
Inductive Theorem Proving by Program
Specialisation: Generating proofs for

Isabelle using Ecce

Helko Lehmann and Michael Leuschel

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{hel99r,mal}@ecs.soton.ac.uk

Abstract. In this paper we discuss the similarities between program
specialisation and inductive theorem proving, and then show how pro-
gram specialisation can be used to perform inductive theorem proving.
We then study this relationship in more detail for a particular class of
problems (verifying infinite state Petri nets) in order to establish a clear
link between program specialisation and inductive theorem proving. In
particular, we use the program specialiser ecce to generate specifica-
tions, hypotheses and proof scripts in the theory format of the proof
assistant Isabelle. Then, in many cases, Isabelle can automatically
execute these proof scripts and thereby verify the soundness of ecce’s
verification process and of the correspondence between program special-
isation and inductive theorem proving.

1 Introduction

Program specialisation aims at improving the overall performance of programs
by performing source to source transformations. A common approach, known
as partial evaluation [8], is to exploit partial knowledge about the input by
precomputing parts of the program. In the context of logic programming, par-
tial evaluation is sometimes called partial deduction and is achieved through a
well-automated application of parts of the Burstall-Darlington unfold/fold trans-
formation framework.

The relation between program specialisation and theorem proving has already
been raised several times in the literature [23, 7, 24, 21]. In this paper we will
examine in closer detail the relationship between partial deduction and inductive
theorem proving.
Partial Deduction At the heart of any technique for partial deduction is a
program analysis phase: Given a program P and an (atomic) goal ← A, one
aims to analyse the computation-flow of P for all instances← Aθ of← A. Based
on the results of this analysis, new program clauses are synthesised.

In partial deduction, such an analysis is based on the construction of finite
and usually incomplete1, SLD(NF)-trees. More specifically, following the foun-
dations for partial deduction developed in [17] (see also [12] for an up-to-date
overview), one constructs

– a finite set of atoms S = {A1, . . . , An}, and
– a finite (possibly incomplete) SLD(NF)-tree τi for each (P ∪ {← Ai}),

such that:

1) the atom A in the initial goal ← A is an instance of some Ai in S, and
2) for each goal ← B1, . . . , Bk labelling a leaf of some SLD(NF)-tree τl, each

Bi is an instance of some Aj in S.

The construction of the set S is referred to as the global control, while the
construction of the trees τi are called the local control. The conditions 1) and
2) are referred to as closedness and ensure that together the SLD(NF)-trees
τ1, . . . , τn form a complete description of all possible computations that can
occur for all concrete instances ← Aθ of the goal of interest. Finally, a code
generation phase produces a resultant clause for each non-failing branch of each
tree, which synthesises the computation in that branch. This phase also typically
generates a fresh predicate name for every element of the set S and rename the
clauses in an appropriate manner.

The approach has been generalised to specialising a set of conjunctions rather
than just atoms in [4]. The basic principle remains roughly as outlined above;
the only difference being that we have a set S of conjunctions rather than atoms
and that the closedness condition becomes slightly more involved to allow the
leaf goals← B1, . . . , Bk to be split up into sub-conjunctions. This technique has
been implemented within the program specialiser ecce [15, 4] . An overview of
control techniques that are used in partial deduction and conjunctive partial
deduction in general and by ecce in particular, such as determinacy, homeo-
morphic embedding, or characteristic trees, can be found in [12].

A small example Let us illustrate conjunctive partial deduction on the fol-
lowing simple program.

even(0).

even(s(X)) :- odd(X).

odd(s(X)) :- even(X).

Suppose we only wish to use this program for queries of the form ← C
with C = even(X) ∧ odd(X) Conjunctive partial deduction can then specialise
this program by constructing the incomplete SLD-tree for ← C depicted in
1 As usual in partial deduction, we assume that the notion of an SLD-tree is generalised

[17] to allow it to be incomplete: at any point we may decide not to select any atom
and terminate a derivation.

Fig. 1. The set S mentioned above would simply be S = {C}. Supposing that
we produce the new predicate name even odd for C, the specialised program we
obtain, is:

even_odd(s(X)) :- even_odd(X).

It is immediately obvious that even odd(X) will never succeed, and hence
that no number is even and odd at the same time. The ecce system [15, 4]
basically produces the above result.2 and can also automatically infer the failure
of even odd(X) by applying its bottom up more specific program construction
phase [18] in the post-processing.

even(X),odd(X)

odd(0)

fail

odd(Y),odd(s(Y))

odd(Y),even(Y)

X=0 X=s(Y)

instance
(after re-ordering)

Fig. 1. Specialisation of even-odd

Inductive Theorem Proving Now, the above result corresponds to an induc-
tive proof showing that no number can be both even and odd. The left branch of
Fig. 1 corresponds to examining the base case X = 0, while the right branch cor-
responds to the induction step whereby even(s(Y)), odd(s(Y)) is rewritten into
the equivalent odd(Y), even(Y) so that the induction hypothesis can be applied.

In a sense the conjunctive partial deduction has identified a working induction
schema and the bottom-up propagation [18] has performed the induction proper.
This highlights a similarity between partial deduction and inductive theorem
proving. Indeed, in the induction step of an inductive proof one tries to transform
the induction assumption(s) for n+1 using basic inference rules so as to be able
to apply the induction hypothese(s) and complete the proof. In partial deduction,
one tries to transform the atoms in A (or conjunctions for conjunctive partial
deduction) by unfolding so as to be able to “fold” back all leaves. The set of
atoms A thus plays the role of the induction hypotheses and resolution the role
of classical theorem proving steps. In summary,

2 Using the default settings, ecce produces a slightly bigger specialised program be-
cause it does not re-order atoms by default. But the overall result is the same.

– there is a striking similarity between the control problems of partial deduc-
tion and inductive theorem proving. The problem of ensuring A-closedness is
basically the same as finding induction hypotheses where the induction “goes
through.” Many control techniques have been developed in either camp (e.g.,
[1] for inductive theorem proving) and cross-fertilisation might be possible.

– if basic resolution steps correspond to logical inference rules one may be able
to perform inductive theorem proving directly by partial deduction.
The only difference is that unfolding steps are not guaranteed to decrease
the induction parameter, so program specialisation is only guaranteed to
perform valid inductive theorem proving if the predicates to be specialised
are inductively defined.

A more complicated example Let us now have a look at a slightly more
involved example. The following is a simple theory expressed in the proof as-
sistant Isabelle [19]. (We will provide more details about Isabelle later in
the paper.) The theory defines a datatype for binary trees and then defines the
function mirror which simply produces the mirror image of tree (i.e., reversing
left and right children for all nodes). We then define a lemma stating that ap-
plying mirror twice produces the same result and then instruct Isabelle to use
induction on the tree in order to show this lemma.

theory ToyTree = PreList:

datatype ’a tree = Tip ("[]")

| Node "’a tree" ’a "’a tree"

consts mirror :: "’a tree => ’a tree"

primrec

"mirror([]) = []"

"mirror((Node ls x rs)) = Node (mirror(rs)) x (mirror(ls))"

lemma mirror_mirror [simp]: "mirror(mirror(xs)) = xs"

apply (induct_tac xs)

Loading this theory int Isabelle results in the following output:

proof (prove): step 1

fixed variables: xs

goal (lemma (mirror_mirror), 2 subgoals):

1. mirror (mirror []) = []

2. !!tree1 a tree2.

[| mirror (mirror tree1) = tree1; mirror (mirror tree2) = tree2 |]

==> mirror (mirror (Node tree1 a tree2)) = Node tree1 a tree2

It is now possible to use Isabelle to prove this lemma, by interactively
performing the required rewriting steps and twice applying the induction hy-
pothesis.3

3 E.g., first calling the simplifier apply(simp) and then the automatic prover
apply(auto) will perform the required proof steps.

Let us now try to achieve the same result using program specialisation. First,
we have to encode the mirror function and the lemma as a logic program:

mirror(tip,tip).

mirror(tree(L,N,R),tree(RR,N,RL)) :- mirror(L,RL), mirror(R,RR).

lemma(X,R) :- mirror(X,Z),mirror(Z,R).

Now, one would like to be able to infer that for all valid trees the the second
argument of lemma must be identical to the first argument. Surprisingly this
is exactly what we obtain when we specialise the above program for the call
lemma(X,R) using the ecce program specialiser (with the most specific version
[18] postprocessing enabled):

/* Transformation time: 130 ms */

/* Specialised Predicates:

lemma__1(A,B) :- lemma(A,B).

mirror_conj__2(A,B) :- mirror(A,C1), mirror(C1,B). */

lemma(A,A) :- mirror_conj__2(A,A).

lemma__1(A,A) :- mirror_conj__2(A,A).

mirror_conj__2(tip,tip).

mirror_conj__2(tree(A,B,C),tree(A,B,C)) :-

mirror_conj__2(A,A), mirror_conj__2(C,C).

Again, ecce has managed to rewrite the lemma in such a way that the
induction hypothesis could be applied (in this case it was applied twice as can be
seen from the two instances of mirror conj 2 in the last clause of the specialised
program). The specialisation tree produced by ecce can be seen in Fig. 2. The
dashed arrows indicate a descendance at the global control level (see, e.g., [12]),
whereas the solid arrows indicate unfolding steps. By carefully inspecting the
proof trace of Isabelle and the specialisation tree of ecce it turns out that
there is a one-to-one correspondence between the steps performed by Isabelle
and by ecce.

An obvious question is now whether there is a systematic way to exploit this
correspondence? In the next sections we show how ecce can be used to perform
inductive theorem proving as applied to verification tasks and how the special-
isation trees produced by ecce can be automatically translated into induction
schemas for the proof assistant Isabelle [19].

2 Infinite Model Checking by Program Specialisation

In recent work it has been shown that logic programming based methods in
general, and partial deduction in particular, can be applied to model checking
[2] of infinite state systems. As this problem can also be tackled by inductive
theorem proving [19] we choose this as the basis of a more formal comparison.

lemma__1(A,B) ==
rr(A,B)

mirror(A,B),
mirror(B,C)

mirror_conj__2(A,C) ==
mirror(A,B),
mirror(B,C)

mirror(tip,A)
mirror(A,B),
mirror(C,D),
mirror(tree(D,E,B),F)

mirror(A,B),
mirror(C,D),
mirror(D,E),
mirror(B,F)

[]

Fig. 2. ecce specialisation tree for mirror

Indeed, one of the key issues of model checking of infinite systems is abstrac-
tion [3]. Abstraction allows to approximate an infinite system by a finite one,
and if proper care is taken the results obtained for the finite abstraction will be
valid for the infinite system. This is related to finding proper induction schemas
for inductive theorem proving, which in turn is related to the control problem
of partial deduction.

In earlier work we have tried to solve the abstraction problem by applying
existing techniques for the automatic control of (logic) program specialisation,
[12] and modelling the system to be verified as a logic program by means of an
interpreter [16]. Thereby, the interpreter describes how the states of the system
change by executing transitions. By applying partial deduction to the interpreter
we expect a finite abstraction of the possibly infinite state space of the system
to be generated. This abstraction may then be used to verify system properties
of interest. This approach proved to be quite powerful as it was possible to ob-
tain decision procedures for the coverability problem, if “typical” specialisation
algorithms, as for example implemented in the ecce system [15, 10], are applied
to logic programs that encode Petri nets [14].

Technically, the dynamic system specified in the input for the partial deduc-
tion algorithm can also be viewed as an inductive system describing the set of
finite behaviours, i.e. the set of finite paths. Thereby, the set of initial states
form the inductive base and each transition represents an inductive step. For
the output of the partial deduction algorithm to be a sound abstraction each of
the states reachable by a path must be contained in a state representation of
the output. It is desirable to verify this property if we cannot ensure that the
partial deduction algorithm is correctly implemented. The goal of this work is
to show that such proofs can be generated and executed automatically. To this
end we employ the partial deduction system ecce for the automatic generation

of the theory and the proof scripts. The proof assistant Isabelle [20] is used to
execute the proof scripts.

If we can use Isabelle to verify the soundness of the output of the partial
deduction method we may also ask whether it is possible to generate the hy-
potheses automatically and thereby use Isabelle directly as a model checker of
infinite systems. To this end, similar to the partial deduction system, Isabelle
needs to perform some kind of abstraction while searching for a proof of some
dynamic property such as safety.

In this paper we focus on the specification and verification of Petri nets.
This is due to their simple representation as a logic program as well as in a
Isabelle theory. The following section describes how we can specify Petri nets in
Isabelle. Then we discuss how such specifications are generated using ecce and
how ecce output can be translated into Isabelle. In Section 5 we demonstrate
how proof scripts can be used in Isabelle for automatic theorem proving. In
Section 6 we demonstrate the complete verification process using an example
specification. The last section gives a conclusion and proposes some further work.
All relevant source code of the ecce system can be found in the technical report
[9].

3 Specification of Petri nets in Isabelle

The proof assistant Isabelle [19] has been developed as a generic system for
implementing logical formalisms. Instead of developing an all new logic for our
purposes we will use the specification and verification methods realised by the
implementation of Higher Order Logic (HOL) in Isabelle. HOL allows to ex-
press most mathematical concepts and, in contrast to, for example, First Order
Logic, it allows the specification of and the reasoning about inductively defined
sets. This latter feature is crucial for our purposes. Hence, strictly speaking,
we will develop specifications in Isabelle/HOL. Furthermore, the current Is-
abelle system provides the language Isar for the specification of theories and
the development of proof scripts. In this work we will use Isar instead of Is-
abelle’s implementation language ML since Isar is much easier to use as it
hides most implementation details of Isabelle. However, the possibilities to de-
velop proof tactics using Isar only are very limited. Consequently we conjecture
that for efficient automatic theorem proving the use of Isar allone is insufficient
(see also Section 7).

Isabelle allows specifications as part of theories. A theory can be thought of
as a collection of declarations, definitions, and proofs. Isabelle/HOL is a typed
logical language where the base types resemble those of functional programming
languages such as ML. To specify new types Isabelle provides type construc-
tors, function types, and type variables. We will introdce the particular concepts
as we will use them and refer for additional information to [19].

Terms are formed by applying functions to arguments, e.g. if f is a function
of type τ1 ⇒ τ2 and t a term of type τ1 then ft is a term of type τ2.

Formulas are terms of base type bool. Accordingly, the usual logical opera-
tors are defined as functions whose arguments and domain are of type bool.

We specify the Petri net theory PN as a successor of the theory Main which
is provided by Isabelle/HOL. Main contains a number of basic declarations,
definitions, and lemmas concerning often required basic concepts such as lists
and sets. Thereby, every part of the theory Main becomes automatically visible
in PN:

theory PN = Main:

To simplify the specification and to increase readability of the theory we
define the type state which corresponds to a notion in Petri net theory: A state
or marking is a vector of natural numbers representing the number of tokens on
the places of a Petri net. The number of dimensions of the vector corresponds
to the number of places of the particular net. In Isabelle we use the type
constructor × to define the type state as a product over the base type nat:

types

state = "nat × nat ×...× nat"

Based on the type state we declare the functions paths, trans, and start.
The function start represents the initial state of the Petri net. Note that since
we allow parameters in the definition of state it actually may represent a set
of initial states. The function trans describes how the firing of a transition can
change the state of a Petri net. The additional parameter of type nat is used
to refer to a particular transition of the net. The set of finite possible sequences
of transitons starting in the initial state is represented by paths. Note that the
declaration of trans and paths is independent of the particular considered Petri
net.

consts

start :: "nat ⇒ ...⇒ nat ⇒ state"

trans :: "(state × state × nat) set"

paths :: "(state list) set"

By assigning a unique number the transition names are defined as a of enu-
meration type. Consequently, for each transition t we include a declaration of
the following form:

consts

t :: "nat"

The initial state start is defined by a term term of type state:

defs

start def [simp]: "start list of variables ≡ term"

The optional [simp] controls the strategy of Isabelle’s built-in simplifier
to apply this definition whenever possible. For our purposes term will be always
a tuple of terms built using the unary successor function Suc, 0, and variables

appearing in the list of variables (the number of variables in this list must cor-
respond to the number of parameters in the declaration of start.

The transition function is defined as a set of transitions of the Petri net.
Thereby each transition is represented as a tuple (x,y,n), where x and y are
tuples of terms built by Suc and variables of the corresponding list of variables.
The term n is the name of the transition.

defs

trans def: "trans ≡ {(x,y,n).
(∃ list1 of variables. (x,y,n)= transition1

∨ (∃ list2 of variables. (x,y,n)= transition2

...

∨ (∃ listn of variables. (x,y,n)= transitionn}"

One of the important features of Isabelle/HOL is the possibility of inductive
definitions. We define paths inductively using the following two rules:

inductive paths

intros

zero: "[(start list of variables)] ∈ paths"

step: "[[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

The first rule defines all initial states to be paths. The second rule allows the
construction of new paths by extending an arbitrary path by a new state if there
exists a transition from the state at the head of the path to the new state.

Finally, each transition t is defined as follows, where n is a unique natural
number:

defs

t def [simp]: "t ≡ n"

The following example shows the the specification of a Petri net according
to this scheme.

Example 1. We encode the Petri net depicted below in Isabelle/HOL. The
initial state is defined by one token on each of the places p2 and p3, and the
parameter A representing an arbitrary number of tokens on place p1 (p1, p2, p3
correspond to the first, second, and third dimension, respectively, of the state
vector.

p5

t4

t3

t1 t2

p1

p3

p4

p2
B

theory PN = Main:

types

state = "nat × nat × nat × nat × nat"

consts

start :: "nat ⇒ state"

trans :: "(state × state × nat) set"

paths :: "(state list) set"

t1 :: "nat"

t2 :: "nat"

t3 :: "nat"

t4 :: "nat"

defs

start def [simp]: "start ≡ (B,(Suc 0),(Suc 0),0,0)"

trans def: "trans ≡ {(x,y,n).
(∃ E D C B A. (x,y,n)=(((Suc A),(Suc B),(Suc C),D,E),

(A,(Suc B),C,(Suc D),E),t1))

∨ (∃ E D C B A. (x,y,n)=(((Suc A),(Suc B),(Suc C),D,E),

(A,B,(Suc C),D,(Suc E)),t2))

∨ (∃ E D C B A. (x,y,n)=((A,B,C,(Suc D),E),

((Suc A),B,(Suc C),D,E),t3))

∨ (∃ E D C B A. (x,y,n)=((A,B,C,D,(Suc E)),

((Suc A),(Suc B),C,D,E),t4))}"
t1 def [simp]: "t1 ≡ 0"

t2 def [simp]: "t2 ≡ 1"

t3 def [simp]: "t3 ≡ 2"

t4 def [simp]: "t4 ≡ 3"

inductive paths

intros

zero: "[(start B)] ∈ paths"

step: "[[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

2

4 Generating Isabelle theories using ecce

Since we aim to verify the partial deduction results of ecce, we have integrated
the generation of the Isabelle theory directly into ecce. The generated Is-
abelle theory consists of three parts:

1. the specification of the Petri net,
2. the specification of the coverability graph [5] as generated by ecce,
3. the lemma to be verified together with a proof script.

In this section we deal with the first two parts while the third part is discussed
in Section 5.

4.1 Generating Petri net specifications from logic programs

The Isabelle theory generator integrated in ecce assumes that the transitions
of a Petri net are specified by a set of clauses of a ternary predicate. The first
parameter represents a transition name, the second represents the set of states
where the transition can be applied, and the third how the state changes if the
transition is executed. Technically, the second and the third parameter of each
clause are lists of the length corresponding to the number of places. Relying
on unification, conditions and changes can be easily expressed. For example, the
condition that at least two tokens are on place p3 in a Petri net with five places is
expressed by the term [X0,X1,s(s(X2)),X3,X4] (thereby s can be interpreted
as the successor function on natural numbers). Similarly, the state change can
be expressed: the removal of one token on place p3 and generation of two tokens
on p1 is represented as [s(s(X0)),X1,s(X2),X3,X4].

The initial state is simply represented as a single clause where the last pa-
rameter must be a list of the length corresponding to the number of places.
Each element of the list can be constructed using 0, the unary function s, and
variables.

Example 2. The following logic program encodes the Petri net of Example 1.

trans(t1,[s(X0),s(X1),s(X2),X3,X4],[X0,s(X1),X2,s(X3),X4]).
trans(t2,[s(X0),s(X1),s(X2),X3,X4],[X0,X1,s(X2),X3,s(X4)]).
trans(t3,[X0,X1,X2,s(X3),X4],[s(X0),X1,s(X2),X3,X4]).
trans(t4,[X0,X1,X2,X3,s(X4)],[s(X0),s(X1),X2,X3,X4]).

start([B,s(0),s(0),0,0]).

2

The implementation of the theory generator is part of the file “code generator.pro”
and can be found in [9]. The generation is initiated by a call to the clause
print specialised program isa. For example, the Isabelle theory of Exam-
ple 1 has been generated from the logic program of Example 2.

4.2 Generating specifications of the coverability graph from logic
programs

To use partial deduction techniques for model checking we need to specify also
the verification task as a logic program. To this end we may implement the
satisfiability relation of some temporal logic as a logic program, such as the
CTL interpreter described in [16]. In this paper we restrict ourselves to safety
properties and hence we only need definition of the EU operator of the temporal
logic CTL, and we just need the following subset of the interpreter from [16]:

model_check_safety :- start(_,S), sat(S,eu(true,p(unsafe))).

sat(E,p(P)) :- prop(E,P).
sat(E,eu(F,G)) :- sat_eu(E,F,G).
sat_eu(E,_F,G) :- sat(E,G).
sat_eu(E,F,G) :- sat(E,F), trans(_Act,E,E2), sat_eu(E2,F,G).

Depending on the safety property of interest, we have to define prop/2. E.g.,
the fact prop([X0,X1,X2,s(X3),s(X4)],unsafe) defines a state of a Petri net
to be unsafe when there exist at least one token on each of the places p4 and p5.

Note that simply calling model check safety in Prolog would lead to an
infinite derivation. Due to the potentially infinite state space of a Petri net also
methods like tabling will be insufficient to deal with this problem.

To perform the verification we use the same approach as in [14]. Hence, before
we apply the partial deduction system ecce we will first perform a preliminary
compilation of the particular Petri net and task. Thereby we will get rid of some
of the interpretation overhead and achieve a more straightforward equivalence
between markings of the Petri net and atoms encountered during the partial
deduction phase. We will use the Logen offline partial deduction system [13] to
that effect (but any other scheme which has a similar effect can be used).

After this precompilation we can apply ecce to the resulting program, pro-
ducing the code in Example 4:

Example 3.

model_check_safety :- sat__1__2(A).
/* sat__1__2(A) --> [sat__1(A,s(0),s(0),0,0)] */

sat__1__2(A) :- sat_eu__2__3(A).

/* sat_eu__2__3(A) --> [sat_eu__2(A,s(0),s(0),0,0)] */
sat_eu__2__3(s(A)) :- sat_eu__2__4(A).
sat_eu__2__3(s(A)) :-sat_eu__2__5(A).

/* sat_eu__2__4(A) --> [sat_eu__2(A,s(0),0,s(0),0)] */
sat_eu__2__4(A) :- sat_eu__2__3(s(A)).

/* sat_eu__2__5(A) --> [sat_eu__2(A,0,s(0),0,s(0))] */
sat_eu__2__5(A) :- sat_eu__2__3(s(A)).

2

While this program is hard to read at first, every specialised predicate repre-
sents a set of reachable markings and the whole specialised program corresponds
to a coverability graph of the Petri net under consideration (see [14] for more
details). From the output of ecce we generate an Isabelle theory representing
the generated coverability relation. Independent of the particular domain this
relation is declared as a set of pairs of states:

consts

coverrel:: "(state × state) set"

For each predicate name of a clause in the specialised program, which repre-
sents a set of states we add a declaration of the form:

consts

name :: nat ⇒ ...⇒ nat ⇒ state"

Thereby the number of parameters of type nat corresponds to the number
of variables in the head of the clause. The definitions have the form:

defs

name def: "name list of variables ≡ term"

For our purposes term will be always a tuple of terms built using the unary
successor function Suc, 0, and variables appearing in the list of variables (the
number of variables in this list must correspond to the number of parameters in
the declaration of name).

Finally, the coverability relation is defined as a set of pairs of states. In the
specialised program every clause of the form namem(argsm) :- namen(argsn)
corresponds to such a pair. Formally, in the Isabelle theory each pair is rep-
resented as a tuple (x,y), where x and y are tuples of terms built by Suc and
variables of the corresponding list of variables:

defs

coverrel def: "coverrel ≡
{(x,y). ∃ list1 of variables. x= state11 ∧ y= state12}

∪ {(x,y). ∃ list2 of variables. x= state21 ∧ y= state22}
...

∪ {(x,y). ∃ listm of variables. x= statem1 ∧ y= statem2}"

The theory generator (cf. [9]) produces automatically the specification of the
coverability relation from the specialised program.

Example 4. The following theory was generated by the theory generator [9] from
the program of Example 4:

consts

coverrel:: "(state × state) set"

sat 1 2 :: "nat ⇒ state"

sat eu 2 3 :: "nat ⇒ state"

sat eu 2 4 :: "nat ⇒ state"

sat eu 2 5 :: "nat ⇒ state"

defs

sat 1 2 def: "sat 1 2 A ≡ (A,(Suc 0),(Suc 0),0,0)"

sat eu 2 3 def: "sat eu 2 3 A ≡ (A,(Suc 0),(Suc 0),0,0)"

sat eu 2 4 def: "sat eu 2 4 A ≡ (A,(Suc 0),0,(Suc 0),0)"

sat eu 2 5 def: "sat eu 2 5 A ≡ (A,0,(Suc 0),0,(Suc 0))"

coverrel def: "coverrel ≡ {(x,y). ∃ A. x=(sat 1 2 A)

∧ y=(sat eu 2 3 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 3 (Suc A))

∧ y=(sat eu 2 4 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 3 (Suc A))

∧ y=(sat eu 2 5 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 4 A)

∧ y=(sat eu 2 3 (Suc A))}
∪ {(x,y). ∃ A. x=(sat eu 2 5 A)

∧ y=(sat eu 2 3 (Suc A))}"

2

5 Proof Scripts

In this section we demonstrate how we can prove theorems using Isabelle/Isar
and how we can write proof scripts for automatic execution. Thereby we focus
only on some of the “execution style” proof commands of Isabelle/Isar. These
commands can be considered to be the classical way of writing Isabelle proofs
although the actual Isabelle proof methods are wrapped within the Isar lan-
guage. Note however that Isar allows also a more “mathematical style” notation
of proofs than the one we use here (see the Isabelle/Isar Reference Manual for
details).

Furthermore we discuss only the proof methods we are going to apply in
order to solve the verification task of ecce. Keep in mind that Isabelle/Isar
provides a much wider range of methods.

The proof mode of Isabelle/Isar is initiated by executing a lemma. When
entering the proof mode Isabelle/Isar generates a single pending subgoal con-
sisting of the lemma to be proven. The list of subgoals can be altered, mainly by

executing proof methods. Proof methods are executed using the proof command
apply. Thereby the list of subgoals defines the proof state. The proof mode can
be left by executing done in the case that there are no pending subgoals (the
proof state is the empty list of subgoals, in which case Isabelle/Isar prints No
subgoals!).

Note that all proof methods described below only transform the first sub-
goal of the proof state. For finding a proof this may be inconvenient. Therefore,
Isabelle/Isar provides commands to change the order of the subgoals. How-
ever, our aim in this paper is the automatic execution of proof scripts, not their
interactive development.

Rewriting To rewrite a subgoal using existing definitions and lemmas automat-
ically we may execute Isabelle’s simplifier: apply(simp). For the simplifier to
automatically attempt to use new defintions and lemmas they have to be accom-
panied by the option [simp]. Such defined simplification rules are then applied
from left to right. However, we have to take care if we define simplification rules
in such a way as they may slow the simplifier down considerably or even cause
it to loop. Instead of defining a general simplification rule we may also use the
simplifier to only apply certain, explicitely stated definitions. E.g., the execution
apply(simp only: r def) causes to rewrite using the definition of r only.

Introduction and Elimination Based on reasoning using natural deduction
there are two types of rules for each logical symbol, such as ∨: introduction rules
which allow us to infer formulas containing the symbol (e.g. ∨), and elimination
rules which allow us to deduce consequences of a formula containing the symbol
(e.g. ∨).

In Isabelle an introduction rule is usually applied by apply(rule r). As-
sume r being a rule of the form:

P1, . . . , Pn

Q

where Q is a formula containing the introduced logical symbol while the
formulas P1,. . . ,Pn in the premise do not. Then, if r is applied as introduction
rule the current first subgoal is unified with Q and replaced by the properly
instantiated P1,. . . ,Pn.

An elimination rule is usually applied using apply(erule r). Assume r being
a rule of the above form and the current first subgoal of the form A1, . . . , Am =⇒
S. Then, if r is applied as elimination rule S is unified with Q and some Ai is
unified with P1. The old subgoal is replace by n − 1 new subgoals of the form
A1, . . . , Ai−1, Ai+1, . . . , Am =⇒ Pk with 2 ≤ k ≤ n.

In our verification proofs we will use explicitely only the elimination rules
disjE for disjunction and paths.induct for induction over the length of paths.

Automatic Reasoners Most classical reasoning of even simple lemmas can
require the application of a vast amount of rules. To simplify this task Isabelle
provides a number of automatic reasoners. Here we will make use of blast
which is the most powerful of Isabelle’s reasoners. Additionally, we will em-
ploy clarify which performs obvious transformations which do not require to
split the subgoal or render it unprovable. The method clarify and the explicit
application of the elimination rule disjE (see above) was necessary to tune the
proof process. This tuning was necessary to complete the verification proofs of
even very small Petri nets using the available computing resources.

Additionally to the two classical reasoners we also employ the simplifier simp
as an automatic proof tool as it can also handle some arithmetics. Furthermore,
for some cases in our verification task simp succeeded faster than blast if it was
able to eliminate a subgoal at all.

Scripts To improve the handling of large proofs and to allow a higher flexibility
of a proof proof scripts can be extended by the following operators:

– method1,...,methodn: a list of methods represents their sequential execu-
tion;

– (method): mainly used to define the scope of another operator;
– method?: executes method only if it does not fail,
– method1|...|methodn: attempts to execute methodk only if each methodi

with i < k failed;
– method+: method is repeatedly executed until it fails.

For our verification task the lemma and proof script are generated automat-
ically by the theory generator [9]. The execution of the script in the example
below is illustrated in the next section.

Example 5. The following lemma and script corresponds to the one automati-
cally generated by ecce for the Petri net specification of Example 1:

lemma "l ∈ paths =⇒ ∃ y. ((hd l),y) ∈ coverrel"

apply(erule paths.induct)

apply(simp only: start_def

coverrel_def)

apply(simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def)

apply(simp)

apply(blast)

apply(simp only:trans_def)

apply(clarify)

apply(((erule disjE)?,

simp only: coverrel_def, simp,

((erule disjE)?,

simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def,

simp|blast)+)+)

2

6 Verifying ecce

In this section we illustrate the automatic verification of the ecce output by the
Isabelle system. To this end the theory, lemma and proof script as generated by
ecce for the Petri net of Example 1, are executed (the complete input consists
of the Isabelle specifications of Example 1, Example 5, and lemma and proof
script of Example 6). Full details can be found in the technical report [9]. After
this, we can also apply the steps required to prove the lemma for transition
t1 in a similar fashion to the remaining transitions. The following proof script
attempts precisely this. Again, the elimination rule disjE is not applicable for
the last transition. Hence, we perform a test using ? before applying this method
in the first line.

apply(((erule disjE)?,
simp only: coverrel_def, simp,
((erule disjE)?,
simp only: sat__1__2_def

sat_eu__2__3_def
sat_eu__2__4_def
sat_eu__2__5_def,

simp|blast)+)+)

For our example all cases could be verified, hence Isabelle answers:

No subgoals!

2

Consequently, the coverability relation generated by ecce for the Petri net
of Example 1 covers indeed all states reachable by any path (under the condition
that the theory generated by the automatic theory generator as implemented in
ecce is correct).

Automatic Generation of Hypotheses Instead of defining the coverability
as a relation as illustrated in Subsection 4.2 we may view the coverability graph
as an inductive definition of a set of states which covers the actual state space of
the Petri net. Similarly, instead of using the concept of paths, we may directly
specify the set of reachable states inductively in Isabelle/Isar. Full details can
be found in the technical report [9].

However, we did not yet succeed in implementing a complete proof script
using this rule as the search for the appropriate alternative subgoal has to be
controlled by the proof script. Within the execution oriented proof style we have
focused on Isabelle/Isar does not seem to provide enough control without
implementing new proof tactics on Isabelle’s ML-implementation level.

7 Conclusion and Further Work

We have shown the similarity between controlling partial deduction and induc-
tive theorem proving. We have formally established a relationship between the
program specialiser ecce and the proof system Isabelle when applied to ver-
ifying infinite state Petri nets. We have shown that verification of ecce output
using the proof system Isabelle can be achieved for small nets. The execution
of the proof script of Section 6 on a Pentium II/400 needed about 90s and the
underlying PolyML required 80MB of memory. However, as further experiments
with a net containing 14 places and 13 transitions reveiled, more specific proof
methods have to be employed as the use of the method blast required more
than the available 200MB of main memory and therefore had to be canceled.
One way of tuning the proof process further is by restricting the number of rules
potentially applied by blast. However, while rules can easily be removed from
and added to the list of simplification rules in Isabelle/Isar, a similar simple
manipulation of the “blast rules” without rewriting underlying Isabelle proof
tactics seems not possible. An indirect way of restricting the search space of
blast could also be to derive the theory PN not from Main but from (sets of)
more basic theories.

A way of improving the readability of the proof script could be to employ the
mathematical proof style instead of the execution oriented style. In the math-
ematical proof style higher-order pattern matching can be used to control the
proof. This may also increase the flexibility of the proof significantly, in partic-
ular if the results have to be generalised for other specifications than those of
Petri nets.

Finally, for Isabelle to automatically generate the coverability relation from
the specification of the Petri net we believe that it is necessary to implement a
new proof rule/proof method at Isabelle’s implementation level which allows
to automatically backtrack over potential hypotheses which are more general
than the subgoal to be shown. Another option worth exploring might be to
attempt to define a proof scheme using the higher-order pattern matching of
Isabelle/Isar, which performs the abstraction on proof level: E.g., if a state
description matches a certain pattern we attempt to prove a lemma concerning
a similar pattern where a constant is replaced by some variable.

Finally, to use program specialisers for proving more complicated inductive
theorems one probably needs a tighter integration of (conjunctive) partial de-
duction with abstract interpretation, e.g., as detailed in [6, 22, 11]. We hope that

future research will uncover more exciting parallels between inductive theorem
proving and program specialisation.

Acknowledgements

We thank the participants of LOPSTR’03 for valuable feedback. We would also like

to thank Maurice Bruynooghe and the LOPSTR’03 programme committee for their

invitation to present this paper.

References

1. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: a
heuristic for guiding inductive proofs. Artificial Intelligence, 62:185–253, 1993.

2. E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
3. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future

directions. ACM Computing Surveys, 28(4):626–643, Dec. 1996.
4. D. De Schreye, R. Glück, J. Jørgensen, M. Leuschel, B. Martens, and M. H.

Sørensen. Conjunctive partial deduction: Foundations, control, algorithms and
experiments. The Journal of Logic Programming, 41(2 & 3):231–277, November
1999.

5. A. Finkel. The minimal coverability graph for Petri nets. In Advances in Petri
Nets 1993, LNCS 674, pages 210–243. Springer-Verlag, 1993.

6. J. P. Gallagher and J. C. Peralta. Regular tree languages as an abstract domain in
program specialisation. Higher Order and Symbolic Computation, 14(2–3):143–172,
November 2001.

7. R. Glück and J. Jørgensen. Generating transformers for deforestation and super-
compilation. In B. Le Charlier, editor, Proceedings of SAS’94, LNCS 864, pages
432–448, Namur, Belgium, September 1994. Springer-Verlag.

8. N. D. Jones, C. K. Gomard, and P. Sestoft. Partial Evaluation and Automatic
Program Generation. Prentice Hall, 1993.

9. H. Lehmann and M. Leuschel. Generating inductive verification proofs for Isabelle
using the partial evaluator Ecce. Technical Report DSSE-TR-2002-02, Department
of Electronics and Computer Science, University of Southampton, UK, September
2002.

10. M. Leuschel. The ecce partial deduction system and the dppd library of bench-
marks. Obtainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

11. M. Leuschel. A framework for the integration of partial evaluation and abstract
interpretation of logic programs. ACM Transactions on Programming Languages
and Systems, May 2004. To appear.

12. M. Leuschel and M. Bruynooghe. Logic program specialisation through partial de-
duction: Control issues. Theory and Practice of Logic Programming, 2(4 & 5):461–
515, July & September 2002.

13. M. Leuschel, J. Jørgensen, W. Vanhoof, and M. Bruynooghe. Offline specialisation
in Prolog using a hand-written compiler generator. Theory and Practice of Logic
Programming, 4(1):139–191, 2004.

14. M. Leuschel and H. Lehmann. Solving coverability problems of Petri nets by partial
deduction. In M. Gabbrielli and F. Pfenning, editors, Proceedings of PPDP’2000,
pages 268–279, Montreal, Canada, 2000. ACM Press.

15. M. Leuschel, B. Martens, and D. De Schreye. Controlling generalisation and poly-
variance in partial deduction of normal logic programs. ACM Transactions on
Programming Languages and Systems, 20(1):208–258, January 1998.

16. M. Leuschel and T. Massart. Infinite state model checking by abstract interpre-
tation and program specialisation. In A. Bossi, editor, Logic-Based Program Syn-
thesis and Transformation. Proceedings of LOPSTR’99, LNCS 1817, pages 63–82,
Venice, Italy, 2000.

17. J. W. Lloyd and J. C. Shepherdson. Partial evaluation in logic programming. The
Journal of Logic Programming, 11(3& 4):217–242, 1991.

18. K. Marriott, L. Naish, and J.-L. Lassez. Most specific logic programs. Annals of
Mathematics and Artificial Intelligence, 1:303–338, 1990.

19. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: A Proof Assistant for
HIgher-Order Logic. LNCS 2283. Springer-Verlag, 2002.

20. L. C. Paulson. Isabelle: A Generic Theorem Prover. LNCS 828. Springer, 1994.
21. A. Pettorossi and M. Proietti. Synthesis and transformation of logic programs

using unfold/fold proofs. The Journal of Logic Programming, 41(2&3):197–230,
November 1999.

22. G. Puebla and M. Hermenegildo. Abstract specialization and its applications. In
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation (PEPM’03), pages 29–43. ACM Press, June 2003.

23. V. F. Turchin. Program transformation with metasystem transitions. Journal of
Functional Programming, 3(3):283–313, 1993.

24. V. F. Turchin. Metacomputation: Metasystem transitions plus supercompilation.
In O. Danvy, R. Glück, and P. Thiemann, editors, Partial Evaluation, International
Seminar, LNCS 1110, pages 482–509, Schloß Dagstuhl, 1996. Springer-Verlag.

