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Abstract
In open environments in which autonomous agents
can break contracts, computational models of trust
have an important role to play in determining who
to interact with and how interactions unfold. To this
end, we develop such a trust model, based on confi-
dence and reputation, and show how it can be con-
cretely applied, using fuzzy sets, to guide agents in
evaluating past interactions and in establishing new
contracts with one another.

1 Introduction
Agents generally interact by making commitments to (con-
tracts with) one another to carry out particular tasks. How-
ever, in most realistic environments there is no guarantee that
a contracted agent will actually enact its commitments (be-
cause it may defect to gain higher utility or because there is
uncertainty about whether the task can actually be achieved).
In such situations, computational models of trust (here de-
fined as the positive expectation that an interaction part-
ner will act benignly and cooperatively in situations where
defecting would prove more profitable to itself[Dasgupta,
1998]) have an important role to play. First, to help deter-
mine the most reliable interaction partner (i.e. those in which
the agent has the highest trust). Second, to influence the inter-
action process itself (e.g. an agent’s negotiation stance may
vary according to the opponent’s trust level). Third, to define
the set of issues that need to be settled in the contract (i.e.
the higher the trust, the more that can be left implicit in the
contract).

Generally speaking, interactions go through three main
phases; (i) a negotiation dialogue during which the terms of
the contract are agreed upon and agents assign an expected
utility to the contract, (ii) an execution phase during which
there are opportunities for the contracted agent to defect, and
(iii) an outcome evaluation phase where the client agent as-
sesses the outcome of the task and finally derives some util-
ity. In the cases where an agent has an incentive to defect,
the client agent can judge whether the contractor is trustwor-
thy by assessing its performance, relative to the initially con-
tracted agreement, given itsperception of the prevailing task
and the context. Thus, the trust value for a specific agent for
a specific task needs to take into account the potential utility
loss or risk (associated with the task in question) in a contract
given information about the context in which the contract is

enacted[Marsh, 1994]. This follows from the fact that coop-
erating under high potential losses shows greater trustworthi-
ness than otherwise[Yamagishiet al., 1998].

Trust values, thus devised, can guide future contract nego-
tiation in order to ensure that guarantees are provided against
losses. Thus, if trust is sufficiently high, the contracted agent
is deemed reliable. This means less time can be spent looking
for potential contractors, negotiating about the minute guar-
antees present in the contract and, accordingly, giving more
freedom to the contracted agent to enact its part of the deal.
Conversely, when trust is low, the agents may spend a signifi-
cant time specifying the guarantees associated with a contract
or, if possible, avoiding future interactions with such agents.

Given this background, a number of computational models
of trust have been developed (mainly based on theories from
sociology). In[Marsh, 1994] for example, trust is taken to
be a value between -1 and 1 that is calculated by taking into
account risk in the interaction and the competence level of
an interaction partner. However, these concepts are not given
any precise grounding and they do not take into account past
experience and reputation values of the contracted agent. In
[Sabater and Sierra, 2002], reputation symbolises trust and
competence levels are gathered from the social network in
which the agents are embedded. The main value of this model
lies in showing how reputation can be used to guide an agent’s
negotiation stance, but the evaluation of direct interactions is
overly simple (disregarding utility loss and context).[Mui et
al., 2002] adopt a probabilistic approach to modelling trust
that takes into account past encounters as well as reputation
information. However, it is not obvious how the model can
concretely guide an agent’s decision making since the trust
value is not associated to particular issues of the contracts that
have been reneged upon. In a more realistic setting, Witowski
et al. develop an objective trust measure from an evaluation
of past performance[Witowski et al., 2001]. However, their
approach overly simplifies the trust modelling problem and
avoids reputation measures which could have enhanced the
performance of their agents.

In general, extant trust models fail to capture the individu-
ality of an agent in assessing the reliability of an interaction
partner. Most models also neglect the fact that agents inter-
act according to the norms and conventions determined by the
society or environment within which they are situated[Esteva
et al., 2001]. To this end, this paper develops a computational
model of trust that rectifies these shortcomings.



By taking into account its past experience (from direct in-
teractions) and information gathered from other agents (in-
direct interactions), an agent can build up beliefs about how
trustworthy a contracted agent is likely to be in meeting the
expected outcomes of particular contract issues (e.g. deliv-
ering goods on time or delivering high quality goods). In
this respect, we conceive of two ways of assessing trustwor-
thiness: (i)Confidencederived (mainly) from analysing the
result of previous interactions with that agent, and (ii)Rep-
utation acquired from the experiences of other agents in the
community through gossip or by analysing signals sent by an
agent. Both measure the same property; that is, the agent’s
believed reliability in doing what it says it will regarding par-
ticular issues of a contract. Here these measures are modelled
using fuzzy sets to give agents a robust means of assessing the
extent to which their interaction partners satisfy the issues of
a contract. In particular, we advance the state of the art in
the following ways. First, we delineate and computationally
model context information, confidence measures, and risk in
agent interactions. Second, we show how, using fuzzy sets, a
measure of trust can be derived from the latter concepts and
reputation information. Finally, we show how the trust mea-
sure can guide the choice of interaction parties, the stance
that is taken during negotiation, and the issues that need to be
agreed upon in a contract. The rest of the paper is organised
as follows. Section 2 introduces the basic notions that we use
throughout the paper, while section 3 shows how we devise a
confidence measure. Section 4 details the trust model itself.
Section 5 indicates how the model can be used and section 6
concludes.

2 Basic Notions
Let Ag be the society of agents noted asα, β, ... ∈ Ag. A
particular group of agents is noted asG ⊆ Ag. G denotes a
partition{G1, G2, . . . , Gl} of the society of agents into non-
empty groups. That is, for allGi, Gj ∈ G, Gi ∩ Gj = Ø,⋃

i Gi = Ag. Therefore, any agent belongs to one and only
one group. T denotes a totally ordered set of time points
(sufficiently large to account for all agent interactions) noted
as t0, t1, . . ., such thatti > tj if and only if i > j. Con-
tracts are agreements about issues and the values these issues
should have. LetX = {x, y, z, . . .} be the set of poten-
tial issues to include in a contract, and the domain of val-
ues taken by an issuex, be noted asDx (for simplicity we
assume that allDx are a subset of real numbersR). We
will note that issuex takes the valuev ∈ Dx as x = v.
Thus, a contract is a set of issue-value assignments noted as
O = {x1 = v1, x2 = v2, ..., xn = vn} wherexi ∈ X
andvi ∈ Dxi

. We consider that agents invariably interact
within an electronic institution[Estevaet al., 2001] which
specifies norms and conventions of interactions and dictates
(some) issue-value assignments of contracts (see section 2.1).
From now on, we will refer to the agent devising the contract
as themanagerand the contracted agent as thecontractor.
2.1 Rules Dictating Expected Issue Assignments
We now consider how expectations aboutX are built based
upon the agreed contract and the social setting. Here, the
former provides a clear statement of what is expected with
respect to each issue, while the latter may also give rise to
expectations but these are not explicitly stated in the contract
itself. For example, a buyer agentα might expect seller agent

β to deliver goods nicely wrapped up in gift paper as opposed
to in a carton box. This clause may not have been specified in
the contract as it is a common belief in the client’s group that
goods must be nicely wrapped up.

Thus, at execution time, the contractor may not satisfy the
manager’s (contracted or not) expectations because (i) it is
not able to meet the expectations, (ii) it is not willing to meet
the expectations, or (iii) it is not aware of the unspecified ex-
pectations. In any case, the non-satisfaction of expectations
directly impacts on the trust the client has in the contractor
[Molm et al., 2000] (unless a satisfactory reason is given for
poor performance, but this is not considered here).

Here we consider three basic sources of unspecified expec-
tations: (i)General rulesthat all agents in the society possess
in common, (ii)Social rulesthat all agents within a particu-
lar group have in common, and (iii)Institutional normsthat
all agents interacting within a particular electronic institution
have in common. This classification is necessary when we
evaluate the performance of a contracted agent (see section
3). In more detail, rules allow an agent to infer expected
issue-value assignments from a contract. Rules will be writ-
ten in the following logical-like expressions:

If x1 = v1 ∧ x2 = v2 ∧ ... ∧ xm = vm Then x = v

meaning that if(xi = vi) ∈ O for all i = 1, . . . ,m, then issue
x’s value is expected to be equal tov. We assume thatx is not
appearing in the premise of the rule. We note byRules the
set of all possible rules written using the above syntax1 over
the setX of issues and corresponding domains of values.

GroupG’s social rules, noted asSocRules(G) ⊆ Rules,
are those shared by all agents inG. General rules, noted
GenRules ⊆ Rules, are those shared by all agents. In-
stitutional norms, noted asInstNorms ⊆ Rules, specify
those rules that are enforced by the institution within which
the (negotiating) agents interact. These norms are accepted
by the agents involved in the negotiation process.

Given a contractO, we can devise the set of all of a
manager’s expectations (unspecified and specified), such that,
given a managerα ∈ G, we compute the setOexp of ex-
pected issue-value assignments fromO as the set of all con-
clusions of the rules of agentα, Rules(α) = GenRules ∪
SocRules(G) ∪ InstNorms, that have their premise satis-
fied by the equalities in the contractO. The complete ex-
panded contract is therefore defined asO+ = O ∪Oexp. For
each issue therein, the manager will have a confidence that
the expected values will actually be met.

2.2 Confidence
In measuring confidence in an issue, different managers may
have different opinions of the reliability of a particular con-
tractor. We initially consider trustworthiness on a per issue
basis given that agents may be more reliable in satisfying
some issues than others. These measures of satisfaction on
contractors’ behaviours are not strictly probabilistic in nature
(since they cannot be analysed just in terms of frequency of
occurrence), but may depend on the individual view of the
agent as well. We therefore choose a fuzzy set based approach
to relate confidence levels with expected values for issues.

1Richer syntaxes could also be thought of for premises in these
rules, allowing for predicates like≥,≤, 6=.



In our approach we assume that agents share a (small)
setL = {L1, L2, . . . , Lk} of linguistic labels to qualify the
performance of a contractor on each issue. For instance,
L = {Bad,Average, Good}. These labels model the agent’s
view on thepossible(approximate) deviations from the con-
tractually signed values. For example, “good” for agentα
may mean that contractorβ delivers articles on time or that
it will actually give a discount on the initially quoted price,
but for agentγ, it means thatβ will deliver articles before the
quoted time of delivery or thatβ will not overprice its article.

A managerα assigns a confidence level to each labelL
when modeling the performance of a contractorβ over a par-
ticular issuex, noted asC(β, x, L) ∈ [0, 1] (we will not in-
clude the agent identifiers to simplify notation when the con-
text permits). Intuitively, this models the manager’s belief
that the deviation of the contractor on that issue will be within
the possible values determined by that label. For instance, a
manager may express his belief that a contractor is “good” to
a confidence level 0.8 in fulfilling the contractual values on
price, “average” to a level of 0.4, and “bad” to a level of 0.

For each issuex, a manager defines the meaning of each
label L by a fuzzy set overR as if 0 were the contractual
value for the issue, and whose membership function is noted
asµx

L : R → [0, 1]. And now, given an issue-value assign-
ment in a contract,(x = v) ∈ O, the actual meaning of the
label L with respect tox in the contract is represented by a
new fuzzy set noted asL∗ which is the shift ofL by v, and
whose membership function isµx

L∗(u) = µx
L(u − v), where

u ∈ R. From this, we can compute the set ofexpectedvalues
determined by a confidence levelC(x, L) on a labelL for
issuex in contractO, noted asEVc(O, x, L), as those val-
ues whose membership degree toL∗ is above the confidence
level. That is,

EVc(O, x, L) = {u | µx
L∗(u) ≥ C(x, L)} .

This is graphically2 shown in figure 1. To illustrate the above
concept, consider the following example; a manager is confi-
dent to the degree of 0.9 that the contractor delivers goods “on
time” if the goods arrive 1 day late (or 1 day earlier). How-
ever, if the confidence in being “on time” is 0.5 (i.e. the un-
certainty is larger), it might expect the goods to arrive 3 days
late (or 3 days earlier). Finally, having devised confidence
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Figure 1: Confidence in a labelL of an issuex.

values for each label of an issue, a manager can compute the
set of expected values for that issue as the intersection of the
expected values for each label. That is,

EVc(O, x) =
⋂

L∈L
EVc(O, x, L) (1)

In this context, an assignment of confidence values to labels
in L is said to be consistent ifEVc(O, x) 6= Ø. This means

2The shape of the membership function given only serves as an
example. Arbitrarily complex functions can be used in reality.

that the manager always has a non empty set of expected val-
ues for an issue given its confidence values in different labels.

2.3 Reputation
Several models of reputation have been developed to illustrate
how the transmission of (confidence) measures of reliability
can be done[Yu and Singh, 2000; Sabater and Sierra, 2002].
Therefore, here we do not consider how this reputation in-
formation is gathered (and aggregated) from the other agents
in the society. Rather, we assume this information is simply
available from a social network that structures the knowledge
that each agent has of its neighbours and keeps track of past
interactions (as per[Sabater and Sierra, 2002]). Hence, we
assume that a functionRep : Ag × X × L → [0, 1] ex-
ists whereRep(β, x, L) represents the reputation degree of
agentβ with respect to the qualifying labelL over issuex.
(The name of the contractor will be omitted when the con-
text unambiguously determines it.) The meaning of reputa-
tion here is an aggregation of opinions (confidence values in
the previous sense) of some or all agents inAg about one
of them over a particular issue. Therefore, we can use rep-
utation values in a similar way as before to compute the ex-
pected values for an issuex in a contractO, and labelL as
EVr(O, x, L) = {u | µx

L∗(u) ≥ Rep(x, L)} And, also simi-
larly:

EVr(O, x) =
⋂

L∈L
EVr(O, x, L) . (2)

We initially assume that the assignment of reputation values
for all labels are consistent such thatEVr(O, x, L) 6= Ø. This
means that the manager always has a non-empty set of ex-
pected values for an issue given its reputation values in dif-
ferent labels.

2.4 Combined Range of Expected Values
Using just confidence levels or just reputation values to com-
pute the set of expected values for a given issuex can be
useful in certain extreme contexts (e.g. when the contractor
does not rely at all on societal information, or when it has no
other choice than to fully rely on it). However, in most sit-
uations, we consider that both sources of information should
be taken into account in order to come up with a sensible set
of expected values, applicable not only in the above two con-
texts but also to intermediate situations. In these situations
we may want to consider a combination of both measures
CR : Ag ×X × L → [0, 1], which is, in the simplest case, a
weighted average of both kinds of degrees (as in the previous
cases we omit references to the agent whenever possible):

CR(x, L) = κ · C(x, L) + (1− κ) ·Rep(x, L), (3)

whereκ and1− κ are suitable weightings that aim to model
the relative importance of both information sources. This fi-
nal range is computed as in the previous cases by first com-
puting the expected values for an issuex and labelL as
EVcr(O, x, L) = {u | µx

L∗(u) ≥ CR(x, L)}, and then the
intersection of the expected ranges for all the labelsL ∈ L:

EVcr(O, x) =
⋂

L∈L
EVcr(O, x, L) . (4)

We shall return to the issue of the weights in section 4, where
we illustrate how reputation and confidence values ultimately



lead us to devising actual trust values. However, the calcula-
tion of confidence (and indirectly trust) needs to take into ac-
count the context within which interactions take place since
it is the context that determines the risk associated with each
interaction.

3 Computing Confidence and Context
3.1 Interaction Context
Context, by definition, is the setting in which an interaction
between a manager and a contractor takes place. Generally
speaking, a setting can cover anything that relates to the in-
teraction, but here we restrict3 it to the rules that apply to
the contract being negotiated (section 2.1) together with the
agent’s previous interaction experience.

In more detail, institutional norms and general rules are
shared rules that form the objective context, while the sub-
jective context is formed by the social rules of the group to
which the managerα belongs and its interaction history with
a given contractorβ. Rules were defined in section 2.1 and
history can be understood as the set of precedent cases. Each
manager agent is assumed to have a utility function (applying
over the domain of values) defined asUx : Dx → [0, 1] for
each issuex. Utility values will be used as a common scale
to compare and aggregate information from past cases.

Given that each interaction takes place through a con-
tract, each case records information about the initially agreed
upon issue-value pairs of a contractO, the actual results af-
ter execution,O′, the confidence levels ofα on the contrac-
tor agentβ, {C(β, x, L)}L∈L, the reputation degrees ofβ,
{Rep(β, x, L)}L∈L, and the time,t, at which the contract
was executed. Thus each case is represented as a tuple:

case = 〈O,O′, {C(β, x, L)}L∈L, {Rep(β, x, L)}L∈L, t〉
and the history of interactions as a case baseCB =
{case1, case2, . . .}.

Given the case base, the set of utility functions for each
issue in the contract, and the set of rules that apply to the
interaction between the agentsα andβ, α’s context within
which a new contract is executed is represented as the set:

Σα,β = 〈CB, {Ux}x∈X , Rules(α)〉.
This context is dynamic since rules or cases can be added or
removed over time (and/or utilities change).

3.2 Utility loss and confidence
From the context we can now infer the probability of a con-
tractor defecting (hence causing some utility loss) from a pro-
posed contract given the rules that apply to it. If, for example,
most interaction partners are known to have defected many
times in the previous contracts relating to the same issues be-
ing negotiated in a new contract, we can reasonably assume
that there is a high probability that the agent chosen will de-
fect again in future interactions. Conversely, if the interac-
tions have been successful or more profitable than expected,
there is low probability of making a loss.

Therefore, given a contextΣα,β and a current agreed con-
tract O, for each issuex in O, we can estimate, from the
history of past interactions, a probabilistic distributionP of

3We believe these are necessary rather than sufficient features
and future work will investigate exactly what other characteristics
could usefully be incorporated.

α’s utility variation ∆Ux ∈ [−1, 1] (negative or positive)
relative to issuex. Values of∆Ux correspond to the possi-
ble differences between the utilityUx(v) of the agreed value
(x = v) ∈ O and the utilityUx(v′) of the (unknown) final
value(x = v′) in the executed contractO

′
. Then we can say

that the manager agentα has a certainrisk with issuex when
it estimates thatP (∆Ux < 0) > 0. Of course, the higher
this probability is, the higher the risk is (i.e. the higher the
expected utility loss).

Therefore, we need to estimate the probability distribution4

of ∆Ux, not only for those issuesx appearing inO, but also
on the expanded contractO

+
= O ∪ Oexp resulting from

the application of the rules in the current context (see section
2.1). We have to do so analogously with the contracts in the
precedent cases of the case baseCB of the context. However,
if we assume that the agreed contract is signed such that the
norms of the institutionInstNorms under which the agents
are operating are fully enforced (i.e. punishments are given
for not acting by the norms), then the risk is zero5 for those
issue-value assignments insured by institutional norms, even
though the inference from previous interactions could suggest
that the agent would defect. We then remove all these insured
issues from the analysis.

Now, assume we have a probability distributionP for
∆Ux, and letx = v be the signed issue value according to
the contractO

+
. This allows us to compute confidence lev-

els C(x, L) for eachL ∈ L. In order to determine confi-
dence levelsC(x, L) we initially need to determine a signifi-
cantly representative interval[δ1, δ2] for ∆Ux (e.g. such that
P (∆Ux ∈ [δ1, δ2]) = 0.95). The latter denotes the change
of utility interval which determines (under reasonable condi-
tions) an interval of issue values around the agreed valuev for
x, [v−, v+] = {U−1

x (δ + u) | δ ∈ [δ1, δ2], 0 ≤ δ + u ≤ 1},
whereu = Ux(v). The interval[v−, v+] is actually the range
where agentα can expect (with high probability) to find the
final value for issuex.

Finally, to calculate confidence levelsC(x, L) for each la-
belL ∈ L, we want the interval[v−, v+] to coincide with the
set of expected valuesEV (O, x) as computed in section 2.2.
Therefore the solution amounts to devising an inverse proce-
dure to that of section 2.2 to come up with appropriate values
C(x, L) for eachL ∈ L such that

[v−, v+] =
⋂

L∈L
{u ∈ Dx | µx

L∗(u) ≥ C(x, L)} (5)

The confidence values are updated whenever the ranges they
define do not cover the range determined through the pro-
cedure above. The following example illustrates the above
method. Assume an agentα hasP (∆Ux ∈ [−0.3,+0.1]) =
0.95 and that a valuev = 100 has been proposed for an is-
suex. Also, α hasUx(v) = 0.4. Therefore, it can expect
v− = U−1

x (0.4 − 0.3) andv+ = U−1
x (0.4 + 0.1). Suppose

v− = 75 andv+ = 105. This range determines the con-

4Several methods can be used to estimate these probability dis-
tributions, but the way the probability model is derived is not central
to the trust model we wish to devise.

5This assumes that the institution fully insures against any losses.
This assumption could be removed and a risk level determined ac-
cording to the institutional rules as well.



fidence level in the issue by having the confidence in each
label cover as much of the range[75, 105] as possible.

4 The Trust Model
As argued in section 1, there are two sources of information
that permit an agent to build trust: confidence and reputation.
We can therefore imagine three ways of defining trust (we
consider the third one as the most appropriate):

1. Trust = Confidence
In this case only the direct interaction is considered as
a valuable source of information about the performance
of another agent. The manager’s first contract will be
subject to total uncertainty and only after the number of
interactions is significant will this way of defining trust
start to work effectively. In cases where the trust in most
agents of the society is low, this measure may be valid
since the agent may not believe the opinions gathered
to build a reputation value (e.g. due to known collusion
among contractors and other managers).

Given an issue-value assignment,x = v, present
in a proposed contract, agentα’s confidence levels
{C(β, x, L)}L∈L can be used (as shown in section 2.2)
to determine the intervalEVc(O, x) of expected values
at the time of the contract execution. Therefore, the
overall trust on issuex is defined through an inverse rela-
tion to the maximum utility loss when the value of issue
x is varied on the intervalEVc(O, x). In effect, if we let
∆c

loss = sup{Ux(v)−Ux(w) | w ∈ EVc(O, x)} (sup is
the least upper bound of the set), then we simply define
the trust of the managerα in the contractorβ over issue
x as:

T c(β, x) = min(1, 1−∆c
loss) (6)

2. Trust = Reputation
Using confidence on its own, the trust in an agent be-
comes a useful measure only when there are a suffi-
ciently large number of interactions. However, when
the encounters have been scarce at the time of signing
a contract, reputation information may be more useful
[Mui et al., 2002; Sabater and Sierra, 2002]. This is
the usual case; when an agent first joins a society and
decides to interact with its members, the only meaning-
ful information it can have about the others’ behaviour
is their reputation, since it has not signed any contracts
yet. Similar to the previous case, where trust = con-
fidence, we can use the rangeEVr(O, x) to compute
∆r

loss = sup{Ux(v) − Ux(w) | w ∈ EVr(O, x)} in
order to define a trust value as:

T r(β, x) = min(1, 1−∆r
loss) (7)

3. Trust = Confidence and Reputation
As already mentioned in section 2.4, in most situations
we believe it is preferable to consider both confidence
and reputation. The rationale is that as the agent in-
teracts with another agent more (and more), it will put
correspondingly greater reliance on its personal confi-
dence measures rather than reputation values (since per-
sonal interactions are deemed to be more accurate than
information gathered from other agents, which might
be subject to noise). Therefore, in our trust model
we use the combined degrees{CR(x, v, L)}L∈L, as

given by equation 3, to define the interval of expected
valuesEVcr(O, x), that provides us with a maximum
loss in utility ∆cr

loss = sup{Ux(v) − Ux(w) | w ∈
EVcr(O, x)}. Then, similarly to the previous two cases,
we can define the overall trust on agentβ over issuex
as:

T (β, x) = min(1, 1−∆cr
loss) (8)

The weightκ in equation 3 should reflect the number
of past interactions betweenα andβ. Therefore, given
a contextΣα,β = 〈CB, {Ux}x∈X , Rules(α)〉, here we
propose to defineκ asκ = max(1, |CB|/θmin), where
|CB| is the number of interactions in the context of both
agents andθmin is the minimum number of interactions
above which only the direct interaction is taken into ac-
count (other types of functions could be used as well).

Our three definitions (especially the last one) take trust to be
a dynamic and rational concept relating past experience and
reputation to newly contracted values (i.e. depending on the
situation[Marsh, 1994; Molmet al., 2000]).

Depending on the environment, a specific definition of trust
will be chosen. In any case, we can now define the trust
T (β, X ′) of the manager agentα on a contractor agentβ over
a particular setX ′ = {x1, ..., xk} of issues appearing in the

contractO (or in the expanded oneO
+

) as an aggregation
of the trust in each individual issue (e.g. trust in delivering
on time, paying on time and the product having the quality
specified in the contract). That is, we postulate

T (β, X ′) = g(T (β, x1), ..., T (β, xk)) (9)

whereg : [0, 1]k → [0, 1] is asuitableaggregation function6.
If some issues are considered to be more important than oth-
ers, the aggregation function should take this into consider-
ation, for instance by means of different weights7 given for
each issuexi ∈ X ′ where some are considered to be more
important than others. A typical choice would be to take the
aggregation8 function as a weighted mean:

T (β, X ′) =
∑

xi∈X′

wi · T (β, xi) (10)

where
∑

wi = 1 and0 ≤ wi ≤ 1.

5 Using the Trust Model
The trust model we have built is not meant to stand by itself.
Therefore, in this section we illustrate how our model can
be effectively used to guide negotiations and aid agents in
forming profitable groups.
5.1 Choosing Interaction Partners
When an agent, sayα, has a particular task to contract for, it
will decide on the issues to be negotiated and identify possi-
ble interaction partners, say{β1, β2, ..., βp} ⊆ Ag. For each
agent in this set, we can calculate the trust value for each is-
sue (as per equations 6, 7, or 8) and aggregate those to give

6Generally, an aggregation function is defined as a mono-
tonic function such thatmin(u1, ..., uk) ≤ g(u1, ..., uk) ≤
max(u1, ..., uk) (see[Calvoet al., 2002] for a survey).

7Most aggregation operators are defined parametrically with re-
spect to weights assigned to each component to be aggregated.

8More sophisticated aggregation models (based, for example, on
different Lebesgue, Choquet, or Sugeno integrals) could also be used
[Calvoet al., 2002] .



a general trust value for each agent (using equation 9). That
is, T (β1, X

′), T (β2, X
′)...T (βp, X

′), whereX ′ ⊆ X is the
set of issues under consideration. Trust can thus provide an
ordering of the agents in terms of their overall reliability for
a proposed contract. The client agent can then easily choose
the preferred agent or set of agents it would want to negotiate
with (i.e. by choosing the most trustworthy one(s)).
5.2 Redefining Negotiation Intervals
At contracting time, issue-value assignments,x = v, are
agreed upon. Agents accept values that lie within a range
[vmin, vmax], such thatUx(vmin) > 0 andUx(vmax) > 0.
This interval is the acceptable range which it uses to offer
and counter offer (according to a strategy) during negotia-
tion [Jenningset al., 2001]. On the other hand, given a po-
tential issue-value assignmentx = v in an offer, an agent
can compute, as shown in section 2, an interval of expected
valuesEV (O, x) = [ev−, ev+] over which the valuev′ ob-
tained after execution can vary (as shown in equations 1, 2 or
4). This range defines the uncertainty in the value of the is-
sue and if the acceptable range[ev−, ev+] does not fit within
[vmin, vmax], there exists the possibility that the final value
lies outside the acceptable region.

Therefore, the agent can restrict the negotiation inter-
val, [vmin, vmax] with respect to the set of expected values,
[ev−, ev+] as shown below. We first define the set of possible
contracts,Ōx, that are consistent with the expected values of
x and then define the corrected values forvmin andvmax:

Ōx = {O|(x = v) ∈ O,EV (O, x) ⊆ [vmin, vmax]}
v′min = inf{v|x = v ∈ O,O ∈ Ōx}
v′max = sup{v|x = v ∈ O,O ∈ Ōx}

This will shrink or extend the range of negotiated values (i.e.
[vmin, vmax] to [v′min, v′max]) to ensure that the final outcome
fits within the range[v′min, v′max] (depending on the utility
obtained by the agent due to high or low values of the issue
x, it can decide to stick to one of the two limits defined in
[vmin, vmax]. On the one hand, this can help the agent reduce
the time to negotiate over the value of each issue (e.g. if the
range is small, the number of offers possible is also small),
while on the other hand, the manager can make better deci-
sions in parallel with the negotiation (e.g. if the contractor is
expected to deliver 1 day late rather than in the agreed 3 days,
the manager can instead agree on 4 days and adjust its other
tasks to fit with the new delivery date). The above operation
can also allow the agent to achieve better deals (e.g. if the
redefined range specifies high utility values of the issue the
negotiation strategy, can be adjusted in order to concede less
than it would otherwise).
5.3 Extending the Set of Negotiable Issues
Initially we argued that higher trust should reduce the nego-
tiation dialogue and lower trust should increase the number
of issues negotiated over. In this section we deal with this
particular use of trust in defining the issues that need to be
negotiated over. To this end, issues not explicitly included in
a contract may receive an expected value through one of the
rules mentioned before:

r : If x1 = v1 ∧ x2 = v2 ∧ ... ∧ xm = vm Then x = v

Thus, if the premise of such a rule is true in a contract, the
issuex is expected to have the valuev. In case the trust in the

agent fulfilling the premises is not very high, it would mean
that the valuesv1, v2, ..., vn may not be eventually satisfied.
In such a case, to ensure that the issuex actually receives
valuev it should be added to the negotiated terms of the con-
tract. Formally, this means that ifT (β, Xr) < threshold,
(T (β, Xr) defined as per equation 9), and whereXr is the
set of issues in the premise of ruler, then the issuex in the
conclusion of the rule should be added to the set of contract
terms. On the other hand, as an agent becomes more confi-
dent that its interaction partner is actually performing well on
the issues in the contract, it might eventually be pointless ne-
gotiating on the issue if the premises of the issue pre-suppose
that the value expected will actually be obtained. This is, if
T (β, Xr) > threshold, then the issuex in the conclusion of
the rule can be removed from the set of contract terms.

The two processes described above serve to expand and
shrink the space of negotiation issues. For a new entrant
to the system, for example, the trust value others have in it
would probably be very low and hence the number of issues
negotiated over will be large. But, as it acquires the trust of
others, the number of issues it would need to negotiate will
go down. Ultimately, with more trust, the set of negotiable
issues can thus be reduced to a minimal set, affording shorter
negotiation dialogues. Conversely, with less trust, the nego-
tiable issues expand, trading off the length of dialogues with
better expected utility than otherwise.

6 Conclusions and Future Work
In this paper we have described the necessary components to
build up a concrete computational trust model based on di-
rect and indirect multi-agent interactions. We have instanti-
ated context, risk and confidence values using rules that apply
over the issues negotiated in a contract. From these compo-
nents a measure of trust has been proposed. Moreover, we
have shown the worth of our model by describing how it can
directly guide an agent’s decisions in (i) choosing interaction
partners, (ii) devising the set of negotiable issues, and (iii)
determining negotiation intervals. The latter enable an agent
to reduce time spent in negotiation dialogues, choose more
reliable contractors and adapt the negotiation strategy to each
contractor. These are not possible using current trust mod-
els. However, Due to time limitations, it was not possible to
simulate the use of the model in such a context and show the
results.

Future work will focus on studying and refining the prop-
erties of the model for both cooperative and competitive set-
tings through simulations. Also, we aim to enhance the con-
text model to define more attributes of interactions (including
network topology and task complexity). The trust measure
will be made more sensitive to the stance taken by an op-
ponent during the negotiation dialogue (e.g. if the opponent
provided arguments backing its reliability). The variableκ
will take into consideration such aspects. We will also con-
sider in what respects the variablethreshold can be calcu-
lated through the expected utility to be obtained from the val-
ues in those issues concerned. Finally we will investigate the
properties of the model relative to the number of agents in the
system and the number of interactions possible.
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