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Abstract— In this contribution the family of generalized multicarrier
DS-CDMA (MC DS-CDMA) schemes [1] is investigated, when consider-
ing time-domain half-sine and raised-cosine chip waveforms, in addition
to the rectangular chip waveform. Our results show that for a given sub-
carrier spacing the particular choice of the chip waveform has a substan-
tial influence on the system’s performance. However, in the context of MC
DS-CDMA using the optimum subcarrier spacing, all chip waveforms may
provide a similar bit error rate (BER) performance.

I. INTRODUCTION

In reference [1], [2] a generalized MC DS-CDMA scheme using
rectangular chip waveforms has been investigated, when communicat-
ing over frequency-selective Nakagami-m fading channels [3]. As ar-
gued in [1], [2], in generalized MC DS-CDMA the spacing between
two adjacent subcarriers is a variable, allowing us to gain insight into
the effects of the subcarrier spacing on the BER performance. This
generalized MC DS-CDMA scheme includes the subclasses of mul-
titone DS-CDMA [4] and orthogonal MC DS-CDMA [5] as special
cases.

In this contribution we extend our investigations presented in [1] by
considering two additional chip waveforms, namely the time-domain
half-sine as well as the raised-cosine chip waveforms, in addition to
the rectangular chip waveform. We derive the second-order statis-
tics for the multipath interference (MPI) or multiuser interference
(MUI), when the subcarrier signals are partially overlapped. A range
of closed-form equations are obtained in the context of various chip
waveforms. These closed-form equations allow us to evaluate the BER
performance of CDMA systems using overlapping subbands [1],[4]-
[7] with the aid of the standard Gaussian approximation.

II. RECEIVED SIGNALS AND DECISION VARIABLES

In [1] we considered an asynchronous generalized MC DS-
CDMA scheme, which supports K users transmitting over dispersive
frequency-selective Nakagami-m fading channels. The received signal
is expressed as [1]

r(t) =
K∑

k=1

U∑

u=1

Lp−1∑

lp=0

√
2Pα(k)

ulp
bku(t− τklp)ck(t− τklp)

× cos
(
2πfut+ θ

(k)
ulp

)
+ n(t), (1)

where the following notations are used:
• K: the number of users
• U : the number of subcarriers
• fu: the uth subcarrier frequency
• Ts: symbol duration of the MC DS-CDMA signal
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• Tc: chip duration of the DS spreading sequences associated with
each subcarrier

• Ne = Ts/Tc: spreading gain of each subcarrier signal
• n(t): Additive White Gaussian Noise (AWGN) having double-

sided power spectral density of N0/2
• P : average received power of each subcarrier signal
• Lp: the number of resolvable paths of each subcarrier conveying

a DS-CDMA signal
• α

(k)
ulp

: Nakagami-m distributed channel fading amplitude [[1],
(9)]

• τklp : multipath signal delay associated with asynchronous trans-
mission and propagation, which is an independently and identi-
cally distributed (i.i.d) uniform variable in [0, Ts]

• θ
(k)
ulp

: phase angle introduced in the carrier modulation and prop-
agation processes, which is an i.i.d uniform variable in [0, 2π]

• bku(t): binary data stream’s waveform
• ck(t) =

∑∞
j=−∞ ckjψ(t − jTc): binary spreading sequence’s

waveform, where ψ(t) is the chip waveform.
Let the first user associated with k = 1 be the user-of-interest

and consider the correlator-based RAKE receiver in conjunction with
maximum ratio combining (MRC) [1]. We assume that the first L,
1 ≤ L ≤ Lp number of resolvable paths are combined by the receiver.
Consequently, as shown in [1], the decision variable Zv of the 0th data
bit corresponding to the vth subcarrier of the reference user can be
expressed as

Zv =
L−1∑

l=0

Zvl, v = 1, 2, . . . , U, (2)

Zvl =
∫ Ts+τl

τl

r(t) · αvlc(t− τl) cos (2πfvt+ θvl) dt,

l = 0, 1, . . . , L− 1, (3)

where Zvl is the correlator’s output corresponding to the lth resolvable
path of the vth subcarrier. Upon substituting (1) into (3), it can be
shown that Zvl can be written as

Zvl =

√
P

2
Ts





Dvl +Nvl +

Lp−1∑

lp=0
lp �=l

I
(s)
1 +

U∑

u=1
u �=v

Lp−1∑

lp=0
lp �=l

I
(s)
2

+
K∑

k=2

Lp−1∑

lp=0

I
(k)
1 +

K∑

k=2

U∑

u=1
u �=v

Lp−1∑

lp=0

I
(k)
2





, (4)

where Nvl is a Gaussian random variable having zero mean and a vari-
ance of α2

vlN0/2Eb, with Eb = PTs denoting the energy per bit,
while Dvl = bv[0]α2

vl is the desired output. Furthermore, in (4) Zvl

contains four types of interference:
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• I
(s)
1 is the MPI contributed by the path lp, lp = 0, 1, . . . , Lp − 1

and lp �= l of the reference user associated with k = 1, and with
the same subcarrier of index u = v as the reference user.

• I
(s)
2 is the MPI contributed by the path lp, lp = 0, . . . , Lp −

1, lp �= l, associated with the subcarriers u, u =
1, 2, . . . , U, u �= v of the reference user.

• I
(k)
1 is the MUI due to the path lp, lp = 0, 1, . . . , Lp − 1 asso-

ciated with the subcarrier u = v engendered by the interfering
users, k = 2, 3, . . . ,K.

• I
(k)
2 is the MUI due to the path lp, lp = 0, . . . , Lp − 1 induced

by the subcarrier u, u = 1, . . . , U and u �= v of the interfering
user k, k = 2, 3, . . . ,K.

Since random spreading sequences and encountering an arbitrary
spacing of ∆ = λ/Ts between two adjacent subcarriers were assumed,
it can be demonstrated that I(s)

1 , I(s)
2 and I(k)

1 constitute special cases
of I(k)

2 , where I(k)
2 can be expressed as [1]

I
(k)
2 =

α
(k)
ulp

αvl

Ts

[
bku[−1]Rk(τklp , ϕ

(k)
ulp

, u, v)

+bku[0]R̂k(τklp , ϕ
(k)
ulp

, u, v)
]
, (5)

where ϕ(k)
ulp

= θ
(k)
ulp

− θvl is a random variable uniformly distributed
in [0, 2π]. The associated partial cross-correlation functions in (5) are
defined as [1]

Rk(τklp , θ
(k)
ulp

, u, v) =
∫ τklp

0
ck(t− τklp)c(t)

× cos
(

2πλ(u− v)t
Ts

+ ϕ
(k)
ulp

)
dt, (6)

R̂k(τklp , θ
(k)
ulp

, u, v) =
∫ Ts

τklp

ck(t− τklp)c(t)

× cos
(

2πλ(u− v)t
Ts

+ ϕ
(k)
ulp

)
dt. (7)

III. INTERFERENCE ANALYSIS

In this section we investigate the statistical properties of I(k)
2 using

the Gaussian approximation [8]. Where possible without any danger of
ambiguity, we ignore the superscript and subscript associated with the
delay τklp and the phase angle ϕ(k)

klp
for the sake of simplicity. Based

on the standard Gaussian approximation [8], [7], it was shown that for
a given αvl value, the MUI term I

(k)
2 of (5) can be approximated as a

Gaussian random variable having zero mean and a variance given by

Var
[
I
(k)
2

]
= Ω(k)

ulp
α2

vlI
(k)
2 , (8)

where Ω(k)
ulp

= E

[(
α

(k)
ulp

)2
]

, and

I(k)
2 =

1
T 2

s

{
Eτ,ϕ

[
R2

k (τ, ϕ, u, v)
]
+ Eτ,ϕ

[
R̂2

k (τ, ϕ, u, v)
]}

, (9)

where Eτ,ϕ

[
R2

k (τ, ϕ, u, v)
]

and Eτ,ϕ

[
R̂2

k (τ, ϕ, u, v)
]

constitute

the second central-moments of Rk(τ, ϕ, u, v) and R̂k(τ, ϕ, u, v) with
respect to τ and ϕ. Furthermore, it can be readily demonstrated

that we have Eτ,ϕ

[
R2

k (τ, ϕ, u, v)
]

= Eτ,ϕ

[
R̂2

k (τ, ϕ, u, v)
]
, when

random spreading sequences are considered. It can be shown that
Eτ,ϕ

[
R2

k (τ, ϕ, u, v)
]

can be expressed as

Eτ,ϕ

[
R2

k(τ, ϕ, u, v)
]

=
(Ne + 1)

2
Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

+
(Ne − 1)

2
Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]
, (10)

where Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

and Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]

represent

the second central moments of the extended partial autocorrelation
functions Rψ(τc, ϕ, u, v) and R̂ψ(τc, ϕ, u, v) of the spreading codes,
with respect to τc and ϕ, respectively. The extended partial autocorre-
lation functions are defined as

Rψ(τc, ϕ, u, v) =
∫ τc

0
ψ(t)ψ(t+ Tc − τc)

× cos
(

2πλ(u− v)t
Ts

+ ϕ

)
, (11)

R̂ψ(τc, ϕ, u, v) =
∫ Tc

τc

ψ(t)ψ(t− τc)

× cos
(

2πλ(u− v)t
Ts

+ ϕ

)
. (12)

Below the expectation values of Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

and

Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]

corresponding to three different classes of

chip waveforms, namely rectangular, half-sine and raised-cosine chip
waveforms are derived.

Since both τc and ϕ are uniform random variables distributed in
the range of [0, Tc] and [0, 2π], respectively, the expectation value of
Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

can be expressed as

Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

=

1
2πTc

∫ Tc

0

∫ 2π

0
R2

ψ(τc, ϕ, u, v)dϕdτc, (13)

Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]

=

1
2πTc

∫ Tc

0

∫ 2π

0
R̂2

ψ(τc, ϕ, u, v)dϕdτc. (14)

Upon substituting Equations (11) and (12) defined in the context
of the rectangular, half-sine and raised-cosine chip waveforms
into equations (13) as well as (14) and following a number of labori-
ous but straightforward manipulations, we obtain the following results.

(I). Rectangular Chip Waveform
If λ(u− v) �= 0, then we have

Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]

=
T 2

s

4π2λ2(u− v)2

[
1 − sinc

(
2πλ(u− v)

Ne

)]
. (15)

By contrast, if we have λ(u− v) = 0, then we arrive at

Eτc,ϕ

[
R2

ψ(τc, ϕ)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ)
]

=
T 2

c

6
. (16)

(II). Half-Sine Chip Waveform
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If |λ(u− v)| �= 0, Ne, then we get

Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]

=
T 2

s

8π2

×
[

1
λ2(u− v)2

+
1

2[Ne + λ(u− v)]2
+

1
2[Ne − λ(u− v)]2

− 1
λ(u− v)[Ne + λ(u− v)]

+
1

λ(u− v)[Ne − λ(u− v)]

−
(

1
λ2(u− v)2

− 1
λ(u− v) [Ne + λ(u− v)]

+
1

λ(u− v) [Ne − λ(u− v)]

− 1
N2

e − λ2(u− v)2

)
sinc

(
2πλ(u− v)

Ne

)

−
(

1
2λ2(u− v)2

+
1

2[Ne + λ(u− v)]2

− 1
λ(u− v)[Ne + λ(u− v)]

)
sinc

(
2π[Ne + λ(u− v)]

Ne

)

−
(

1
2λ2(u− v)2

+
1

2[Ne − λ(u− v)]2

+
1

λ(u− v)[Ne − λ(u− v)]

)
sinc

(
2π[Ne − λ(u− v)]

Ne

)]
. (17)

If however λ(u− v) = 0, then we have

Eτc,ϕ

[
R2

ψ(τc, ϕ)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ)
]

= T 2
c

(
1
12

+
5

8π2

)
. (18)

Finally, if |λ(u− v)| = Ne, then we arrive at

Eτc,ϕ

[
R2

ψ(τc, ϕ)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ)
]

= T 2
c

(
1
24

+
5

64π2

)
. (19)

(III). Raised-cosine Chip Waveform
If |λ(u− v)| �= 0, Ne, 2Ne, then we have

Eτc,ϕ

[
R2

ψ(τc, ϕ, u, v)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ, u, v)
]

=
T 2

s

72π2

×
[(

9
λ2(u− v)2

+
4

[Ne + λ(u− v)]2
+

4
[Ne − λ(u− v)]2

+
1

2[2Ne + λ(u− v)]2
+

1
2[2Ne − λ(u− v)]2

− 10
λ(u− v)[Ne + λ(u− v)]

+
10

λ(u− v)[Ne − λ(u− v)]
+

1
λ(u− v)[2Ne + λ(u− v)]

− 1
λ(u− v)[2Ne − λ(u− v)]

− 4
N2

e − λ2(u− v)2

− 2
[Ne + λ(u− v)][2Ne + λ(u− v)]

− 2
[Ne − λ(u− v)][2Ne − λ(u− v)]

)

−
(

9
λ2(u− v)2

+
2

[Ne + λ(u− v)]2
+

2
[Ne − λ(u− v)]2

− 10
λ(u− v)[Ne + λ(u− v)]

+
10

λ(u− v)[Ne − λ(u− v)]

+
1

λ(u− v)[2Ne + λ(u− v)]
− 1
λ(u− v)[2Ne − λ(u− v)]

− 8
N2

e − λ2(u− v)2
+

2
[Ne + λ(u− v)][2Ne − λ(u− v)]

+
2

[Ne − λ(u− v)][2Ne + λ(u− v)]

− 1
[4N2

e − λ2(u− v)2]

)
sinc

(
2πλ(u− v)

Ne

)

−
(

4
λ2(u− v)2

+
4

[Ne + λ(u− v)]2
− 10
λ(u− v)[Ne + λ(u− v)]

+
2

λ(u− v)[Ne − λ(u− v)]
+

4
λ(u− v)[2Ne + λ(u− v)]

− 4
[N2

e − λ2(u− v)2]
− 2

[Ne + λ(u− v)][2Ne + λ(u− v)]

+
2

[Ne − λ(u− v)][2Ne + λ(u− v)]

)
sinc

(
2π[Ne + λ(u− v)]

Ne

)

−
(

4
λ2(u− v)2

+
4

[Ne − λ(u− v)]2
+

10
λ(u− v)[Ne − λ(u− v)]

− 2
λ(u− v)[Ne + λ(u− v)]

− 4
λ(u− v)[2Ne − λ(u− v)]

− 4
[N2

e − λ2(u− v)2]
+

2
[Ne + λ(u− v)][2Ne − λ(u− v)]

− 2
[Ne − λ(u− v)][2Ne − λ(u− v)]

)
sinc

(
2π[Ne − λ(u− v)]

Ne

)

−
(

1
2λ2(u− v)2

+
2

[Ne + λ(u− v)]2
+

1
2[2Ne + λ(u− v)]2

− 2
λ(u− v)[Ne + λ(u− v)]

+
1

λ(u− v)[2Ne + λ(u− v)]

− 2
[Ne + λ(u− v)][2Ne + λ(u− v)]

)
sinc

(
2π[2Ne + λ(u− v)]

Ne

)

−
(

1
2λ2(u− v)2

+
2

[Ne − λ(u− v)]2
+

1
2[2Ne − λ(u− v)]2

+
2

λ(u− v)[Ne − λ(u− v)]
− 1
λ(u− v)[2Ne − λ(u− v)]

− 2
[Ne − λ(u− v)][2Ne − λ(u− v)]

)

×sinc

(
2π[2Ne − λ(u− v)]

Ne

)]
.

(20)

By contrast, if λ(u− v) = 0, then we have

Eτc,ϕ

[
R2

ψ(τc, ϕ)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ)
]

= T 2
c

(
1
12

+
315

864π2

)
. (21)

Furthermore, if |λ(u− v)| = Ne, then we get

Eτc,ϕ

[
R2

ψ(τc, ϕ)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ)
]
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= T 2
c

(
1
27

+
35

162π2

)
. (22)

Finally, if |λ(u− v)| = 2Ne, then we arrive at

Eτc,ϕ

[
R2

ψ(τc, ϕ)
]

= Eτc,ϕ

[
R̂2

ψ(τc, ϕ)
]

= T 2
c

(
1

216
+

245
20736π2

)
. (23)

Finally, based on the above second central-moment values of
the partial autocorrelation functions with respect to the rectangu-
lar, half-sine and raised-cosine chip waveforms, the correspond-
ing expectation values in Eτ,ϕ

[
R2

k(τ, ϕ, u, v)
]

of (10) as well as

Eτ,ϕ

[
R̂2

k(τ, ϕ, u, v)
]

= Eτ,ϕ

[
R2

k(τ, ϕ, u, v)
]

can be obtained.

Upon substituting these expectation values into (8) and (9), the vari-
ance of I(k)

2 and I
(k)
2 corresponding to the rectangular, half-sine or

raised-cosine chip waveforms can be evaluated. Specifically, for the
case of λ(u− v) = 0, we have

I(k)
2 = I(k)

1 = I(s)
1

= I0 =






1
3Ne

, Rectangular
1

6Ne
+ 5

4Neπ2 , Half-sine
1

6Ne
+ 315

432Neπ2 , Raised-cosine
(24)

which are some of the typical MUI variance values valid in the context
of single-carrier DS-CDMA schemes.

IV. BIT ERROR RATE

Having obtained the statistics of both the MPI as well as the MAI,
and furthermore, following the approach of [1], the average BER of
the generalized MC DS-CDMA system communicating over multipath
Nakagami-m fading channels can be expressed as

Pb =
1
π

∫ π/2

0

L−1∏

l=0

(
m sin2 θ

γl +m sin2 θ

)m

dθ, (25)

where m represents the fading parameter [3], γl = γce
−ηl for l =

0, 1, . . . , L − 1, η is the Multipath Intensity Profile’s (MIP) negative
exponential decay factor and γc is expressed as

γc =

[(
Ω0Eb

N0

)−1

+
2(KLp − 1)q(Lp, η)

Lp

(
I0 + (U − 1)IM

)
]−1

, (26)

where I0 is given by (24), while IM represent the average of I(k)
2

with respect to v and u, which can be expressed as

IM =
1

U(U − 1)

U∑

v=1

U∑

u=1
u �=v

I(k)
2 . (27)

V. NUMERICAL RESULTS

In this section we characterize the effects of the spacing between
two subcarriers on the interference power and evaluate the perfor-
mance of generalized MC DS-CDMA by highlighting the effect of the
normalized subcarrier spacing, λ, on the system’s performance.

Ne=64, =1
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Fig. 1. Interference power I(k)
2 of (9) versus the normalized spacing, λ(u−v)

between two subcarrier frequencies fu and fv with respect to the rectangular,
half-sine as well as raised-cosine chip waveforms.

U=8,N1=128,L1=32,K=10, =0.2,Eb/N0=15dB,L=Lp
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Fig. 2. BER versus the normalized subcarrier spacing, λ for the generalized
MC DS-CDMA system communicating over the multipath Nakagami-m fading
channel using the fading parameters of m = 1 and m = 3. The results were
computed from (25) by assuming that L = Lp, i.e. that the receiver was capa-
ble of combining all the resolvable paths, regardless of the associated receiver
complexity.

Fig.1 gives us an insight into the interference behaviour for differ-
ent chip waveforms associated with different subcarrier spacings. Let
us assume that fv is one of the subcarrier frequencies of the reference
signal, while fu is one of the subcarrier frequencies used by the inter-
fering signals. According to the results of Fig.1, we observe that for
all the chip waveforms considered, the interference power decreases,
when increasing the absolute subcarrier spacing value of |λ(u − v)|.
If we have λ(u − v) = 0, which implies that fu = fv , the spreading
sequences using a rectangular chip waveform impose the highest in-
terference power, while using a raised-cosine chip waveform results in
the lowest interference power. When increasing the subcarrier spacing
|λ(u − v)|, we can observe that there exists a spacing range, where
the rectangular chip waveform outperforms both the half-sine and the
raised-cosine chip waveforms. The results of Fig.1 demonstrate that
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U=8,N1=128,L1=32,K=10, =0.2,Eb/N0=15dB,L=8
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Fig. 3. BER versus the normalized subcarrier spacing, λ for the generalized
MC DS-CDMA system communicating over the multipath Nakagami-m fad-
ing channel using the fading parameters of m = 1 and m = 3. The results
were computed from (25) by assuming that the maximum multipath combining
capability was L = 8, i.e. that the receiver was capable of combining at most
eight resolvable paths due to implementation complexity limitations.

the interference power at the point of λ(u − v) = 0 is more than
twenty times higher, than that at the point of λ(u− v) = 2Ne = 128.
Therefore, we can infer that in a MC DS-CDMA system, the MPI and
the MUI are mainly contributed by the specific subcarrier signals hav-
ing overlapping main lobes.

The influence of the normalized subcarrier spacing, λ, on the aver-
age BER of the generalized MC DS-CDMA system is shown in Fig.2
and Fig.3, where we assumed Nakagami fading parameters of m = 1
and 3. In the context of Fig.2 we assumed that the receiver was capable
of combining all the resolvable paths, i.e. we had L = Lp, regardless
of the implementing complexity. By contrast, we assumed that the re-
ceiver was capable of combining at most L = 8 resolvable paths in
Fig.3, owing to implementing receiver complexity limit. At the top of
Figs.2 and 3 N1 and L1 represent the spreading gain and the number
of resolvable paths of a corresponding conventional single-carrier DS-
CDMA scheme using the same total bandwidth, as the proposed MC
DS-CDMA arrangement.

From the results of Fig.2 we infer that the multicarrier system us-
ing both the half-sine and the raised-cosine chip waveforms achieved
their lowest BER at low normalized subcarrier spacing values of λ,
while single-carrier DS-CDMA associated with λ = 0 achieved the
best BER performance. However, the multicarrier system using the
rectangular chip waveform might not achieve its lowest BER, when
the normalized spacing value is low, especially for channels having
relatively high Nakagami fading parameters, since the associated BER
curve has its minimum value in the range of λ ≈ 180 − 210. Ac-
cording to the results of Fig.3, we observe that for each of the chip
waveforms considered, there exists an optimum value of λ, which will
result in the minimum average BER. The optimum value of λ was sim-
ilar for all three types of chip waveforms, which was around λ = 215.
Furthermore, from the results of both Figs.2 and 3 we observe that
when the normalized spacing of λ assumes a sufficiently high value,
the MC DS-CDMA systems using any of the three chip waveforms
studied achieved a similar BER performance.

In Fig.4 the BER performance versus the fading parameter, m
recorded for the MC DS-CDMA system having the optimum sub-
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Fig. 4. BER versus the fading parameter, m, for MC DS-CDMA having
the optimum normalized subcarrier spacing and using rectangular, half-sine
as well as raised-cosine chip waveforms, when communicating over multipath
Nakagami-m fading channels. The results were computed from (25) by as-
suming that the maximum multipath combining capability was L = 5, 10 or
L = Lp.

carrier spacing was evaluated, when employing rectangular, half-sine
and raised-cosine chip waveforms, respectively. From the results of
Fig.4 we observe that for the diversity combining capability of L = 5
and 10, the MC DS-CDMA systems using the rectangular, half-sine
or raised-cosine chip waveform achieved a similar BER performance,
when communicating over channels having arbitrary Nakagami fad-
ing parameters. However, if the receiver was capable of combining an
arbitrary number of resolvable paths, i.e. when we had L = Lp, we
observe that the system using the raised-cosine chip waveform outper-
forms both that using the rectangular and the half-sine chip waveforms.
We can also see in Fig.4 that the scheme employing the half-sine chip
waveform outperforms that using the rectangular chip waveform, when
the Nakagami fading factor is in the range of m ≤ 7. By contrast, both
of them achieve a similar BER performance, when we have m > 7.
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