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Abstract. There is increasing interest in novel view reconstruction but
less for new time-based views of moving objects as needed for gait
biometric deployment. Our interests concern reconstructing moving
shapes from their moment history with a view to constructing new tem-
poral views. This paper shows how the moment description through an
object sequence can be used to predict missing or intermediate frames
within the sequence. Additionally, this highlights generic aspects of
moment reconstruction which rarely receive more than scant attention.
We use Zernike moments for the convenience of reconstruction, al-
though the framework is applicable to all types of moments. As an ex-
ample, we show that by interpolating the moment history of a moving
human silhouette, a missing frame can be constructed with accuracy,
providing a practical basis for the construction of new temporal views
of moving objects.

1 Introduction

Statistical moments have a long history in computer vision and are particularly popu-
lar due to their compact description, their capability to select differing levels of detail
and their known performance attributes. The ability to reconstruct a shape from its
moment description is often cited as justification for their deployment, but has re-
ceived much less attention than their descriptive capabilities for object recognition,
e.g. in [2]. More recently moments have been applied to image sequences, to de-
scribe moving shapes, for recognition purposes [5], thus prompting an interest in their
use for reconstructing (moving) shapes. In this new scenario, an object’s moment
description allows for the prediction of intermediate or missing appearances, and
entirely new temporal views. One potential application is for the synchronisation of
the source imagery in multi-view 3D human reconstruction.

One approach to moving-object, or even frame, prediction (known as 'in-
betweening' in broadcast technology) is to use optical flow, while an alternative for
objects is to deploy tracking approaches for prediction [8]. Both methods require
relatively fast sampling to ensure either sufficient accuracy in the estimates of optical
flow or sufficient tracked history to ensure that the prediction is valid. Using the new
moment based approach can benefit from the compactness of the moment description
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and for a potentially lower sampling rate, given sufficient samples for accurate inter-
polation of the moments' history. This is especially true when reconstructing humans
and their movement as the motion of the limbs can be faster than video-rate sampling.
In effect, the changing shape of the object is being followed by a well-recognised
shape description method. We have previously shown the viability of this new ap-
proach [4], and here we demonstrate new factors to improve the reconstruction and
extend the analysis of the prediction of intermediate frames, thus improving potential
for biometric deployment.

Section 2 describes orthogonal Zernike moments and reconstruction. Section 3 de-
scribes how moments in a sequence can be interpolated, and, in particular, how this
can be applied to reconstructing moving people. In Section 4, we present some early
results that demonstrate the validity of our new approach, while in Section 5, we
assess the preliminary results and outline the future directions of the research.

2 Zernike Moments

There are many different types of moments that have been applied to computer vision
problems (geometric, Legendre etc.), though it has been demonstrated in [7] that the
orthogonal Zernike moments are highly uncorrelated with little redundancy.

2.1  Zernike Theory
The orthogonal Zernike moments, first proposed in [6], use the Zernike polynomial as
basis function and are defined over the unit disc (in polar coordinates) by:
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where m is the order of the moment (with m > 0) and » represents the repetition
(where |n| < m, and m + n is even). V,, (r,0) is the complex-valued Zernike poly-
nomial with * indicating the complex conjugate and is defined elsewhere, e.g. in [6].
Strictly, the Zernike polynomial should be normalized first (using the root of the
normalization factor shown in (1)), though historically the normalization in (1) has
been used. For a discrete square image (size NxN), Z,,, can be calculated with:
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Zmn = 2 mn (r’ 6)f(x’ y) (2)
using a suitable translation in order to map the image into the unit disc.
2.2  Reconstruction from Zernike Moments

Moments can be used to reconstruct the original function, i.e. none of the original
image information is lost in the projection of the image on to the moment basis func-
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tions, assuming an ‘infinite’ number of moments is calculated. In the case of or-
thogonal moments like Zernike, the reconstruction is simple, by virtue of the or-
thogonality of the basis functions [3]. If all the Zernike moments up to and including
order p are known, the reconstructed function, g(x,y), is given by:

g(x,y)= izzmnm (r,0) (3)

m=0 n

with the same constraints on the repetition index, n, as before. Notice that the
Zernike polynomials used in (3) are not normalised. In the limit when p approaches
infinity the reconstructed function g(x,y) approaches the original function fx,y).
Most previous work on reconstruction from Zernike moments has concentrated on
recognition, and here we concentrate on accuracy.

The reconstruction of a function in this way can be seen as a summation of
weighted (by the moment value) Zernike basis functions. Since these basis functions
are continuous, it is clear that the reconstructed function will also be continuous.
Therefore, any representation of the reconstructed function needs to be approximated
to discrete values. In the case of a binary object this is achieved by using an appro-
priate threshold. The selection of this threshold has received very little attention and
is usually set at the mid-point between the minimum and maximum values of the
reconstructed function as in [3]. This is perhaps intuitive and recent work [4] has
confirmed that this threshold performs well as a generic value. However, it should be
noted that for a binary image there is information available which can be used to steer
the selection of a threshold, since the zero order moment is a representation of the
mass of the object. Thus the reconstructed object can be thresholded such that num-
ber of pixels in the reconstructed object matches that of the original object. We refer
to this as adaptive thresholding.

3 Interpolating Gait

Articulated motions (such as human gait) are periodic, and it is this periodicity that
can be exploited to predict frames within a sequence. It is known that the highest
angular frequency within human walking gait is approximately SHz [1], and video
sequences are sampled above the Nyquist rate. Since the moments of an image are
shape descriptors, it follows that any particular moment will vary periodically across
a sequence. It is therefore possible that the moments from a corrupted or missing
frame in a sequence can be predicted. We can also consider a missing frame to be
one that cannot be captured in data acquisition, i.e. a new temporal view.

Fig. 1 shows silhouettes for a full human gait cycle (a heel strike through to the
next heel strike of the same foot). These images are derived from a sequence of a
human subject walking in a laboratory environment. However, it should be noted that
these images have not undergone any normalisation. In particular, it can be seen that
the silhouettes are not centralised in the image space (e.g. compare silhouette 11 with
silhouette 19). As individual (independent) objects no normalisation is necessary for
moment calculation and subsequent reconstruction. However, if we wish to use the
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objects in relation to each other then we require them to have a common centre of
mass (COM). This normalisation of the 64x64 silhouettes was achieved by calculat-
ing the COM in the x- and y-directions using geometric moments (0" and 1% order).
The silhouette was then translated (to retain a binary image) such that the COM oc-
curs in one of the four pixels that make up the centre of the image.
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Fig. 1. An example gait cycle sequence in silhouette

Fig. 2 shows plots of particular moment values across two sequences of the same
subject, with linear interpolation between each value of the same sequence. The
moment values show periodicity, with varying degrees of smoothness. The shape of
each plot for a moment reflects how the particular level of detail changes through the
sequence. As we would expect, the low frequency moment shows a smooth change
reflecting how the general shape and size shows little variation over the sequence.
The higher frequency moment shown in Fig. 2b is much less smooth demonstrating
how the detail can change rapidly between the frames. Both plots show little inter-
subject variability. By using these plots to describe the moving silhouette through
time, it is possible to predict new temporal views of the silhouette. In particular, this
has applications in the normalization of gait sequences.
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Fig. 2. Moment value plots for two sequences of the same subject
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4 Results

For each silhouette, a set of moments was calculated, from which reconstructions to
various orders were conducted. The basic reconstructions were thresholded to create
a binary image, which was then compared to the original silhouette. The reconstruc-
tion error was determined by summing the pixels that differed between the two im-
ages. In addition, a weighted error was calculated in which incorrect pixels were
weighted by the square of the distance to the nearest ‘correct’ pixel, giving additional
information as to the accuracy of a reconstruction.

Original Maximum Basic Thresholded Error Summed Weighted
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Fig. 3. Reconstructions of a 64x64 human silhouette (silhouette 23 in Fig. 1) at various
orders (total components). The error distribution images show grey pixels for correct
reconstruction, black for pixels incorrectly added, and white for pixels incorrectly re-
moved

The reconstruction of silhouette 23 from Fig. 1 using different numbers of mo-
ments is shown in Fig. 3. The thresholded images in Fig. 3 are derived from the basic
reconstructions by using the adaptive thresholding described in Section 2. Here, as
expected, the quality of the reconstruction improves with increase in the number of
moments used. In particular, the level of detail improves with the higher order mo-
ments and that the weighted error becomes comparable to the summed error implying
that the incorrect pixels are less grouped. After applying the threshold, the recon-
structions through order 35 show an approximately 6.3% error over the original (44
pixels incorrectly assigned in the 695 pixels of the object), while using orders through
45, the error is less than 3.7% (26 pixels incorrect).

To test the moment value prediction hypothesis with regard to reconstruction,
every other frame was used to predict the intermediate frame in the sequence (i.e.
frames 1 and 3 to predict frame 2, 2 and 4 to predict frame 3, etc.) by linear interpo-
lation of the equivalent moment values. Fig. 4a shows how the error in the recon-
struction varies with the frame. Of particular note is the adaptive threshold generally
has similar or better performance than the fixed threshold. In some respects this may
be surprising since the adaptive threshold relies on accurate prediction of the zero
order moment. As we can see in Fig. 4a, even when there is quite a large error in the
zero order moment (e.g. in frame 22), the adaptive threshold still performs well.
Obviously, the predicted reconstructions are less accurate than the equivalent recon-
structions from the actual moment data. This is only to be expected since we have
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only used a simple method to interpolate the data. In Fig. 4 the best performing pre-
diction at order 35 (frame 2) shows an approximately 9.7% error over the original (72
pixels incorrectly assigned out of 741 pixels in the object), while the worst perform-
ing (frame 24) the error is 37.5%. The reconstructions from actual moment data
show a fairly consistent error across the sequence, but the error in the predicted re-
constructions is much more erratic and in fact seems to have more in common with
the underlying interframe change (in terms of pixels). It is easy to surmise from this
that where we have a large interframe change, there is the greatest change of the mo-
ment values, and hence the prediction of the values will be subject to the most error,
leading to a poorly predicted frame. This would then lead to the hypothesis that a
large average error in the predicted moments would lead to a large error in the recon-
structed frame. However, the true situation appears to be more complex. For while it
is indeed true that the worst performing frame in Fig. 4a (frame 24) has the largest
average error in the predicted moment values, the second worst performing (frame
23) is only the 13™ worst performing of the 25 frames being considered. Referring to
equation (3), we see that the reconstruction is a summation of the Zernike polynomi-
als, weighted by the moment values. It is therefore clear that large moment values
have a greater influence on the reconstruction than small values. Therefore, a large
relative error in the prediction of a small-valued moment will probably have less
effect on the final reconstruction than a small relative error on a large-valued mo-
ment. Thus, it is unlikely that there would be a direct correlation between the average
error in the predicted moment values and the error in the resulting reconstructed im-
age.

Total Error for Predicted Reconstructions at Order 35 Error variation with reconstruction order
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Fig. 4. a) Reconstruction error for each frame (predicted and actual) for fixed and adaptive
thresholds, and b) Reconstruction errors with predicted and real value moments showing the
error variation with increasing reconstruction order

Fig. 4b shows how the reconstructions perform over a range of orders. In the case
of predicted reconstructions there is a level of accuracy that is reached that is not
improved upon with the inclusion of higher orders. This lack of improvement of the
reconstruction error is probably a direct result of the inaccuracies of using linear
interpolation for the prediction. For frame 24 where the linear interpolation performs
badly (from Fig. 4), the predicted reconstruction diverges from the actual reconstruc-
tion at a low order leading to a poor result at higher orders. In the case of frame 22
this divergence between the predicted and actual reconstructions happens at around
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order 30 giving a more accurate reconstruction. In effect, the low level detail is in-
correct and adding the high level detail has little effect on the overall accuracy.

To further demonstrate the validity of the interpolation technique, linear interpo-
lation was used to predict frames using larger interframe distances (i.e. more than two
frames). The same gait sequence in Fig. 1 was used, and this time we chose only to
predict frame 14 with increasingly large interframe distances (2 to 26) with the pre-
dicted frame falling at the midpoint. In Fig. 5, a plot of the error in the reconstructed
image (using moments through order 35) against the interframe distance is shown.
Here, as we would expect, we find that the image reconstructed from the predicted
moments becomes less accurate as the gap increases. However, note that once the
interframe distance becomes greater than half the length of the gait cycle sequence
(approximately 14), the predicted object starts to become more accurate. This is
because at these distances the reference frames become increasingly similar to the
frame we wish to predict, hence the interpolation becomes more accurate.

Total Reconstruction Error for Prediction of Frame 14 using Various
Interframe Distances
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Fig. 5. Reconstruction error for frame 14 using increasing interframe distance for interpolation

0 I i

(@) o ©

@  © @

Fig. 6. Silhouette reconstruction: a) first reference silhouette, b) silhouette to be predicted,
¢) second reference silhouette, d) crude reconstruction at order 35, ¢) reconstruction with adap-
tive thresholding, and f) error image by comparison with (b) (92 incorrect pixels)

In terms of the actual images Fig. 6 shows a reconstruction example from linear
interpolated data. Fig. 6b (frame 9 from Fig. 1) is the frame to be predicted from the
moment data of the frames in Figs. 6a (frame 8) and 6¢ (frame 10). The frames in
Figs. 6d, 6e, and 6f display the results of reconstruction up and including moment
order 35. Whilst this frame is one of the better performing reconstructions (see Fig.
4), of particular interest in this example is how the occluded leg in Fig. 6a (which is
unoccluded in Fig. 6¢) can be seen by the moment interpolation technique (Fig. 6e).
The retention of the general shape of the silhouette demonstrates that the interpolation
approach is valid. However, it is clear from the error image in Fig. 6f that many of
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the errors are in the area undergoing most change (i.e. the legs) as expected. The
basic reconstruction in Fig. 6d reflects how these errors arise, where we can see that
the leg area is less bright. In effect, the predicted moment values have conflicted with
each other (due to interpolation errors), leading to the blurred (i.e. more uncertain in
binary terms) image. However, it should be noted that we have used linear interpola-
tion to demonstrate that using interpolation is viable. This suggests that using more
sophisticated interpolation (such as cubic splines) could improve matters.

5 Conclusions and Further Work

We have shown how moments can be used to predict missing data within object
sequences and to produce new temporal views which has application in gait biomet-
rics. Zernike moments have been used but the fundamental idea is applicable to any
type of moment, although preferably an orthogonal one since this gives practicable
reconstruction. It is has been shown that binary images can be accurately recon-
structed from Zernike moments and has highlighted some generic factors rarely dis-
cussed in the literature. Additionally, it has been shown that the moment values can
be interpolated in a sequence. Moment values that have been predicted by linear
interpolation have been successfully used to predict a missing frame in a sequence,
and it is expected that a more accurate form of interpolation such as cubic splines will
significantly reduce the error and lead to an efficient method to obtain accurate new
temporal views. However, further work is needed on reconstruction, and in particu-
lar, the relationship of the moment order to image frequency content, and how this
can be used to improve the accuracy of reconstruction and reduce the number of mo-
ments required. In the light of this, using Fourier components in a similar fashion is
also worthy of investigation.
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