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Abstract

Recent research using statistical moments to describe moving shapes through
an image sequence has led to an interest in reconstructing moving shapes from
their moment description. This paper discusses how the moment description
through a series of frames might be used to predict missing or intermediate
frames within a sequence. Additionally, this highlights generic aspects of
moment reconstruction which rarely receive more than scant attention. The
ideas presented use Zernike moments, although the general framework is
applicable to all types of moments. We show how a moving human silhouette
can be reconstructed with accuracy by interpolation from a moment history.

1 Introduction

Statistical moments have a long history in computer vision since the original work of Hu
[1] on moment invariants in the early 1960’s. They are particularly popular due to their
compact description, their capability to select differing levels of detail and their known
performance attributes. The ability to reconstruct a shape from its moment description is
often cited as justification for their deployment, but has received much less attention than
their descriptive capabilities for object recognition, e.g. Dudani et al., [2]. More recently
moments have been applied to image sequences, to describe moving shapes, for
recognition purposes (Shutler et al., [3]), thus prompting an interest in their use for
reconstructing (moving) shapes. In this new scenario, an object’s moment description
allows for the prediction of intermediate or missing appearances. One potential
application is for the synchronisation of the source imagery in multi-view 3D human
reconstruction.

One approach to moving-object, or even frame, prediction (known as 'in-betweening'
in broadcast technology) is to use optical flow. An alternative for objects is to deploy
tracking approaches for prediction. Both approaches require relatively fast sampling to
ensure either sufficient accuracy in the estimates of optical flow or sufficient tracked
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history to ensure that the prediction is valid. Using the new moment based approach can
benefit from the compactness of the moment description and for a potentially lower
sampling rate, given sufficient samples for accurate interpolation of the moments' history.
This is especially true when reconstructing humans and their movement as the motion of
the limbs can be faster than video-rate sampling.

In Section 2, orthogonal Zernike moments are described and reconstruction is
considered. Section 3 describes how moments in a sequence can be interpolated, and, in
particular, how this can be applied to reconstructing moving people. In Section 4, we
present some early results that demonstrate the validity of our new approach, while in
Section 5, we assess the preliminary results and outline the future directions of the
research.

2 Zernike Moments

There are many different types of moments that have been applied to computer vision
problems (geometric, Legendre etc.), but it has been demonstrated in [4] that the
orthogonal Zernike moments offer a set of moments which are highly uncorrelated with
little information redundancy.

2.1 Zernike Theory

The orthogonal Zernike moments, first proposed by Teague [5], utilise the Zernike
polynomial as basis function and are defined over the unit disc (in polar coordinates) by:
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where m is the order of the moment (with m ≥ 0) and n represents the repetition (where
|n| ≤ m, and m + n is even). ),( θrVmn is the complex-valued Zernike polynomial with *
indicating the complex conjugate. For a discrete square image (size NxN), mnZ can be
calculated with:
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given that Nyxr 2)( 2122 += and )(tan 1 xy−=θ , in order to map the image into

the unit disc. Note that Equation 2 is only orthogonal over the unit circle. The Zernike
polynomial, ),( θrVmn , is defined as:
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where the radial polynomial, )(rRmn , is:
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This polynomial is such that over the unit disc, 1)( ≤rRmn and that 1)1( =mnR , for any
values of m and n. The definition of the radial polynomial also leads to

)()( , rRrR nmmn −= . It can then easily be shown that:

),(),( ,
* θθ rVrV nmmn −= (5)

From which it follows that:

nmmn ZZ −= ,
* (6)

The number of Zernike moments for any order, m, is given by m + 1, while the
number of moments up to and including order m is (m/2 + 1)(m + 1), (although because
of the relationship between Zmn and Zm,-n given above, only the moments with n ≥ 0 need
to be known).

2.2 Reconstruction from Zernike Moments

It is a well-recognised property of moments that they can be used to reconstruct the
original function, i.e. none of the original image information is lost in the projection of
the image on to the moment basis functions, assuming an ‘infinite’ number of moments
are calculated. For non-orthogonal moments, the reconstruction is not straightforward
and requires a moment-matching technique [5]. In the case of orthogonal moments like
Zernike, the reconstruction is simple, by virtue of the orthogonality of the basis functions
[6]. For an image for which all the Zernike moments up to and including order p, the
reconstructed image, g(x,y), is given by:
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with the same constraints on the repetition index, n, as before. As with non-orthogonal
moments, it remains true that as p approaches infinity the reconstructed function g(x,y)
approaches the original function f(x,y). More simply, more moments suggests a better
reconstruction.

It is worth noting that this reconstruction formula gives a discrete approximation to a
continuous function, i.e. while the values of x and y are discrete, the values of g(x,y) are
from a continuous range. Another way of considering this point is that if the original
image is binary, then the reconstructed function, g(x,y), will not simply take the values 0
and 1. The reconstruction effectively gives the simplest (smoothest) function whose
moments match the given set. Therefore, when reconstructing binary images such as
those in Figure 1a, the reconstructed image needs to be thresholded to reproduce a
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binary image. An appropriate threshold, used in [6], would appear to be the mid-point
between the maxima and minima of the reconstructed function, but there appears to be
little discussion in the literature on thresholding reconstructions. This will be discussed
further in Section 4. Using an example of a 64x64 binary letter ‘A’, Figure 1 illustrates
how increasing the number of moments in the reconstruction improves the resulting
image (which are shown here after thresholding as described above).

It is quite clear from Figure 1 that the letter ‘A’ is recognisable from the
reconstruction up to and including order 15 (a total of 136 moments). However, it is
also clear that the reconstructed image does not match the original. Thus, we see that
recognition requires fewer moments than reconstruction. Most previous work [5,6] on
reconstruction from moments has concentrated on recognition rather that accuracy, but
here we wish to concentrate on the accuracy alone.

It is known and confirmed in Figure 1 that the higher order moments capture
increasingly higher frequencies within a function and in the case of an image the higher
frequencies represent the detail of the image. This is also consistent with work on other
types of reconstruction, such as eigenanalysis where it has been found that increasing
numbers of eigenvectors are required to capture image detail [7] and again exceed the
number required for recognition. Thus, when considering image reconstruction from
moments, the number of moments required for accurate reconstruction will be related to
the frequencies present within the original image. For a given image size it would appear
that there should be a finite limit to the frequencies that are present in the image and for a
binary image that limiting frequency will be relatively low. As the higher order moments
approach this frequency the reconstruction will become more accurate.

3 Interpolating Gait

Articulated motions (such as human gait) are periodic, and it is this periodicity that can
be exploited to predict frames within a sequence. It is known that the highest angular
frequency within human walking gait is approximately 5Hz [8], while video sequences
are recorded at a rate well above the Nyquist one.

Since the moments of an image are shape descriptors, it follows that any particular
moment will vary periodically across a sequence, since the shapes will repeat themselves.
It is therefore possible that the moments from a corrupted or missing frame in a sequence
can be predicted from the values in the sequence.

Figure 2 shows silhouettes for a full human gait cycle (a heel strike through to the
next heel strike of the same foot). These images are derived from a sequence of a human
subject walking in a laboratory environment. However, it should be noted that these
images have not undergone any normalisation. In particular, it can be seen that the

(a) (b) (c) (d)
Figure 1: a) original image, b) reconstruction order 10 (66 moments),
c) reconstruction order 15 (136), and d) reconstruction order 20 (231).
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silhouettes are not centralised in the image space (e.g. compare silhouette 11 with
silhouette 19). Normalisation of the silhouettes was achieved by calculating the centre of
mass (COM) in the x- and y-directions using geometric moments (0th and 1st order). The
silhouette was then translated, but by a whole number of pixels to retain a binary image.
In the case of these 64x64 images, this means that the COM occurs in one of the four
pixels that make up the centre of the image.

Figure 3 shows plots of particular moment values across two sequences of the same
subject, the curves produced by cubic spline interpolation. It is clear from these plots
that the moment values show periodicity, with varying degrees of smoothness. In
addition, we see that the inter-subject variability is fairly small. Figure 4 shows the same
plots but for two different subjects. Again the periodicity is present (as expected), but
we also see that there is some intra-subject variability. However, the general shape of the
plots is similar, which is to be expected since the general shape patterns between subjects
are similar. The curve of each moment for a sequence reflects how the particular level of
detail changes through the sequence.

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17 18

19 20 21 22 23 24

25 26 27

Figure 2: An example gait cycle sequence in silhouette.
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(a)

(b)
Figure 3: Moment value plots for two sequences of the same subject, showing a) Z00,
and b) Z20,20.

(a)

(b)
Figure 4: Moment value plots for two different subjects, showing a) Z00, and b) Z20,20.
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We expect that the moment value prediction from these plots will benefit from
interpolation using cubic splines. However, in Section 4 we present some initial findings
using linear interpolation to determine basic properties.

4 Results
The reconstruction of silhouette 23 from Figure 2 using different numbers of moments is
shown in Figure 5. Here we can see that, as in Figure 1, there is a general improvement
in the quality of the reconstruction as the number of moments used is increased. The
reconstructions through order 35 show an approximately 1% error over the original (44
pixels incorrect in 4096 pixels), while using orders through 55, the error is less than 0.6%
(24 pixels incorrect).

The effect of using different thresholds for the reconstructed images was also
investigated. The basic reconstructions were mapped to values between 0 and 1.
Various thresholds (0.3, 0.4, 0.5, 0.6 and 0.7) were then applied to the mapped
reconstructions. The differences between the reconstructed image and the original were
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Figure 5: Reconstructions of a 64x64 human silhouette, a) original image (silhouette
23 in Figure 2), b) using maximum order 5 (21 moments), c) order 15 (136), d) order
25 (351), e) order 35 (666), f) order 45 (1081), and g) order 55 (1596). The
thresholded images were thresholded at the mid-point between the maximum and
minimum values. The difference images show grey pixels for correct reconstruction,
black for pixels incorrectly added, and white for pixels incorrectly removed.
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measured. The plot in Figure 6 displays the reconstruction error (in pixels) for the
different thresholds against the reconstruction order, for silhouette 2 in Figure 2. These
plots show that the threshold at 0.5 offers the best general performance, although at
lower orders it appears that other thresholds can offer similar or even improved
performance. However, the error metric is simply a total of incorrectly assigned pixels,
and does not take account of the distribution of the error pixels. The error at order 35 is
41 pixels (i.e. approximately 1% of the 64x64 image). Note also that reconstruction
through order 90 (a total of 4186 moments) yields a perfect reconstruction.

The silhouettes in Figure 2 were normalised and then used to test the moment value
prediction hypothesis with regard to reconstruction. Every other frame was used to
predict the intermediate frame in the sequence (i.e. frame 1 and frame 3 to predict frame
2, 2 and 4 to predict frame 3, etc.) by linear interpolation of the equivalent moment
values. Figure 7 shows the reconstruction error for each predicted frame when
reconstructing using moments orders through 35, together with the reconstruction error
at the same order using the moments from the actual frame. Naturally, reconstruction by
the real moments of a frame is better, but in some cases the interpolated reconstruction is
quite close. On average the interpolated reconstruction shows a 3.1% error over the
original image. At best (in frame 22) the error is 1.8%, while the worst performer (frame
24) has an error of 6.6%. Frame 24 probably has the largest inter-frame movement so
this may explain its poorer performance.

Figure 8 illustrates how the reconstruction error of the predicted frame reaches a
minimum error which does not improve with increasing moment order, and compares the

R econstruction Error at Various Thresholds vs Reconstruction Order
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Figure 6: Reconstruction error plots using various thresholds.
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Figure 7: Reconstruction errors with predicted and real value moments showing the
error for each frame using reconstruction through order 35.
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reconstruction error of the silhouette from its actual moments. This lack of improvement
of the reconstruction error is probably a direct result of the inaccuracies of using linear
interpolation for the prediction. The degree to which the inaccuracy hampers
reconstruction can be seen by how much the error of the predicted frame diverges from
the error in reconstruction from the actual moments. For Frame 22 in Figure 8 we can
see that the error is approximately the same in both cases up to approximately order 30,
at which point reconstruction from the actual moments becomes significantly better.

Figure 9 shows a reconstruction example from linear interpolated data. Figure 9b
(frame 9 from Figure 2) is the frame to be predicted from the moment data of the frames
in Figures 9a (frame 8) and 9c (frame 10). The frames in Figures 9d, 9e, and 9f display
the results of reconstruction up and including moment order 35. Whilst this frame is one
of the better performing interpolated reconstructions (see Figure 7), of particular interest
in this example is how the occluded leg in Figure 9a (which is unoccluded in Figure 9c)
can be seen by the moment interpolation technique (Figure 9e). The retention of the
general shape of the silhouette demonstrates that the interpolation approach is valid.
However, it is clear from the error image in Figure 9f that many of the errors are in the
area undergoing most change (i.e. the legs). The crude reconstruction in Figure 9d
reflects how these errors arise, where we can see that the leg area is less bright. This can
be attributed to inaccuracies in the interpolated moment values causing some values to

Error variation with reconstruction order
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Figure 8: Reconstruction errors with predicted and real value moments showing the
error variation with increasing reconstruction order.

(a) (b) (c)

(d) (e) (f)
Figure 9: Reconstruction of a silhouette by linear interpolation with a) the first
reference silhouette, b) the silhouette to be predicted, c) the second reference
silhouette, d) showing the crude reconstruction at order 35, e) reconstruction
thresholded at 0.5, and f) its error image by comparison with (b) (97 incorrect pixels).
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conflict with each other, leading to a more blurred (uncertain) image. However, it should
be noted that the linear interpolation is a very crude form of interpolation. A more
appropriate form of interpolation should lead to quantifiably better results.

5 Conclusions and Further Work
This paper shows how moments can be used to predict missing data within image
sequences. Zernike moments have been used but the fundamental idea is applicable to
any type of moment, although preferably an orthogonal one since this gives a practical
route to reconstruction. It is has been shown that binary images can be accurately
reconstructed from Zernike moments if high orders are used but has highlighted some
generic factors rarely discussed in the literature. However, further work is needed on
reconstruction, and in particular, the relationship of the moment order to image
frequency content, and how this can be used to improve the accuracy of reconstruction
and reduce the number of moments required.

Additionally, it has been shown that the moment values can be interpolated in a
sequence. Moment values that have been predicted by linear interpolation have been
successfully used to predict a missing frame in a sequence, and it is expected that cubic
spline interpolation will further enhance performance. In addition, the recent velocity
moment descriptions may provide a route towards the same aim.
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