety,Formula) in Pro-
log would force the system to explore an infinite derivation. Due to the potentially infinite state
space of a Petri net also methods like tabeling would be in general insufficient to deal with this
problem.

Before we apply the partial deduction system Ecce we will first perform a preliminary
compilation of the particular Petri net and task. Thereby we will get rid of some of the inter-
pretation overhead and achieve a more straightforward equivalence between markings of the
Petri net and atoms encountered during the partial deduction phase. We will use the Logen
offline partial deduction system [21] to that effect (but any other scheme which has a similar
effect can be used). This system allows one to annotate calls in the original program as either
reducible (executed by Logen) or non-reducible (not executed and thus kept in the specialised
program).3 In our case we will annotate all calls to trans and start as reducible. After that,
the Logen system will (efficiently) produce a compiled version: As can be seen in Example 3,
the compilation gives us a predicate sat eu 2 with one argument each for the transition name
and the result, plus one argument per Petri net place. Observe that Logen (and Ecce as well)
adds two underscores and a unique identifier to existing predicate names. sat eu 2 contains
one clause per transition of the Petri net plus one fact (for the marking reached). The initial
marking is encoded in the one clause for ssat 0 which calls sat 1.

Example 3. Applying Logen to the Petri net specification of Example 2 and the above task
implementation generates the following clauses:

sat_eu__2(B,C,D,s(E),s(F)).
sat_eu__2(s(G),s(H),s(I),J,K) :- sat_eu__2(G,s(H),I,s(J),K).
sat_eu__2(s(L),s(M),s(N),O,P) :- sat_eu__2(L,M,s(N),O,s(P)).
sat_eu__2(Q,R,S,s(T),U) :- sat_eu__2(s(Q),R,s(S),T,U).
sat_eu__2(V,W,X,Y,s(Z)) :- sat_eu__2(s(V),s(W),X,Y,Z).
sat__1(B,C,D,E,F) :- sat_eu__2(B,C,D,E,F).
ssat__0 :- sat__1(B,s(0),s(0),0,0).

2

After this precompilation we can apply Ecce to the resulting program. To this end we aim
to specialise the predicate ssat 0. The result of applying Ecce to the program of Example 3
is given in Example 4:

Example 4.

3 Logen is offline: the control decisions have been taken beforehand (and are encoded in the annota-
tions).

ssat__0 :- ssat__0__1.
/* ssat__0__1 --> [ssat__0] */

ssat__0__1 :- sat__1__2(A).
/* sat__1__2(A) --> [sat__1(A,s(0),s(0),0,0)] */

sat__1__2(A) :- sat_eu__2__3(A).
/* sat_eu__2__3(A) --> [sat_eu__2(A,s(0),s(0),0,0)] */

sat_eu__2__3(s(A)) :- sat_eu__2__4(A).
sat_eu__2__3(s(A)) :-sat_eu__2__5(A).

/* sat_eu__2__4(A) --> [sat_eu__2(A,s(0),0,s(0),0)] */
sat_eu__2__4(A) :- sat_eu__2__3(s(A)).

/* sat_eu__2__5(A) --> [sat_eu__2(A,0,s(0),0,s(0))] */
sat_eu__2__5(A) :- sat_eu__2__3(s(A)).

2

From the output of Ecce we generate an Isabelle theory representing the generated cov-
erability relation. Independent of the particular domain this relation is declared as a set of pairs
of states:

consts

coverrel:: "(state × state) set"

For each predicate name of a clause in the specialised program, which represents a set of
states we add a declaration of the form:

consts

name :: nat ⇒ ...⇒ nat ⇒ state"

Thereby the number of parameters of type nat corresponds to the number of variables in
the head of the clause. The definitions have the form:

defs

name def: "name list of variables ≡ term"

For our purposes term will be always a tuple of terms built using the unary successor function
Suc, 0, and variables appearing in the list of variables (the number of variables in this list must
correspond to the number of parameters in the declaration of name).

Finally, the coverability relation is defined as a set of pairs of states. In the specialised
program every clause of the form namem(argsm) :- namen(argsn) corresponds to such a
pair. Formally, in the Isabelle theory each pair is represented as a tuple (x,y), where x and
y are tuples of terms built by Suc and variables of the corresponding list of variables:

defs

coverrel def: "coverrel ≡
{(x,y). ∃ list1 of variables. x= state11 ∧ y= state12}

∪ {(x,y). ∃ list2 of variables. x= state21 ∧ y= state22}
...

∪ {(x,y). ∃ listm of variables. x= statem1 ∧ y= statem2}"

The theory generator (cf. [12]) produces automatically the specification of the coverability
relation from the specialised program. To this end the predicate names characterising the cover-
ability relation in the specialised program are determined by a user dialog (only the unspecialised

names have to be provided, e.g. in the above example sat 1 and sat eu 2). In the body of
print specialised program isa the calls to print isa cover decl and print isa cover
def generate the necessary declarations and definitions, respectively.

Example 5. The following theory was generated by the theory generator [12] from the program
of Example 4:

consts

coverrel:: "(state × state) set"

sat 1 2 :: "nat ⇒ state"

sat eu 2 3 :: "nat ⇒ state"

sat eu 2 4 :: "nat ⇒ state"

sat eu 2 5 :: "nat ⇒ state"

defs

sat 1 2 def: "sat 1 2 A ≡ (A,(Suc 0),(Suc 0),0,0)"

sat eu 2 3 def: "sat eu 2 3 A ≡ (A,(Suc 0),(Suc 0),0,0)"

sat eu 2 4 def: "sat eu 2 4 A ≡ (A,(Suc 0),0,(Suc 0),0)"

sat eu 2 5 def: "sat eu 2 5 A ≡ (A,0,(Suc 0),0,(Suc 0))"

coverrel def: "coverrel ≡ {(x,y). ∃ A. x=(sat 1 2 A)

∧ y=(sat eu 2 3 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 3 (Suc A))

∧ y=(sat eu 2 4 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 3 (Suc A))

∧ y=(sat eu 2 5 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 4 A)

∧ y=(sat eu 2 3 (Suc A))}
∪ {(x,y). ∃ A. x=(sat eu 2 5 A)

∧ y=(sat eu 2 3 (Suc A))}"

2

5 Proof Scripts

In this section we demonstrate how we can prove theorems using Isabelle/Isarand how we can
write proof scripts for automatic execution. Thereby we focus only on some of the “execution
style” proof commands of Isabelle/Isar. These commands can be considered to be the classical
way of writing Isabelle proofs although the actual Isabelle proof methods are wrapped
within the Isar language. Note however that Isar allows also a more “mathematical style”
notation of proofs than the one we use here (see the Isabelle/Isar Reference Manual for details).

Furthermore we discuss only the proof methods we are going to apply in order to solve the
verification task of Ecce. Keep in mind that Isabelle/Isar provides a much wider range of
methods.

The proof mode of Isabelle/Isar is initiated by executing a lemma. When entering the
proof mode Isabelle/Isar generates a single pending subgoal consisting of the lemma to be
proven. The list of subgoals can be altered, mainly by executing proof methods. Proof methods
are executed using the proof command apply. Thereby the list of subgoals defines the proof
state. The proof mode can be left by executing done in the case that there are no pending

subgoals (the proof state is the empty list of subgoals, in which case Isabelle/Isar prints No
subgoals!).

Note that all proof methods described below only transform the first subgoal of the proof
state. For finding a proof this may be inconvenient. Therefore, Isabelle/Isar provides com-
mands to change the order of the subgoals. However, our aim in this paper is the automatic
execution of proof scripts, not their interactive development.

5.1 Rewriting

To rewrite a subgoal using existing definitions and lemmas automatically we may execute Is-
abelle’s simplifier: apply(simp). For the simplifier to automatically attempt to use new defin-
tions and lemmas they have to be accompanied by the option [simp]. Such defined simplification
rules are then applied from left to right. However, we have to take care if we define simplification
rules in such a way as they may slow the simplifier down considerably or even cause it to loop.
Instead of defining a general simplification rule we may also use the simplifier to only apply
certain, explicitely stated definitions. E.g., the execution apply(simp only: r def) causes to
rewrite using the definition of r only.

5.2 Introduction and Elimination

Based on reasoning using natural deduction there are two types of rules for each logical symbol,
such as ∨: introduction rules which allow us to infer formulas containing the symbol (e.g. ∨),
and elimination rules which allow us to deduce consequences of a formula containing the symbol
(e.g. ∨).

In Isabelle an introduction rule is usually applied by apply(rule r). Assume r being a
rule of the form:

P1, . . . , Pn

Q

where Q is a formula containing the introduced logical symbol while the formulas P1,. . . ,Pn

in the premise do not. Then, if r is applied as introduction rule the current first subgoal is
unified with Q and replaced by the properly instantiated P1,. . . ,Pn.

An elimination rule is usually applied using apply(erule r). Assume r being a rule of the
above form and the current first subgoal of the form A1, . . . , Am =⇒ S. Then, if r is applied as
elimination rule S is unified with Q and some Ai is unified with P1. The old subgoal is replace
by n− 1 new subgoals of the form A1, . . . , Ai−1, Ai+1, . . . , Am =⇒ Pk with 2 ≤ k ≤ n.

In our verification proofs we will use explicitely only the elimination rules disjE for dis-
junction and paths.induct for induction over the length of paths.

5.3 Automatic Reasoners

Most classical reasoning of even simple lemmas can require the application of a vast amount
of rules. To simplify this task Isabelle provides a number of automatic reasoners. Here we
will make use of blast which is the most powerful of Isabelle’s reasoners. Additionally, we
will employ clarify which performs obvious transformations which do not require to split
the subgoal or render it unprovable. The method clarify and the explicit application of the
elimination rule disjE (see above))) was necessary to tune the proof process. This tuning was

necessary to complete the verification proofs of even very small Petri nets using the available
computing resources.

Additionally to the two classical reasoners we also employ the simplifier simp as an automatic
proof tool as it can also handle some arithmetics. Furthermore, for some cases in our verification
task simp succeeded faster than blast if it was able to eliminate a subgoal at all.

5.4 Scripts

To improve the handling of large proofs and to allow a higher flexibility of a proof proof scripts
can be extended by the following operators:

– method1,...,methodn: a list of methods represents their sequential execution;
– (method): mainly used to define the scope of another operator;
– method?: executes method only if it does not fail,
– method1|...|methodn: attempts to execute methodk only if each methodi with i < k

failed;
– method+: method is repeatedly executed until it fails.

For our verification task the lemma and proof script are generated automatically by the
theory generator [12] (by calls to print isa lemma and print isa proofscript in the body
of print specialised program isa). The execution of the script in the example below is il-
lustrated in the next section.

Example 6. The following lemma and script corresponds to the one automatically generated by
Ecce for the Petri net specification of Example 1:

lemma "l ∈ paths =⇒ ∃ y. ((hd l),y) ∈ coverrel"

apply(erule paths.induct)

apply(simp only: start_def

coverrel_def)

apply(simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def)

apply(simp)

apply(blast)

apply(simp only:trans_def)

apply(clarify)

apply(((erule disjE)?,

simp only: coverrel_def,

simp,

((erule disjE)?,

simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def,

simp|blast)+)+)

2

6 Verifying Ecce

In this section we illustrate the automatic verification of the Ecce output by the Isabelle
system. To this end the theory, lemma and proof script as generated by Ecce for the Petri
net of Example 1, are executed (the complete input consists of the Isabelle specifications
of Example 1, Example 5, and lemma and proof script of Example 6). Full details can be
found in the technical report [12]. After this, we can also apply the steps required to prove the
lemma for transition t1 in a similar fashion to the remaining transitions. The following proof
script attempts precisely this. Again, the elimination rule disjE is not applicable for the last
transition. Hence, we perform a test using ? before applying this method in the first line.

apply(((erule disjE)?,
simp only: coverrel_def,
simp,
((erule disjE)?,
simp only: sat__1__2_def

sat_eu__2__3_def
sat_eu__2__4_def
sat_eu__2__5_def,

simp|blast)+)+)

For our example all cases could be verified, hence Isabelle answers:

No subgoals!

2

Consequently, the coverability relation generated by Ecce for the Petri net of Example 1
covers indeed all states reachable by any path (under the condition that the theory generated
by the automatic theory generator as implemented in Ecce is correct).

7 Automatic Generation of Hypotheses

Instead of defining the coverability as a relation as illustrated in Subsection 4.2 we may view
the coverability graph as an inductive definition of a set of states which covers the actual state
space of the Petri net. For our example a corresponding Isabelle/Isar definition could look
as follows:

consts

coverstates:: "state set"

inductive coverstates

intros

zero : "(sat 1 2 A) ∈ coverstates"

step1 : "[[∃ A. (sat eu 2 3 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 4 A) ∈ coverstates"

step2 : "[[∃ A. (sat eu 2 3 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 5 A) ∈ coverstates"

step3 : "[[∃ A. (sat eu 2 4 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 3 A) ∈ coverstates"

step4 : "[[∃ A. (sat eu 2 5 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 3 A) ∈ coverstates"

Similarly, instead of using the concept of paths, we may directly specify the set of reachable
states inductively in Isabelle/Isar. For our example the following specification would fit the
purpose:

consts

reachstates:: "state set"

inductive reachstates

intros

zero : "(start B) ∈ reachstates"

step1 : "[[∃ A B C D E. ((Suc A),(Suc B),(Suc C),D,E) ∈ reachstates]] =⇒
(A,(Suc B),C,(Suc D),E) ∈ reachstates"

step2 : "[[∃ A B C D E. ((Suc A),(Suc B),(Suc C),D,E) ∈ reachstates]] =⇒
(A,B,(Suc C),D,(Suc E)) ∈ reachstates"

step3 : "[[∃ A B C D E. (A,B,C,(Suc D),E) ∈ reachstates]] =⇒
((Suc A),B,(Suc C),D,E) ∈ reachstates"

step4 : "[[∃ A B C D E. (A,B,C,D,(Suc E)) ∈ reachstates]] =⇒
((Suc A),(Suc B),C,D,E) ∈ reachstates"

Then, the lemma to be verified to show the soundness of the coverability relation is

lemma "x ∈ reachstates =⇒ x ∈ coverstates"

However, lets assume that the specification of coverstates is unknown and has to be
generated by Isabelle. To this end we may attempt to prove the following lemma:

lemma "∃ coverstates. x ∈ reachstates =⇒ x ∈ coverstates"

Thereby it is not important to find a proof, since there are many sets which fulfill this
criterion (e.g. the (minimal) set reachstates and the (maximal) set of all states). Instead it
is important to find a proof, which generates the induction steps of the above specification of
coverstates as (or as parts of) subgoals. In other words, the question is whether Isabelle’s
proof methods can imitate the behaviour of Ecce (or other model checkers for Petri nets).

The most important elements of Ecce’s partial deduction method to generate the cover-
ability graph are: coverability test, unfolding, whistling, abstraction. The coverability test can
easily be defined in Isabelle/Isar, e.g.:

[[x∈ state; y∈ state; x≤y]] =⇒ covers(y,x)

where ≤ is defined as an order on the set of states. We may also check whether a set of
states is covered by another set of states, e.g.:
∀ B. ∃ A. covers((0,0,0,A,0),(0,0,0,(Suc B),0))

Similarly, we may define whistling for two states (state sets) or even for the states on a path
(a whistle blows if a newly encontered state is (in some sense) bigger than any of its predecessors
on the path, thereby it indicates a potentially infinite growth).

The unfolding corresponds in Isabelle simply to the rewriting of a subgoal using a defini-
tion, in case of Petri nets the definition of the transition function.

The most difficult element to imitate seems to be the abstraction. Given a certain subgoal
Isabelle’s proof method has to replace this subgoal by a more general one. E.g., if unfolding of
a transition has led to a subgoal containing the state (0,0,0,(Suc 0),0) and the whistle has
blown due to a preceding state of the form (0,0,0,0,0), then we have to replace the subgoal

by a new one containing a state of the form (0,0,0,A,0) (where A is all quantified). The only
proof rule which is capable of introducing an all quantified variable in Isabelle/Isar is spec:

∀x.P

P [t/x]
And indeed, by applying spec as an introduction rule we may indeed introduce perform a
generalisation. For example, assume the following subgoal:

1. "(0,0,0,0,0) ∈ coverstates"

Executing apply(rule spec) and backtracking (using the proof command back) generates
as the 30th possibility (out of 38):

1. ∀ x. (0, 0, 0, x, 0) ∈ coverstates

However, we did not succeed yet in implementing a complete proof script using this rule as
the search for the appropriate alternative subgoal has to be controlled by the proof script. Within
the execution oriented proof style we have focused on Isabelle/Isar does not seem to provide
enough control without implementing new proof tactics on Isabelle’s ML-implementation
level.

8 Conclusion and Further Work

We have shown the similarity between controlling partial deduction and inductive theorem
proving. We have formally established a relationship between the program specialiser Ecce
and the proof system Isabelle when applied to verifying infinite state Petri nets. We have
shown that verification of Ecce output using the proof system Isabelle can be achieved for
small nets. The execution of the proof script of Section 6 on a Pentium II/400 needed about
90s and the underlying PolyML required 80MB of memory. However, as further experiments
with a net containing 14 places and 13 transitions reveiled, more specific proof methods have to
be employed as the use of the method blast required more than the available 200MB of main
memory and therefore had to be canceled. One way of tuning the proof process further is by
restricting the number of rules potentially applied by blast. However, while rules can easily be
removed from and added to the list of simplification rules in Isabelle/Isar, a similar simple
manipulation of the “blast rules” without rewriting underlying Isabelle proof tactics seems
not possible. An indirect way of restricting the search space of blast could also be to derive
the theory PN not from Main but from (sets of) more basic theories.

A way of improving the readability of the proof script could be to employ the mathematical
proof style instead of the execution oriented style. In the mathematical proof style higher-order
pattern matching can be used to control the proof. This may also increase the flexibility of
the proof significantly, in particular if the results have to be generalised for other specifications
than those of Petri nets.

Finally, for Isabelle to automatically generate the coverability relation from the specifi-
cation of the Petri net we believe that it is necessary to implement a new proof rule/proof
method at Isabelle’s implementation level which allows to automatically backtrack over po-
tential hypotheses which are more general than the subgoal to be shown. Another option worth
exploring might be to attempt to define a proof scheme using the higher-order pattern matching
of Isabelle/Isar, which performs the abstraction on proof level: E.g., if a state description
matches a certain pattern we attempt to prove a lemma concerning a similar pattern where a
constant is replaced by some variable.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-
state systems. In 11th IEEE Symposium on Logic in Computer Science, pages 313–321, 1996.

2. Alan Bundy, Andrew Stevens, Frank van Harmelen, Andrew Ireland, and Alan Smaill. Rippling: a
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.

3. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions. ACM
Computing Surveys, 28(4):626–643, December 1996.

4. Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT Press, 1999.
5. Danny De Schreye, Robert Glück, Jesper Jørgensen, Michael Leuschel, Bern Martens, and

Morten Heine Sørensen. Conjunctive partial deduction: Foundations, control, algorithms and ex-
periments. The Journal of Logic Programming, 41(2 & 3):231–277, November 1999.

6. A. Finkel. The minimal coverability graph for Petri nets. Lecture Notes in Computer Science,
674:210–243, 1993.

7. A. Finkel and P. Schnoebelen. Fundamental structures in well-structured infinite transition systems.
In Proceedings of LATIN’98, LNCS 1380, pages 102–118. Springer-Verlag, 1998.

8. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical Com-
puter Science, 1999. To appear.

9. R. Glück and M. Leuschel. Abstraction-based partial deduction for solving inverse problems –
a transformational approach to software verification. In Proceedings of the Third International
Ershov Conference on Perspectives of System Informatics, LNCS 1755, pages 93–100, Novosibirsk,
Russia, 1999. Springer-Verlag.

10. Robert Glück and Jesper Jørgensen. Generating transformers for deforestation and supercompila-
tion. In Baudouin Le Charlier, editor, Proceedings of SAS’94, LNCS 864, pages 432–448, Namur,
Belgium, September 1994. Springer-Verlag.

11. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3:147–195, 1969.

12. Helko Lehmann and Michael Leuschel. Generating inductive verification proofs for Isabelle using
the partial evaluator Ecce. Technical Report DSSE-TR-2002-02, Department of Electronics and
Computer Science, University of Southampton, UK, September 2002.

13. M. Leuschel. Logic program specialisation. In J. Hatcliff, Torben Æ. Mogensen, and Peter Thie-
mann, editors, Partial Evaluation: Practice and Theory, LNCS 1706, pages 155–188, Copenhagen,
Denmark, 1999. Springer-Verlag.

14. M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured Transi-
tion Systems by Partial Deduction. In J. Lloyd, editor, Proceedings of the International Conference
on Computational Logic (CL’2000), LNCS 1861, London, UK, 2000. Springer-Verlag.

15. M. Leuschel and H. Lehmann. Solving Coverability Problems of Petri Nets by Partial Deduction.
In Maurizio Gabbrielli and Frank Pfenning, editors, Proceedings of PPDP’2000, pages 268–279,
Montreal, Canada, 2000. ACM Press.

16. M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and program
specialisation. In Annalisa Bossi, editor, Logic-Based Program Synthesis and Transformation.
Proceedings of LOPSTR’99, LNCS 1817, pages 63–82, Venice, Italy, September 1999.

17. Michael Leuschel. The ecce partial deduction system and the dppd library of benchmarks. Ob-
tainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

18. Michael Leuschel. The ecce partial deduction system. In German Puebla, editor, Proceedings of the
ILPS’97 Workshop on Tools and Environments for (Constraint) Logic Programming, Universidad
Politécnica de Madrid, Tech. Rep. CLIP7/97.1, Port Jefferson, USA, October 1997.

19. Michael Leuschel and Maurice Bruynooghe. Logic program specialisation through partial deduction:
Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–515, July & September
2002.

20. Michael Leuschel and Danny De Schreye. Logic program specialisation: How to be more specific.
In H. Kuchen and S.D. Swierstra, editors, Proceedings of PLILP’96, LNCS 1140, pages 137–151,
Aachen, Germany, September 1996. Springer-Verlag.

21. Michael Leuschel, Jesper Jørgensen, Wim Vanhoof, and Maurice Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic Programming,
2004. To appear.

22. Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation and polyvari-
ance in partial deduction of normal logic programs. ACM Transactions on Programming Languages
and Systems, 20(1):208–258, January 1998.

23. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The Journal of Logic
Programming, 11(3& 4):217–242, 1991.

24. K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. Annals of Mathematics and
Artificial Intelligence, 1:303–338, 1990.

25. Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. LNCS 2283. Springer-Verlag, 2002.
26. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer

Science. Springer, 1994.
27. Alberto Pettorossi and Maurizio Proietti. Synthesis and transformation of logic programs using

unfold/fold proofs. The Journal of Logic Programming, 41(2&3):197–230, 1999.
28. Valentin F. Turchin. Program transformation with metasystem transitions. Journal of Functional

Programming, 3(3):283–313, 1993.
29. Valentin F. Turchin. Metacomputation: Metasystem transitions plus supercompilation. In Olivier

Danvy, Robert Glück, and Peter Thiemann, editors, Partial Evaluation, International Seminar,
LNCS 1110, pages 482–509, Schloß Dagstuhl, 1996. Springer-Verlag.

