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Abstract

A novel technique for analysing moving shapes is presented in an example application to automatic gait recognition.

The technique uses masking functions to measure area as a time varying signal from a sequence of silhouettes of a

walking subject. Essentially, this combines the simplicity of a baseline area measure with the specificity of the selected

(masked) area. The dynamic temporal signal is used as a signature for automatic gait recognition. The approach is

tested on the largest extant gait database, consisting of 114 subjects (filmed under laboratory conditions). Though

individual masks have limited discriminatory ability, a correct classification rate of over 75% was achieved by com-

bining information from different area masks. Knowledge of the leg with which the subject starts a gait cycle is shown to

improve the recognition rate from individual masks, but has little influence on the recognition rate achieved from

combining masks. Finally, this technique is used to attempt to discriminate between male and female subjects. The

technique is presented in basic form: future work can improve implementation factors such as using better data fusion

and classifiers with potential to increase discriminatory capability.

� 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In the last couple of years, gait has emerged as a

potential practical biometric. It poses considerable

challenges compared with traditional biometrics
such as face, iris or speech in that it is a function of

both space and time. The information available

from a gait signature is thus tremendous, but this

poses new problems due to the overwhelming

amount of data. We shall consider gait as a se-
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quence of images of a single subject walking across

the plane of view of a stationary camera.

To reduce the dimensionality of the data we

only compare a sequence of windowed silhouettes

of the walker. The procedure for obtaining the
silhouettes is discussed in the following section.

The set of silhouettes obtained over the walking

cycle provides more information (than single im-

ages), even if we do not consider them as part of a

sequence (Huang et al., 1999a; Hayfron-Acquah

et al., 2001).

Previous work on gait recognition can be di-

vided into two distinct areas. Holistic approaches
aim to extract statistical features from a sub-

ject�s silhouette to differentiate between subjects
erved.
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(Huang et al., 1999a; Hayfron-Acquah et al., 2001;

Little and Boyd, 1998; Niyogi and Adelson, 1994;

BenAbdelkader et al., 2002a; Collins et al., 2002;

Phillips et al., 2002; Murase and Sakai, 1996) and

model-based approaches which aim to model

human gait explicitly (Yam et al., 2002; Cunado
et al., 1999a). One early approach (Murase and

Sakai, 1996) used PCA applied to silhouettes and

used the trajectory information for classification.

This was later extended using canonical analysis

(Huang et al., 1999a), again showing encouraging

results. Notwithstanding these results, classifica-

tion becomes complex with large datasets and

naturally depends on the exemplars used as
training data since there is nothing specific to gait

in the descriptional basis (further, the silhouette

sequence could even be re-ordered without affect-

ing the result). Recent baseline approaches have

used matching of key gait events, this being the

sole focus of specific relation to gait. Of these two

�baseline� approaches one (Collins et al., 2002)

captures body as well as gait cues by comparing
the silhouette at key gait events with other sil-

houettes stored in a database. Alternatively (Phil-

lips et al., 2002), a correlation can be calculated by

determining the number of intersecting pixels be-

tween the sequence of silhouettes of the test and of

a reference subject. As with other emerging papers,

the studies report encouraging results on a selec-

tion of databases ranging from around 30 to just
over 70 subjects.

The disadvantage of traditional holistic ap-

proaches is that they ignore the temporal compo-

nent of gait. Subjects� gait could be affected by

carried items, but there is no specificity that allows

for any analysis of this (except, naturally, con-

struction of the analysis database). In contrast,

model-based approaches (Yam et al., 2002, Cu-
nado et al., 1999b) aim to model accurately how a

subject walks by analysis of the motion of the legs.

The disadvantage of model-based approaches is

typically the computational complexity. The focus

of this paper will be to present a new holistic

technique which considers temporal information

that is intimately related to the nature of gait, with

low computational cost.
This new technique uses a masking function to

determine area and hence captures a low dimen-
sional temporal signature of the subject. We use

fixed templates which allows us to test for particu-

lar invariances (e.g. using information from only

the legs). There are also speed advantages to our

new approach to gait-signature generation, over

the speed of established statistical techniques.
Standard pattern recognition techniques are used

to classify subjects based on these signatures. We

present results using the new SOTON database

that consists of 114 subjects with a minimum of

eight samples for each subject (Shutler et al.,

2002). This database is much larger than those

available previously. The database consists of se-

quences of images collected under controlled
conditions. Subjects are filmed walking normally

in front of a green background and chroma-key

techniques are used to isolate the moving subject.

Following this, background subtraction and a

connected components algorithm are used to ex-

tract a binary silhouette of the walking subject.

Finally, the silhouette is windowed and resized to a

64� 64 silhouette. Detailed information about the
SOTON database is available in (Shutler et al.,

2002). This data is aimed specifically to allow us to

answer the question of gaits� potency as a bio-

metric, rather than in a ‘‘real-world’’/computer

vision scenario.

We show that there is sufficient information in

these dynamical signatures for recognition, with a

75% correct classification rate on the SOTON
database. To explore in more detail where this

performance arises, we present results for experi-

ments where we have removed all DC components

from our dynamical signatures so the remaining

information is purely temporal. We also report on

studies where we have separated the samples of

walkers moving left to right from those moving in

the opposite direction. Furthermore, we consider
learning from sequences which have been syn-

chronised, so that all walks start on the same foot.

Using this additional knowledge improves the

recognition performance from a single mask, but

does not improve performance when masks are

combined. Finally, we report on an attempt to

differentiate between male and female subjects

based on these dynamic signatures. Preliminary
results using this approach have been reported

elsewhere (Foster et al., 2001a,b) but this paper
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contains the first complete analysis of this algo-

rithm on a large database.
Fig. 2. Sample windowed silhouettes.

Fig. 3. Sample area masks: (a) horizontal line; (b) vertical line;

(c) bottom half and (d) full.
2. Extracting an area dynamic signature

Before a dynamic signature can be obtained, the

silhouette of the subject must be separated from

the background. In part of the SOTON database,

the gait sequences are derived in the laboratory,

aiming for near-perfect conditions to obtain the

best possible silhouette. Subjects are viewed fron-

to-parallel walking along a track in either direc-

tion. The camcorder�s digital video is turned into
individual frames. Fig. 1(a) shows the original

image from which the silhouette is extracted using

chroma-key subtraction in conjunction with a

connected components algorithm. The silhouette is

then windowed to remove those parts of the

background away from the chroma-key, such as

the roof, Fig. 1(b), and the resized to a 64� 64

image, Fig. 1(c). Examples of silhouettes of dif-
ferent subjects are shown in Fig. 2. Subjects are

constrained to walking normal to the camera�s
plane of view as we are interested in analysing the

basic properties of gait as a biometric. Future

work can concentrate on the consequences of a

subject walking at an angle to the camera.

Binary silhouettes remove information about

colouring and interior shape but give invariance to
clothing colour and most lighting conditions.

Furthermore, by normalising the size of the sil-

houettes we remove variation due to distance from

the camera, although we lose information about

the subjects� height.
Fig. 1. Silhouette extraction process: (a) original ima
Following this process, we are left with a se-

quence of normalised and centralised silhouettes

for each subject. We use multiple sequences con-

taining a single walking cycle (two steps) to per-

form recognition. This typically comprises of
approximately filmed at 25 frames/s. We denote

the images in the sequence by a vector xðtÞ where
t labels the time when the image was taken.

To obtain the dynamic signature we compute

the area of the silhouette within a mask. These

masks are chosen intuitively to isolate a particular

part of the image. Examples of area masks are

shown in Fig. 3. Here, a horizontal line (Fig. 3(a))
isolates those parts in the region of the waist

whereas a vertical one, Fig. 3(b), selects the thorax

and these parts of the legs intersecting with the

vertical window. Many alternatives are possible

such as a combination of the upper body and legs,

Fig. 3(c) merely measures the entire area change of
ge; (b) silhouette and (c) windowed silhouette.
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the image Fig. 3(d) simply analyses the legs of the

subject.

Each mask, mj, represents an area mask shown

in Fig. 3 as a binary vector, with 1 representing the

white parts of the image. For each mask, we obtain

a signature by determining the area between the
mask and the images thus

SjðtÞ ¼ mT
j xðtÞ

We obtain an area history by applying each mask.

Note that all the masks used are left right sym-

metric masks and we therefore lose all information
corresponding to the asymmetric part of gait.

However, this also gives invariance to the direction

of walk. That is, we could mirror any image within

our sequence and we would obtain the same gait

signature. We could use an asymmetric masks

which might give us additional information, but

we would then need to reflect all walkers to walk

in the same direction.
Examples of the gait sequences SjðtÞ for three

different masks are shown in Fig. 4 (the full area

mask gives a similar output, but is not shown as

the details are harder to see when plotted on a

scale showing all four functions). As can be seen,

the dynamic signature is intimately related to gait.

The peaks in the graph represent when the selected

area of the subject is at a maximum (i.e. when the
legs are furthest apart) and the dips represent when

the selected area is at a minimum (i.e. when the
Fig. 4. Sample output for three different area masks from a

single subject.
legs are closest together). The bottom half mask

selects the lower portion of the image so has a

much greater number of points that the vertical

line, but the shape is naturally very similar. The

horizontal line mask selects those points near the

region of the waist which varies less with thorax
motion than the associated movement of the sub-

ject�s arms. Clearly, the masks emphasise bilateral

symmetry: one leg swings whilst the other is in

stance after which the limbs swap in function.

Limping is an inherently asymmetrical gait, and this

would be evidenced in a clear disparity in mea-

sured area between the two halves of the gait cycle.

To compare sequences that start at different
points in the gait cycle we have to align the se-

quences. We can do this by determining the min-

ima in a sequence and using this as a starting

point. To eliminate variations due to the sampling

time and speed at which the subject walks we select

a part of the sequence corresponding to the full

walking cycle and resample using cubic splines to

interpolate between the observations SjðtÞ. A cubic
spline curve is fitted for the whole gait cycle, and

30 evenly spaced samples are taken from the whole

curve, giving a 30 element vector for each area

mask used. Note that this does lose information

about the subject�s speed. BenAbdelkader et al.

(2002b) has shown that this information can be

used for recognition, however, our technique is

aimed at extracting the dynamics of area change
and thus the speed of the walker can be removed.

Each mask yields a vector describing the dy-

namics of area change within that mask. However,

there are many degrees of freedom in a walking

body, so we would expect that there would be a

considerable degree of independent information

from different masks. Therefore, we have com-

bined the information from multiple masks to
provide a more complete dynamics signature. We

have chosen the simplest way to do this, namely to

concatenate the 30 element vector from each area

mask to form a single long vector of n� 30, where

n denotes the number of area masks used. We

denote this dynamic signature by v. We will have a

different vector v for each sequence of images. We

use these vectors to perform the recognition of
subjects in our database. Note that the vectors still

contain some information about the static shape of
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the silhouette. This information is contained in the

average value of sequence SiðtÞ. We can remove

this information by subtracting the average of the

sequence, although this reduces the recognition

performance. We return to this issue in the next

section.
For each walking sequence, we have obtained

an n� 30 element vector v that provides a dynamic

signature describing the gait. To classify the sig-

natures we used canonical analysis (Fisher, 1938;

Fukunaga, 1990; Swets and Weng, 1996) to select

a low dimensional subspace where the differences

between classes are maximised and the difference

within classes is minimised. For completeness we
describe the canonical analysis procedure in the

appendix. The centroids of each class are calcu-

lated in this new space and a k-nearest neighbour
classifier is used to decide which subject a sequence

of images belong to.
3. Results

3.1. Person identification

Table 1 shows the recognition rates for single

area masks on the SOTON database. Six samples

of each subject (three left to right, three right to

left) were used to train the database and two

samples (one left to right, one right to left) were
used as the test data.

As can be seen from the results in Table 1, the

performance of the system using only a single area

mask is unimpressive. It should be noted however,

that the results are significantly better than the

chance recognition rate which is less than 1% on a

database of this size.

All results are reported in terms of recognition
rate with an estimate of the expected error in that
Table 1

Recognition rates from single masks

Area mask Recognition

rate (%)

Expected error,

re (%)

Horizontal line mask 29.9 3.03

Vertical line mask 16.1 2.43

Bottom half mask 27.2 2.95

Full mask 29.2 3.01
rate. The tests consisted of N independent mea-

surements leading to a binary outcome, i.e. the re-

sults follow a distribution for Benoulli trials. The

probability of obtaining M correct results is given

by the standard binomial relationship (DeGroot

and Schervish, 2001)

PðMÞ ¼ N
M

� �
pMð1� pÞN�M

where p is the true recognition rate. The mean and

variance for M are Np and Npð1� pÞ, respectively.
The natural unbiased estimate for the recognition

rate is M=N and the expected error in the unbiased

estimate is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1� pÞ=N

p
. The observed recogni-

tion rate can be used as an approximation to p.
For our database of 114 subjects with two test
samples of each, N ¼ 228 so the expected error

in the mean is around 3.0%, as shown in Table 1.

From Table 1, there is no significant difference

in the horizontal line, bottom half and full masks.

However, the vertical line mask appears to have

significantly less discriminatory power than either

of the others, and its estimated error is then pro-

portionally greater than for the other masks.
The advantage of this approach is that the exe-

cution speed is very fast, especially compared with

other extant approaches such as Huang et al.

(1999b). Since these results are substantially higher

than chance, we must assume that there is poten-

tial to using area masks. As such we looked at

increasing the recognition performance of the

system whilst preserving the advantage of fast
computation time.

3.2. Combining area masks to increase performance

By combining the results from area masks as

discussed previously and using canonical analysis

in the same manner as before the recognition rate

increases markedly. Results are combined by
simply concatenating vectors together to produce

a vector of size n� 30 where n denotes the number

of area masks used (Table 2). By combining masks

we greatly increase the information available for

discriminant analysis and thus the results improve.

The achieved recognition rate of over 75% is en-

couraging and significantly greater than chance

alone.



Table 2

Results from combining multiple masks

Area masks combined Recognition

results (%)

Expected

error, re (%)

Horizontal line mask+

vertical line mask

49.6 3.31

Bottom half + full mask 50.0 3.31

All above masks 75.4 2.85

Table 3

Results when DC component is removed

Area mask Recognition

rate (%)

Expected

error, re (%)

Horizontal line mask 8.9 1.89

Vertical line mask 26.3 2.92

Bottom half mask 23.7 2.81

Full mask 24.1 2.83

Table 4

Recognition rates for different starting legs and directions using

four area masks

Direction of

walk

Starting

left

Recognition

rate (%)

Expected error,

re (%)

Left Left 79.8 3.76

Left Right 76.6 3.96

Right Left 76.6 3.96

Right Right 76.5 3.97
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3.3. Using only the temporal components

Gait differs from traditional biometrics because

it contains a temporal as well as a spatial compo-

nent. The spatial component represents the shape

of the person, whilst the temporal component rep-

resents the movement of the body over time. Psy-

chological research (Johansson, 1973) would seem
to suggest that humans can recognise movement

patterns merely from the temporal component.

Using only the DC component of the area

masks� output, produces poor recognition results.

Using the DC component of the vertical line mask

produces a recognition rate of 7.5%.

The full mask component represents the spatial

component of the gait sequence. As can be seen
from Table 1, the recognition rate using only the

spatial component is approximately 30%.

To determine where the recognition capability

was derived, we repeated the tests but this time

removing the DC component of gait sequence.

This was accomplished by subtracting the mean of

each sequence from the data. Thus, the sequence

only contains temporal information.
As can be seen from Table 3 the results are

similar in levels of performance to those in Table

1. However, we can see that the recognition rates

using the horizontal line mask has dropped by

almost 20% to less than 10%. As expected, this

shows that the horizontal mask contains very little

temporal information which can be used for rec-

ognition. By combining the masks in the manner
described previously, it is possible to increase this

recognition rate. Combining the four masks pro-

duced a recognition rate of 52.7%. This suggests

that approximately half of the recognition rate

come from the temporal components of gait, with

the remaining coming from the shape of the sil-

houettes.
3.4. Is gait symmetric?

The psychologists� view is that gait is a sym-

metrical pattern of motion (Cutting et al., 1978;

Sadeghi et al., 2000). We have assumed this to be

true, and not taken into account the foot on which

the subject starts, or their direction of travel. Does

taking this information into account result in a
significant difference in recognition rate?

Table 4 shows the recognition rates for each

combinations of starting leg and walk direction.

Four area masks were combined (vertical line,

bottom half, horizontal line and full) and leave one

out cross-validation was used to produce the rec-

ognition rates shown. As can be seen recognition

rates are approximately constant for each of the
combinations. This was to be expected as all sub-

jects are able-bodied and none showed a distinct

impediment in their walk, to the human eye.

Analysing the results in more detail indicates

that if knowledge of the starting leg is used, then

performance can be improved. Table 5 shows the

recognition rates of individual masks on a data set

where all the subjects are walking right to left and
starting on the left foot.

If we compare the results in Table 5 to those in

Table 1 we can see there is a marked increase in the

recognition rate when the starting leg and direc-



Table 5

Recognition rates using various masks when direction and

starting leg is the same

Mask used Recognition

rate (%)

Expected error,

re (%)

Horizontal line mask 52.2 4.67

Vertical line mask 37.7 4.54

Bottom half mask 49.6 4.68

Full mask 45.0 4.66

Table 6

Recognition rates by combining area masks when direction and

starting leg is the same

Area masks

combined

Recognition

results (%)

S.D. of expected

error, re (%)

Horizontal line mask+

vertical line mask

67.7 4.40

Bottom half + full mask 61.9 4.55

All masks 76.6 3.97
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tion of travel is taken into account. Table 6 shows

the results on the same data set when the masks

are combined.

From the results in Table 6 we can see that whilst

knowledge of the starting leg and direction of walk
can increase performance when single masks are

used, it does not provide significant advantages

when masks are combined. Further research is

necessary to determine if knowing the starting leg is

a substantial advantage to the potency of gait as a

biometric. Essentially this poses a question con-

cerning the latent symmetry of gait which is yet to

be determined by automatic analysis.

3.5. Gender classification

The SOTON database consists of 114 subjects,

of which 20 are female. Gender discrimination

could be a practical first stage in gait classification

if the number of subjects is large, as it would re-

duce the number of subjects needed to be searched.
To avoid bias in the test sample, 20 people of each

sex were used, giving a total database size of 40.

Fifteen people of each sex were used as training,

with the remainder as test subjects. In this case,

eight sequences were used for each. This gave 120

training sequences and 40 test sequences.
By using canonical analysis, the maximal gen-

der discrimination rate was 64% which is better

than chance, but not by much. Whilst results on

gender classification are disappointing, they are

justifiable. With the subject walking normal to the

camera�s plane of view there is very little gender
discrimination information available. In mitiga-

tion, the clothing of males is far more uniform

than that of females, suggesting that diversity of

apparel could increase the potential recognition

rate for women. Previous medical work has actu-

ally indicated that male and female walkers differ

in terms of lateral body sway, with males tending

to swing their shoulders from side to side more
than their hips, and females tending to swing their

hips more than their shoulders (Mather and Mur-

doch, 1994; Kozlowski and Cutting, 1977). This

sort of information might be better discerned from

a fronto-normal or an overhead view. Further re-

search is needed to determine whether area masks,

using different views of the subject, will be able

to fulfil the task of gender discrimination.
4. Discussion and conclusions

This paper demonstrates for the first time that

there is sufficient information in the dynamical

time signature of gait to be able to recognise

people with a high accuracy (75%). It is clear that
we have discarded much information that might be

useful in recognition so that, in this respect, we

have under estimated the potential for gait. On the

other hand, the information that we have dis-

carded gives as a high degree of invariance that

makes our system robust to superficial changes

(e.g. lighting conditions, distance from camera,

clothing and walking speed). Of course, the tests
used a highly controlled database and we would

not expect the same performance on real world

data without spending much more effort in pre-

processing the images.

The area-based metrics are very simple to

compute and consequently very fast, which gives

them a significant advantage over many other gait

recognition techniques such as Huang et al.
(1999a) and Murase and Sakai (1996). As such it is

a fast baseline metric for analysing moving shapes
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with specificity to the target application. This is

advantageous, as the amount of data that needs to

be processed is typically huge. It would be feasible

to build a real time system using area-based met-

rics. The most demanding step would be silhouette

extraction. Given the silhouettes the other steps
required to perform recognition using area-based

metrics are easily automated.

There still remain a large number of open

questions. These include how the recognition rate

behaves when the angle of the walker relative to

the camera varies and when the walker changes

clothes. New databases are currently being devel-

oped to address these issues.
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Appendix A. Canonical analysis

Canonical analysis (also known as linear dis-

criminant analysis) is a procedure for finding a

low-dimensional subspace which gives a high dis-

crimination between classes of data. It differs from

principal component analysis in that it uses
knowledge of the correct classification of the data

points. It is therefore a supervised as opposed to

an unsupervised learning algorithm. We assume

that we have a set of classes C and for each class

c 2 C we have a set of instances yc consisting of

vectors ycðiÞ, where i labels the instances. The class
means are given by

lc ¼
1

jycj
X
i2yc

ycðiÞ

While the mean of all the data is

l ¼ 1

jCj
X
c2C

lc

The covariance within a class c is given by

Vc ¼
1

jycj � 1

X
i2yc

ðycðiÞ � lcÞðycðiÞ � lcÞ
T

where we divide by jycj � 1 to obtain an unbiased

estimate for the covariance. The average within-

class covariance is equal to

W ¼ 1

jCj
X
c2C

Vc

The between-class covariance is given by

B ¼ 1

jCj � 1

X
c2C

ðlc � lÞðlc � lÞT

We now wish to find set of orthogonal direc-
tions, zi, that give a high variance between classes

and a low within class variance. To achieve this

we define the discriminant function

JðzÞ ¼ zTBz
zTWz

The set of vectors which extremise JðzÞ are found

by setting its gradient to zero

rJðzÞ ¼ 1

zTWz
ðBz� JðzÞWzÞ ¼ 0

The extremal vectors, zi, therefore satisfy the gener-
alised eigenvalue equation

Bzi ¼ kiWzi

where ki ¼ JðziÞ. The solution of the eigenvalue
equation with the largest eigenvalues (i.e. the

largest JðziÞ) are those that separate the classes

most effectively. For a complete description on the

practicalities of implementing canonical analysis

see (Swets and Weng, 1996).

Canonical analysis reduces the dimensionality

of the data. This can improve the generalisation

performance of a classifier system if we have too
little data.
References

BenAbdelkader, C., Cutting, J., Davis, L., 2002a. Motion-

based recognition of people in eigen gait space. In: Proc. 5th

IEEE Face Gesture Recognition, pp. 378–384.

BenAbdelkader, C., Cutting, J., Davis, L., 2002b. Stride and

cadence as a biometric in automatic person identification.

In: Proc. IEEE Face Gesture Recognition, pp. 372–378.

Collins, R., Gross, R., Shi, J., 2002. Silhouette-based human

identification from body shape and gait. In: Proc. 5th IEEE

Face Gesture Recognition, pp. 366–371.

Cunado, D., Nixon, M.S., Carter, J.N., 1999a. Automatic gait

recognition via model-based evidence gathering. In: Proc.



J.P. Foster et al. / Pattern Recognition Letters 24 (2003) 2489–2497 2497
AutoID99: IEEE Workshop on Automated ID Technol.,

pp. 27–30.

Cunado, D., Nash, J.M., Nixon, M.S., Carter, J.N. 1999b. Gait

extraction and description by evidence-gathering. In: Proc.

Audio Video-based Biometric Person Authentication,

pp. 43–48.

Cutting, J.T., Proffitt, D.R., Kozlowski, L.T., 1978. A biome-

chanical invariant for gait perception. J. Exper. Psychol.:

Human Percept. Perform., 357–372.

DeGroot, M., Schervish, M., 2001. Probability and Statistics,

third ed. Addison Wesley, MA.

Fisher, R.A., 1938. The statistical utilization of multiple

measurements. Ann. Eugen. 8, 376–386.

Foster, J.P., Nixon, M.S., Prugel-Bennett A., 2001a. New area-

based measures for gait recognition. In: Proc. Audio–video-

based Biometric Person Authentication, pp. 312–317.

Foster, J., Nixon, M., Prugel-Bennett, A. 2001b. New area

based metrics for automatic gait recognition. In: Proc.

British Machine Vision Conf. 2001, pp. 233–242.

Fukunaga, K., 1990. Introduction to Statistical Pattern Rec-

ognition, second ed. Academic Press, New York.

Hayfron-Acquah, J.B., Nixon, M.S., Carter, J.N. 2001. Rec-

ognising human and animal movement by symmetry. In:

Proc. IEEE Internat. Conf. on Image Process., pp. 290–293.

Huang, P.S., Harris, C.J., Nixon, M.S., 1999a. Recognising

humans by gait via parametric canonical space. Artif. Intell.

Eng. 13, 359–366.

Huang, P.S., Harris, C.J., Nixon, M.S., 1999b. Human gait

recognition in canonical space using temporal template.

IEEE Proc. Vision Image Signal Process. 146, 93–100.

Johansson, G., 1973. Visual perception of biological motion and

a model for its analysis. Percept. Psychophys. 14, 201–211.
Kozlowski, L.T., Cutting, J.E., 1977. Recognizing the sex

of a walker from a dynamic point-light display. Percept.

Psychophys. 21, 575–580.

Little, J.J., Boyd, J.E., 1998. Recognising people by their gait:

The shape of motion. Videre, Internat. J. Comput. Vision

14, 83–105.

Mather, G., Murdoch, L., 1994. Gender discrimination in

biological motion displays based on dynamic cues. Proc.

Roy. Soc., 273–279.

Murase, H., Sakai, R., 1996. Moving object recognition in

eigenspace representation: Gait analysis and lip reading.

Pattern Recognition Lett. 17, 155–162.

Niyogi, S.A., Adelson, E.H., 1994. Analyzing and recognizing

walking figures in XYT. Proc. Comput. Vision Pattern

Recognition, 469–474.

Phillips, P.J., Sarkar, S., Robledo, I., Grother, P., Bowyer, K.

2002. Baseline results for the challenge problem of human

ID using gait analysis. In: Proc. 5th Automat. Face Gesture

Recognition, pp. 137–143.

Sadeghi, H., Allard, P., Prince, F., Labelle, H., 2000. Symmetry

and limb dominance in able bodied gait: A review. Gait

Posture 12, 34–45.

Shutler, J.D., Grant, M.G., Nixon, M.S., Carter, J.N., 2002. On

a large sequence-based human gait database. In: Proc. 4th

Internat. Conf. on Recent Advances in Soft Computing,

Nottingham, UK (accepted).

Swets, D.L., Weng, J.J., 1996. Using discriminant eigenfeatures

for image retrieval. IEEE Trans. Pattern Anal. Machine

Intell. 18, 831–836.

Yam, C.-Y., Nixon, M.S., Carter, J.N., 2002. Gait recognition

by walking and running: A model-based approach. In: Proc.

5th Asian Conf. Comput. Vision, pp. 1–6.


	Automatic gait recognition using area-based metrics
	Introduction
	Extracting an area dynamic signature
	Results
	Person identification
	Combining area masks to increase performance
	Using only the temporal components
	Is gait symmetric?
	Gender classification

	Discussion and conclusions
	Acknowledgements
	Canonical analysis
	References


