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Abstract Object Petri nets (OPNs) provide a natural and modular
method for the modelling of many real-world systems. We give a struc-
ture-preserving translation of OPNs to Prolog, avoiding the need for an
unfolding to a flat Petri net. The translation provides support for refer-
ence and value semantics, and even allows different objects to be treated
as copyable or non-copyable, respectively. The method is developed for
OPNs with arbitrary nesting. We then apply logic programming tools
to animate, compile and model check OPNs. In particular, we use the
partial evaluation system logen to produce an OPN compiler, and we
use the model checker xtl to verify CTL formulas. We also use logen
to produce special purpose model checkers. We present two case studies,
along with experimental results. A comparison to OPN translations to
Maude specifications and model checking is given, showing that our ap-
proach is roughly twice as fast for larger systems. We also tackle infinite
state model checking using the ecce system.
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1 Introduction

Petri nets are a well-established formalism for modelling and verifying concur-
rent and reactive systems. Coloured Petri nets (CPNs) were introduced as an
extension to Place/Transition (P/T) nets by Jensen [8]. One of the more recent
additions to the family of Petri net formalisms are the so-called object Petri net
formalisms. They allow various structured objects as tokens, including P/T nets
or CPNs. When using nets as tokens of such a net, the token nets are often called
object nets and the CPN whose places contain token nets on the highest level is
called the system net.

When defining the dynamic behaviour of object Petri nets, a distinction
is needed between two fundamentally different kinds of transitions. Autonom-
ous transitions can occur in the system net or in an object net. They locally
change the marking of the respective net only, i.e., the marking of all other
nets are preserved by an autonomous transition firing. On the other hand, there
are synchronisation requirements, that prevent some transitions from occurring
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Figure1. Autonomous transition firing in an object Petri net

autonomously. If some transitions are constrained in such a way, they are re-
quired to fire simultaneously, subject to the usual (individual) enablement con-
ditions. A simple example of an autonomous system net transition firing is shown
in Figure 1. Here the object net is simply moved to a different place of the system
net.

Another important attribute of object Petri nets is the existence of various
semantics that differ mainly in the treatment of the token nets (e.g. in [5], [23]).
Reference semantics treat a token net (name) in a place of the system net as
a reference to a net instance. Hence, if the same token net (name) appears
in different places of the net, they point to the same object net instance. In
particular, the marking of each object net instance is applicable for all tokens
referring to it. When using value semantics, each token net is treated as an
individual copy with its own marking.

The advantages of object-based1 modelling are obvious. Natural objects can
be modelled as separate Petri nets, which can be studied to a certain extant even
without knowing the context of the system net or other objects in the model.
Re-usability is another benefit of such modelling approaches.

Apart from modelling, the issues of validation and verification are central in
the study of Petri nets and other formal modelling methods. Most extensions of
the basic P/T net formalism use translations to P/T nets, in order to perform
model checking or other analysis. While this works fairly well if the model proves
to be correct, in the case of the detection of errors, it may not be so straightfor-
ward to transfer the result back to the object-based model. Therefore, it would
be preferable to do the model checking on an object-based description of the
object Petri net. To the best knowledge of the authors, such approach has not
yet been pursued for object Petri nets.

The presents transformations of object Petri nets that allow the execution2 of
the net and the application of model-checking techniques. In Section 2 we treat
a transformation to a Prolog-style notation with CTL model checking. Section 6
summarises a translation of OPNs to the Maude implementation of conditional
rewriting logic with LTL model checking.

1 not to be confused with object-oriented
2 by execution we mean the automated simulation of a Petri net
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2 Translating OPNs to Prolog

In OPNs, for both the system net and the object nets, there are two kinds of
transitions: autonomous and synchronised transitions. Different definitions of
object Petri nets have been studied in [11], [22], [19], [5], and [6]. We follow a
generic approach, that is easily transferable to any of these formalisms.

Let V be an appropriate set of variables and let *X+ denote the set of multisets
over the set X. Furthermore, let the arc-weight function W : (P × T ) ∪ (T ×
P )−→*V+ be, such that W (a, b) = [[xa,b

1 , . . . , xa,b
ka,b

]]. Assume a net N has a set
of places PN = {pN1 , . . . , pNnN }.

The treatment of object nets depends to a great extent upon the semantic
paradigm used. This shows particularly in the events of fork and join transitions.
A fork transition in value semantics produces multiple copies of the token nets
removed from its input places. Each of the copies can evolve independently.
Considering reference semantics, on the other hand, would produce multiple
references to the same net, so that any evolution of the object net is reflected in
all ‘copies’. Similar effects have been studied for join transitions.

A translation of an object Petri net has to include information on the syn-
chronisation requirements for its system and object net transitions. Assume
% ∈ T̃ × T̃ is a binary synchronisation relation of the OPN to be encoded. Then
include for every t ∈ T̃ from the net net such that ¬∃t′ ∈ T̃ .(t, t′) ∈ %∨(t′, t) ∈ %:

autonomous(N , t).

Furthermore, include in the encoding for each transition t ∈ T̃ from the net net
such that (t, t′) ∈ % ∧ ¬∃t′ ∈ T̃ .(t′, t) ∈ %:

init synch(N , t).

Note, that the synchronisation relation usually relies on pairwise disjoint sets of
names for all object nets and the system net. This requirement does not apply
for our encoding, since all transitions are referred to by a net identifier/transition
name pair.

2.1 Value Semantics

In this section we describe a transformation of object Petri nets with value
semantics into Prolog, and thus suitable for model checking as well as for anim-
ation/execution by existing tools (cf. Section 3). Section 2.2 shows the modific-
ations necessary to reflect reference semantics in object Petri nets. The latter is
used in the model checking case study of Sections 4–5.

– Assume the system net is named sn. For an autonomous system net trans-
ition t with •t = {p1, . . . , pmt

} and t • = {q1, . . . , qnt
} include the following

DCG code fragment:
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obj trans(sn,t) -->

p1 =-=> Tokenxp1,t
1,1 , ... p1 =-=> Tokenxp1,t

kp1,t,1,

...
...

pmt =-=> Tokenx
pmt ,t

1,mt
, ... p1 =-=> Tokenx

pmt ,t

kpmt ,t,mt
,

q1 <=+= Tokenxt,q1
1,1 , ... q1 <=+= Tokenxt,q1

kt,q1 ,1,

...
...

qnt <=+= Tokenx
t,qnt
1,nt

, ... qnt <=+= Tokenx
t,qnt
kt,qnt

,nnt
.

– For an autonomous object net transition t of an object net on with •t =
{p1, . . . , pmt}, t • = {q1, . . . , qnt} include the same DCG code fragment as
for an autonomous system net transition, exchanging only the name sn with
on.

– For a transition t of the system net sn which is synchronised with transition
t′ of an object net with •t = {p1}, t • = {q1}, include:
obj trans(sn,t) -->

p1 =-=> TokenNet,

{token trans(t′,TokenNet,TokenNetAfterFire},
p2 <=+= TokenNetAfterFire.

The encoding is done analogously for other pre- and postsets.
– The initial marking is represented as:

start([ obj(sn,[ bind(psn1 ,[markingsn
1 ]),

...

bind(psnnsn
,[markingsn

nsn
])]) ]).

Here, markingsni denotes a marking of the respective place of the system net.
This is encoded as a list containing a finite number of (coloured) tokens and
object tokens. For example [b, b, c, obj(net2, [bind(q1, [one]), bind(q2,[])

])] represents a marking containing two tokens b, one token c, and an object
net net2 with a coloured token of type one in its place q1 and the empty
marking in q2.

Note that some more elaborate unification tasks may be required for the
case of join transitions involving object nets. These are subject to the precise
OPN formalism and cannot not discussed here due to space limitations. Fur-
thermore, our main results rely upon the encoding of reference nets described
in the following section, where no further measures have to be taken for join
transitions.

2.2 Reference Semantics

In reference semantics, object nets do not occur in any markings. Instead only
references to the object nets are used as tokens apart from traditional (coloured)
tokens. Some changes have to be applied to the previous encoding, namely:
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– The initial marking can contain a finite number of (coloured) tokens and
references to object tokens. A reference to an object net object_net is
represented as ref(object_net). The object net’s marking is then given
separately in the global marking, for instance by

start([ obj(sn,[bind(p1,[ref(low),ref(low), b,b,c]),

bind(p2,[b]), bind(p3,[c])]),

obj(low,[bind(q1,[1,1]),bind(q2,[])]) ]).

– A synchronisation requirement for a system net transition t with •t = {p1}
and t • = {q1} to be executed in parallel with an object net transition
t′ can be expressed by the following code fragment, where TokenNet and
TokenNetAfterFire are references to the same object net.

obj trans(sn,t,Ref) -->

p1 =-=> TokenNet,

{token trans(t′,TokenNet,TokenNetAfterFire,Ref)},
p2 <=+= TokenNetAfterFire.

The encoding of an object Petri net with reference semantics R will be re-
ferred to by η(R) in the following.

Lemma 1. If a transition t of net R is enabled then its encoding is execut-
able, i.e., there exists a binding satisfying the predicate obj_trans(N,t) in its
encoding η(R).

Proof. We have to inspect two cases:

(i) enablement of an autonomous transition

(ii) enablement of a set of synchronised transitions

Case (i) again consists of two sub-cases, which are studied below.

System autonomous enablement is limited to those transitions of the system net
that do not have a counterpart in the synchronisation relation %. All transitions
that have no synchronisation requirement can occur subject to the usual Petri net
firing rule. This coincides with the requirement that there are sufficiently many
tokens available on the input places of the transition. Since we are not considering
place capacities, there are no further requirements in the case of P/T nets.

Autonomous reference net transitions are such that their names do not appear in
any synchronisation pair, i.e., they do not have any uplink or downlink inscription.

In η(R) these transitions are precisely the ones for which a proof of the predic-
ate autonomous/2 exists, thus enabling the execution of the respective transition’s
encoding in the presence of an enabling marking. This is provided in the object
interpreter by

trans(Trans,O,N) :-

autonomous(NetID,Trans),global_trans(Trans,NetID,O,N).

Object autonomous enablement are encoded in the same way as system autonom-
ous transitions. Hence the reasoning from above also holds for this case.
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For case (ii) let us consider the requirements for the enablement of a transition that
appears in the synchronisation relation.

The transition can have one of the following properties:

1. it is invoked by some other transition (uplink)
2. it invokes another transition (downlink)
3. it is both downlink and uplink to some other transitions

In either case, we have ruled out infinite chains and cycles in the synchronisation
relation.

The object interpreter governs the execution of synchronised transitions by the
predicate trans/3 which can only be satisfied in the clause

trans(Trans,O,N) :-

init_synch(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

The transformation adds the fact
init_synch(N , t).
for every least element in a transition synchronisation chain. The existence of a least
element is guaranteed by ∀x, y ∈ eT .(x, y) ∈ % → (y, x) 6∈ %+. For each downlink, an
entry is generated in the list representing the obligations that arise from the prospect-
ive execution of the transitions encoding. A satisfying binding exists if all transitions
involved in the synchronisation are simultaneously enabled.

Thus, a transition’s encoding can be executed if the transition is enabled.

Lemma 2. Any non-synchronised state change in the encoding η(R) with re-
spect to the encoded marking of R corresponds to an autonomous transitions
occurrence of the reference net R.

Proof. The crucial predicate for making changes to the encoded marking in the OPN
encoding is trans/3.

The definition of this predicate in the object interpreter is:

trans(Trans,O,N) :-

autonomous(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

trans(Trans,O,N) :-

init_synch(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

Hence, any state change with respect to the encoded marking of R must occur

by executing an encoded transition, which can be accomplished either by firing an

autonomous transition or by initiating a synchronisation chain.

Lemma 3. Synchronisation requirements in a reference net R are correctly re-
flected in its encoding η(R), i.e., a transitions code will only be executed if its
synchronisation requirements are met.

Proof. First, let us note that the code for a transition invoked in a synchronisation
cannot be invoked individually. This is due to the requirement that the transition has
to satisfy either autonomous/2 or init_synch/2 in order for its code to be executed.

The encoding will not provide provability of autonomous/2 for any transition in-
volved in a synchronisation. Furthermore, for no transition invoked by another trans-
ition, will init_synch/2 be provable. This restricts those transitions’ code to be ex-
ecuted in all circumstances apart from an invocation in a synchronisation step.
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For the synchronisation requirements we have ruled out the possibility of circular
invocations, i.e., a chain of synchronisation requirements may never form a loop. This
is formally expressed by the assumption: ∀x, y ∈ eT .(x, y) ∈ % → (y, x) 6∈ %+. Thus, we
avoid infinitary synchronisation requirements.

What remains to be shown is that an enabled synchronisation step in the reference
net will indeed lead to its code being executable. This follows directly from Lemma 1
and the fact that the uplinks and downlinks are correctly encoded.

The object interpreter will allow synchronisations to be initialised by the least
element in a chain though the following code:

trans(Trans,O,N) :-

init_synch(NetID,Trans),global_trans(Trans,NetID,O,N).

Theorem 1. The encoding η(R) of an object Petri R nets with reference se-
mantics is faithful.

Proof. Lemmas 2 and 3 state that the behaviour with respect to the encoded trans-
itions and markings in η(R) is a subset of the behaviour of R. Furthermore, Lemma 1
states the converse, i.e., any enabled transition can be executed in its encoding.

Thus, we neither loose nor gain any behaviour and the encoding is faithful.

2.3 Combining Value and Reference Semantics

In the xtl model it is easy to combine the concepts of value and reference
semantics, to be used in the same model. A simple example of an initial marking
mixing the two concepts is given below.

start([obj(high_level_net,

[bind(p1,[ref(low),ref(low),obj(low,[bind(q1,[1]),bind(q2,[])])]),

bind(p2,[b]), bind(p3,[c])]),

obj(low,[bind(q1,[1,1]),bind(q2,[])])

]).

The combination of value and reference semantics makes sense for systems
in which there are objects that can be (physically) copied, like an immigration
form, and also objects that cannot be copied, like a vehicle in a production line.
Both kinds of objects can be concurrently worked on, but only the former can be
independently manipulated in a way that the merged information is no longer
consistent.

An object net formalism with such combined semantics is the subject of cur-
rent and ongoing research. From our translation into Prolog and the animation
in xtl arises a strong candidate for the defining semantics of such object Petri
net extensions.

3 Animating and Compiling

3.1 Animation

We have applied our generic animator package written in Tcl/Tk and SICStus
Prolog, which has been previously used for ProB [13] and a CSP animator [12].
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Figure2. The OPN Animator in action

The interface was initially inspired by [7] and supports (backtrackable) step-by-
step animation of the specifications, coverage analysis, as well as visualisation of
the state space using the “dot” tool. A screen-shot of the animator can be found
in Figure 2(a), while Figure 2(b) shows the state space that it displays for one of
our case studies (cf. Section 5.1) consisting of a system net and two object nets.
An important aspect of the animator is its ability to cope with non-determinism:
all possible choices are presented to the user, if he so wishes, and he can decide
upon the exact behaviour. There is also a random mode of animation, where
the choices are made by the animator. Finally, the object Petri net execution
can be linked with a Java implementation, i.e., the object Petri net “drives” the
Java code. One can thus use the object Petri net as a test-case generator for an
implementation, or one can use the Java to provide a custom user interface for
OPNs, effectively using OPNs for rapid prototyping.

3.2 Compiling by Partial Evaluation

In a sense our translation already compiles OPNs into Prolog. However, using
partial evaluation we can further improve the efficiency of that translation.

Partial evaluation [9] is a source-to-source program transformation technique
which specialises programs by fixing part of the input of some source program
P and then pre-computing those parts of P that only depend on the known part
of the input. The so-obtained transformed programs are less general than the
original but can be much more efficient. The part of the input that is fixed is
referred to as the static input, while the remainder of the input is called the
dynamic input.

Partial evaluation has been especially useful when applied to interpreters. In
that setting the static input is typically the object program being interpreted,
while the actual call to the object program is dynamic. Partial evaluation can
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then produce a more efficient, specialised version of the interpreter, which is akin
to a compiled version of the object program.

Thanks to our translation of object Petri nets into Prolog code, we are able
to apply partial evaluation techniques for logic programs to compile object Petri
nets into more efficient Prolog code. In particular, we will use the logen system
[14], which uses the so-called compiler generator (cogen) approach to special-
isation. Figure 3 highlights the way the logen system works. Typically, a user
would proceed as follows:

– First the source program is annotated using a binding-time analysis (BTA).
This annotated source program can be further edited, by using the logen
Emacs mode. This allows a user to manually refine the annotations to make
the specialisation more or less aggressive.

– Second, logen is run on the annotated source program and produces a
specialised specialiser, called a generating extension or also compiler.

– This compiler can now be used to specialise the source program for some
static input. Note that the same compiler can be run many times for different
static inputs (i.e., there is no need to re-run logen on the annotated source
program unless the annotated source program itself changes).
In our case the source program is the object Petri net interpreter and the
static input is the encoding of a given object Petri net. The specialised
program is then a compiled version (in Prolog) of the object Petri net.

– When the remainder of the input is known, the specialised program can now
be run and will produce the same output as the original source program.
Again, the same specialised program can be run for different dynamic inputs;
one only has to re-generate the specialised program if the static input changes
(or the original program itself changes).

After annotation of our interpreter, generation of the object Petri net com-
piler was very quick (about 240 ms) and compilation itself was also relatively
quick (less than half a second for most of our examples, cf. Section 5.3), and
could be made faster by making the compiler less aggressive. The improvements
for animation speed were about 40 % (speed improvements for verification are
much more dramatic due to a decrease in memory usage and specialisation of
the model checking component; cf. Section 5.3). The following shows a piece of
compiled Prolog code produced by the object Petri net compiler. Basically, every
place has become an argument of the specialised procedures and accessing place
markings is is thus much faster. The memory usage of the specialised code is
also much reduced, as all the encodings of the net structure have been compiled
away.

compute_trace__4(B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z,

A1,B1,C1,D1,E1,F1,G1,H1,[tribunal(charge)|I1]) :-

delete__2(ref(task(t1)),I,J1),

insert__3(ref(task(t1)),J,K1),

delete__2(L1,F1,M1),

insert__3(L1,H1,N1),
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Figure3. Illustrating the logen system and how to compile object Petri nets

compute_trace__4(B,C,D,E,F,G,H,J1,K1,K,L,M,N,O,P,Q,R,S,T,U,V,W,

X,Y,Z,A1,B1,C1,D1,E1,M1,G1,N1,I1).

Thanks to our translation into Prolog, we can also apply other logic pro-
gramming tools such as termination analysers, type inference tools, verification
tools, or static analysers. In the next section, we will show how one can achieve
finite and infinite model checking using some of these.

4 Model Checking using Logic Programming Tools

4.1 Finite State Model Checking using xtl

The temporal logic CTL (Computation Tree Logic) introduced by Clarke and
Emerson in [2], allows to specify properties of specifications generally described
as Kripke structures. The syntax and semantics for CTL are given below.

Given Prop, the set of propositions, the set of CTL formulae φ is inductively
defined by the following grammar (where p ∈ Prop):

φ := true | p |¬φ | φ ∧ φ | ∀ © φ | ∃ © φ | ∀φUφ | ∃φUφ

A tabled Prolog system such as xsb [21] provides very efficient data structures
and algorithms to tabulate calls, i.e., it remembers which calls it has already
encountered. As was realised in [20] this enables one to write efficient model
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checkers, with relatively little effort. This has lead to the development of the
XMC model checking system, whose performance is comparable to that of SPIN.

Furthermore, as shown in [16], a complete CTL model checker can be written
as a relatively simple tabled logic program, called xtl in [17]. Contrary to [20]
the aim in [16,17] was not maximum efficiency, but writing a provably correct
interpreter that can be fed into existing analysis and optimisation tools.3 One
of the motivations is to use these analysis tools to perform infinite state model
checking. Also, xtl is independent of any underlying formalism. It only supposes
that the successors of a state s can be computed (through a predicate trans)
and that the elementary proposition of any state s can be determined (through
a predicate prop). The interpreter can thus be easily applied to many formal-
isms, by providing appropriate encodings of trans and prop. This is exactly the
feature we will use to apply to to object Petri nets.

Despite its simplicity and flexibility, xtl has been shown to be on par with
some of the most well-known model checkers [17]. Our experiments later in the
paper will further underpin this.

4.2 Infinite State Model Checking using ecce

One of the key issues of model checking of infinite systems is abstraction, whereby
one approximates an infinite system by a finite one. If proper care is taken, the
results obtained for the finite abstraction will be valid for the infinite system.

In earlier work we have tried to solve the abstraction problem by applying
existing techniques for the automatic control of online partial evaluation. Indeed,
in partial evaluation one faces a very similar (and extensively studied) problem:
To be able to produce efficient specialised programs, infinite computation trees
have to be abstracted in a finite but also as precise as possible way. [15] showed
that when we encode Petri nets as logic programs, the specialised programs can
be viewed as a finite abstraction of state space covering all (possibly infinite)
reachable markings of the Petri net. This allowed one to decide coverability prob-
lems (which encompass quasi-liveness, boundedness, determinism, regularity,...)
for any Petri net using the specialiser ecce [18]. Quite surprisingly, the control
algorithms behaved very similar to well known Petri net algorithms by Karp–
Miller [10] and by Finkel [3]. The advantage of the logic programming approach
is that it can in principle be applied to more complicated systems, with richer
state structures, provided the system is encoded as a logic program. We can thus
apply ecce to our OPN interpreter and attempt infinite state model checking.
Note that ecce’s control algorithms are no longer guaranteed to provide a de-
cision procedure (we may get a “don’t know” answer), but as we show later some
interesting systems and properties can still be tackled.

3 These tools work best on declarative programs, and hence the full XMC system is
probably not as well suited to analysis and optimisation.
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5 Two Case Studies

In Section 5.1 we give a real-world example of a workflow specification. the spe-
cification is given as a reference net. Section 5.2 presents some model checking
results carried out in xtl on an encoding of that net. Possibilities of optim-
ising these results are provided in Section 5.3. We then present an infinite state
case study in Section 5.4 and perform some infinite state model checking in
Section 5.5.

5.1 The Prosecution Example

Our example deals with tasks common to many legal systems. The example is
taken from [22], where its origin is attributed to W.M.P. van der Aalst. There are
several actions involved in this scenario provided by the example. They range
from people carrying out sub-tasks (like a secretary verifying some data, an
officer filing the case, and a prosecutor deciding upon the legal action to be
taken) to more abstract actions (such as a printer producing two copies of a
form).

The scenario of a law enforcement agency can be summarised in 7 stages:

1. An offence is filed by officer 1
2. a report and legal form is printed and distributed to be processed by a

secretary and another officer, respectively
3. the secretary verifies the details of the report
4. officer 2 fills out the form accompanying the initial report
5. the completed form and report are sent back to officer 1
6. officer 1 now checks whether the completed report and form accurately de-

scribe the offence reported in stage 1
7. the prosecutor decides whether the offender be summoned, charged right

away, or the case is suspended
8. Appropriate action against the offender is taken or the case is dropped.

It is easy to see that there are dependencies as well as concurrency in this
example. For instance stages 3 and 4 are independent of each other, while action
5 relies on both 3 and 4 to have been accomplished prior to 5. Also, there are
two actions that are carried out by officer 1. For the model it is desirable not to
distribute the possible actions of the same person over the net. Thus, the tasks
to be performed by one person are put into the same place and the marking of
the task net ‘decides’ which action, i.e., which transition is chosen.

The overall task is modelled by an object net that represents a protocol of
actions to be performed. Each transition in the task net has an uplink that
allows it only to occur if a transition with appropriate downlink in the system
net is fired simultaneously. The system net and the token net is depicted in
Figure 4. Before entering the scenario described above, the system net creates a
finite number of tasks (references to token net instances). In Figure 4, the initial
marking (a black token in place p1) is consumed, two distinct instances of the
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Figure4. System net and object net from the prosecution example

task net are created and uniquely named instances to these nets are produced
on the input place to officer 1’s transitions.

Note, that the transition printer does not produce two instances of the task
on its output places, but rather duplicates the reference to the task net instance,
such that each of the tokens produced points to the same instance of the task.
Thereby, inconsistencies in the completion of the report and the form are avoided.

5.2 Model Checking Results

Some interesting properties to study in this example are:

– termination of all separate tasks
– termination in the system net with all tasks accomplished
– eventual summoning, suspension, or charging after the case/task has been

recorded
– mutual exclusion of the task net’s places f9, f10, and f11
– deadlock-freeness.

We analysed these properties using xtl for various numbers of tasks. For
example, to find out whether a two task system can reach a state where all tasks
are terminated, we check the CTL formula EFflow.f9 ≥ 2. xtl then produced
the following witness trace after 0.02 s: start, official1(rec), official1(rec),
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printer, printer, secretary(verify), secretary(verify), official2(complete),

official2(complete), put together, official1(ex), put together, official1(ex),

prosecutor(decide(summon)), prosecutor(decide(summon)), tribunal(summon),

tribunal(summon). A summary of our experiments can be found in Table 1. The
timings were taken on a PowerBook G4 1Ghz, 1Gb Ram, running Mac OS X
10.2.6 and xsb Prolog version 2.6 compiled for batched scheduling and early
completion. The full state space for the example with 2 tasks which contains 145
states and 337 transitions can be found in Figure 2(b). With 4 tasks it contains
20737 states and 96769 transitions.

Table1. Using xtl to model check the prosecution example

With 2 tasks

Formula Result Time

Overall Termination

AFflow.f9 = 2 true 0.289 s
EFflow.f9 ≥ 2 true 0.020 s
EFflow.f9 = 2 true 0.019 s
EFflow.f9 ≥ 3 false 0.18 s

Mutual Exclusion

EF (t.p9 ≥ 1 ∧ t.p10 ≥ 1) false 0.219 s
EF (t.p9 ≥ 1 ∧ t.p11 ≥ 1) false 0.201 s
EF (t.p10 ≥ 1 ∧ t.p11 ≥ 1) false 0.219 s

EFt.p9 ≥ 2 false 0.1910 s
EF (t.p9 ≥ 1 ∧ t1.p10 ≥ 1) true 0.219 s

Termination of all Tasks

AFt.p12 = 1 true 0.270 s
AFt1.p12 = 1 true 0.310 s

AFAGt1.p12 = 1 true 0.650 s

With 4 tasks

Formula Result Time

EFflow.f9 ≥ 4 true 0.071 s
EFflow.f9 = 4 true 0.05 s
EFflow.f9 ≥ 5 false 47.779 s

With 5 tasks

EFflow.f9 = 5 true 0.091 s

With 6 tasks

EFflow.f9 = 6 true 0.13 s

5.3 Optimising using partial evaluation

As the experiments have shown, xtl performs quite well on the OPN interpreter,
checking more than 400 states per second. However, there are various ways to
substantially improve the model checking performance. First, xtl can be used
in a mode where the counter example trace is not constructed as a Prolog term
during the model checking. For technical reasons4 this is more efficient, as can
be seen in the “No Trace” column of Table 2. Note that the counter example
can still be extracted from the xsb table structures [4].

Second, we can apply our compilation techniques of Section 3.2. In fact, we
can now not only specialise the OPN interpreter but the model checker as well,

4 We can use xsb in “local scheduling” rather than in batched mode with early com-
pletion.
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Table2. Using Logen to speedup model checking

Formula Result With Trace No Trace After Logen Logen Total
runtime runtime runtime Speedup Speedup

With 2 tasks

AFflow.f9 = 2 true 0.289 s 0.260 s 0.01 s 26.0 28.9
EFflow.f9 ≥ 3 false 0.18 s 0.08 s 0.01 s 8.0 18.0

With 4 tasks

AFflow.f9 = 4 true 83.63 s 78.40 s 6.62 s 11.8 12.6
EFflow.f9 ≥ 5 false 47.779 s 19.11 s 5.691 s 3.36 8.4

i.e., we can specialise the model checker for a particular temporal logic formula
and for using our OPN interpreter for a particular object Petri net. This is what
we have undertaken, and the results can be found in Table 2. Note that we have
derived the compiler from the model checker that does not compute traces (but
it would have been possible to do so for the model checker that does compute
them). For the second example, the specialised model checker was thus able to
explore 3644 states and 17004 transitions per second.

Note that generating the object Petri net/temporal logic compiler took 270
ms (a compiler that can be used for any CTL temporal logic formula and any
object Petri net encoding). Compilation for the formula EFflow.f9 ≥ 5 and the
object Petri net with 4 tasks took 460 ms. So, counting the 460 ms, compiling
still gives a very respectable 3.11 times improvement in speed. One can reduce
compilation time by making the specialisation less aggressive (e.g., if one works
mainly on small examples). Also, if one compiles the same object Petri net
for different formulas, not all of the compilation has to be redone Finally, it
is interesting to note that the more complicated AF formulas lead to bigger
speedups, as more of the model checking component is specialised.

5.4 Immigration Example

Figure 5 depicts the components of an OPN representing the usual immigration
procedure. It involves

– receiving a passport
– applying for a visa (single entry or lifetime)
– entering the country
– leaving the country
– re-entering the country
– re-applying for a visa

This system is infinite state, so without further restriction it cannot be ana-
lysed using finite state model checkers such as xtl (due to their depth-first ex-
ploration, they will often not find counterexamples). We will thus now attempt
to apply the ecce tool, as outlined in Section 4.2.
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object net: Passport

object net: Visa
system net: Immigration

Figure5. Object Petri net for the immigration example

5.5 Infinite Model Checking

We have attempted to prove safety properties of the immigration example. For
example, we have attempted to prove that the property EF immigration.i5 = 2
is false. For that, we have first applied logen to compile the OPN and the
temporal logic formula. We have then applied ecce on the resulting compiled
program, which resulted in the following (where sat| 1 was the entry point of
the compiled program):

/* Specialised program generated by Ecce 1.1 */

/* Transformation time: 758820 ms */

/* Specialised Predicates:

sat__1(immi,[1],[0],[],[],[],[],[]) :- fail.

This was achieved using the default settings of ecce (not tuned for model
checking) using the most-specific version post-processing. ecce was hence able
to prove that our safety property cannot be violated! In order to achieve that,
ecce had effectively produced a symbolic abstraction of the infinite state space,
consisting of 19 nodes (not counting many intermediate nodes that were thrown
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away); the most-specific post-processor was then able to conclude that none of
these symbolic nodes could violate the safety property.

We have attempted another safety property, and have been equally successful.

6 Comparison with Maude

In recent attempts to find a unifying framework for concurrency formalisms,
the theory of rewriting logic has turned out to be very useful. P/T nets, col-
oured Petri nets, and algebraic Petri nets amongst other formalisms have been
successfully modelled in Maude.

Maude is a general tool for formal specification and analysis that is based
on a very efficient rewriting engine. Typically, the Maude specifications are
executable, though there is no nice GUI attached to the command line-based
tool.

We use (conditional) rewriting rules to represent the OPN transitions, specify
properties, and prove them with the LTL model checker. Downlinks of the OPN’s
transitions are modelled directly in the conditional part of their rewrite rules.

The translation of OPNs to equivalent rewrite specification is very straight-
forward. Due to the lack of space, we do not give a formal translation in this
paper, but rather study an example of a transition from the OPN depicted in
Figure 4.

Consider, for instance, the printer transition of the system net. It is encoded
as:

crl [FE-printer]: fe-pool-2(on NM1) fe-for-secretary(NM2)

fe-for-official-2(NM3) Net(on,M1) =>

fe-pool-2(NM1) fe-for-secretary(on NM2)

fe-for-official-2(on NM3) Net(on,M2)

if M1 rprinting => M2 fprinting .

The string in square brackets supplies a name for reference in the traces of
the rewriting process. We are faced with a conditional rule (crl) that rewrites
the system state where the place fe-pool-2 contains (possibly among others)
a token on such that on is the name of an object net. The effect of the rewrite
is that the reference on is removed from fe-pool-2 and copies of the reference
are generated on fe-for-secretary and fe-for-official-2. This operation
does not change any other tokens in the system net, but the rewrite can only be
executed if the conditional is satisfied and thus provides the successor marking
M2 of the object net on.

The conditional involves the downlink printing of the system net transition.
This is represented here as an additional token that is provided only in this con-
ditional. It allows the object net transition print’s rule to be executed in the
encoding:

rl [print]: task-recorded rprinting =>

task-printed-1 task-printed-2 fprinting .
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This rule can only be executed, if the ‘token’ rprinting is provided. It then
produces – in addition to the tokens required by the modelled transition – a
unique ‘token’ fprinting, which is also handed over to the condition of the
invoking system net rule. This mechanism ensures the synchronisation of the
two transitions.

The rewrite specification uses multiset sorts for the system net markings and
the object net markings. The synchronous channels (downlinks and uplinks) are
also treated as markings in the above sense.

As the model checker in Maude works on LTL, in Table 3 we only give
figures for properties that can be expressed both in LTL and CTL to allow a
comparison with the results of Section 5.2. Note that the size of the state spec
for 5 tasks was 248,832 nodes, so xtl manages to process more than 2000 nodes
per second. The table does not include the time to compile the OPNs. But,
even including the compile time of 0.72 s for the 5 task net, xtl + logen is
still 1.88 times faster. However, for small systems compilation via logen is not
really beneficial: for the 2 task net compiling takes 0.22 s and it is thus better
to use the unspecialised model checker which runs in 0.289 s (unless one wants
to check many formulas for the 2 task net; in which case compilation may still
be beneficial).

Table3. Using Maude to model check the prosecution example

No of Tasks Formula Result Maude xtl + logen Factor

2 AFflow.f9 = 2 true 0.04 s 0.01 s 4
4 AFflow.f9 = 4 true 15.70 s 6.62 2.37
5 AFflow.f9 = 5 true 218.61 s 115.65 1.89

We come to the conclusion that the conversion to Prolog is fairly easy, roughly
as straightforward as the conversion to Maude, but in some crucial aspects the
xtl model checker is much faster than the Maude model checker. Especially,
the possibility of applying model checking techniques to certain infinite state
systems should not be under-estimated.

7 Outlook and Conclusion

In summary, the main contributions of this paper are:

– Animation and execution of object Petri nets via a structure-preserving
transformation to Prolog, where the original structure of the OPNs are not
lost. This allows easy translation of animation or verification results back to
the original OPNs. We have also shown how to model both reference and
value semantics-based OPNs.

– We have shown how to apply an offline partial evaluation tool to automat-
ically compile OPNs into efficient Prolog code and have produced an OPN
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compiler. This allows fast animation, but also opens up the possibilities to
use OPNs for rapid prototyping or maybe even full runtime execution.

– We have shown how to do efficient CTL model checking of object Petri nets
by applying the Prolog based xtl on our OPN interpreter,

– We have used partial evaluation to further improve the efficiency of model
checking by producing special purpose model checkers,

– We have applied this to a non-trivial example from the literature and have
compared our results with Maude, showing the efficiency of our approach

– We have used the ecce tool to perform infinite state model checking on
another example.

Among the greatest limitations of many simulation tools is the necessity of
applying strategies to the execution engine, in order to achieve fairness. Depend-
ing on the tool and formalism this can be very hard to implement, and more
importantly the strategy is a further component that needs to be verified or at
least validated. Using model-checking techniques, we avoid these problems alto-
gether by inspecting the full state space of the system model. Though restricted
by the nature of model checking, the method outlined in this paper is, e.g.,
applicable to a large class of real-world workflow systems, business processing
systems, and manufacturing systems.

Future work The translation of object Petri nets (and reference nets) is com-
pletely canonical, so that an export of a net specification in this format from
the Renew tool will pose no problem. The plug-in architecture of Renew should
allow direct interaction with the model checker in a future release.

Due to the translation into Prolog, we can now integrate OPNs with other
formalisms for which similar interpreters have already been written, such as
CSP [12] or B [13]. A promising avenue would be linking OPNs with B: indeed
B provides very good, high-level data modelling but it lacks modelling of con-
currency aspects. This has lead to researchers trying to combine B with CSP [1].
However, OPNs would also be an attractive formalism, where B machines would
be naturally passed as tokens. This would also support multiple B machines;
something which current CSP/B approaches cannot do. Finally the translation
into Prolog also opens up the possibilities to extend OPNs with new features
such as constraints, or adapt them for specific application domains.
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A The Object Interpreter

/* interpreter for object petri nets, both for

value and reference semantics */

/* exported predicates for XTL:

trans/3,

prop/2 */

trans(Trans,O,N) :-

autonomous(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

trans(Trans,O,N) :-

init_synch(Name,Trans),global_trans(Trans,net(ID,Name),O,N).

global_trans(Trans,Net,Env,NEnv) :-

global_trans2(Trans,Net,Env,E2,Pending),

perform_pending_actions(Pending,E2,NEnv).

global_trans2(Trans,net(ID,Name),[obj(net(ID,Name),Marking)|T],

[obj(net(ID,Name),NMarking)|T],Pending) :-

obj_trans(Name,Trans,Pending,Marking,NMarking).

global_trans2(Trans,Net,[H|T],[H|TT],Pending) :-

global_trans2(Trans,Net,T,TT,Pending).

perform_pending_actions([],Env,Env).

perform_pending_actions([H|T],Env,NEnv) :-

perform_pending_actions(H,Env,E2),

perform_pending_actions(T,E2,NEnv).

perform_pending_actions(ref(Trans,RefNet),Env,NEnv) :-

/* print(ref(Trans,RefNet)),nl, */

global_trans(Trans,RefNet,Env,NEnv).

perform_pending_actions(add(Net),Env,NEnv) :- add_net(Net,Env,NEnv).

add_net(NetID,[obj(ID,M)|T],[obj(ID,M2)|AT]) :-

((NetID=ID)

-> (start_marking(NetID,M2),T=AT) /* net already exists */

; (M2=M,add_net(NetID,T,AT)) ).

add_net(NetID,[],[NewNet]) :- new_net(NetID,NewNet).

prop(L,P) :- member(Net,L), prop2(Net,P).
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prop2(obj(Net,Marking),card(Net,Place,Card)) :-

member(bind(Place,Val),Marking), len(Val,Card).

prop2(obj(Net,Marking),card_geq(Net,Place,Card)) :- nonvar(Card),

member(bind(Place,Val),Marking), len(Val,L), L >= Card.

prop2(obj(_,Marking),P) :-

member(bind(Id,Val),Marking), P =.. [Id,Val].

prop2(obj(_,Marking),P) :-

member(bind(Id,Val),Marking), member(obj(Net,MN),Val),

prop2(obj(Net,MN),NP), P =.. [Id,Net,NP].

len([],0).

len([_|T],L) :- len(T,L1), L is L1+1.

token_trans(Trans,obj(net(ID,Name),Marking),obj(net(ID,Name),M2),

Ref) :- obj_trans(Name,Trans,Ref,Marking,M2).

token_trans(Trans,ref(NetID),ref(NetID),ref(Trans,NetID)).

new_net(NetID,obj(NetID,Marking)) :- start_marking(NetID,Marking).

start_marking(net(ID,Name),Marking) :-

findall(bind(PlaceName,DefaultValue),

place(net(ID,Name),PlaceName,DefaultValue), Marking).

:- op(500,yfx,’=-=>’). :- op(500,yfx,’=*=>’).

:- op(500,yfx,’<=+=’). :- op(500,yfx,’<=*=’).

/* delete_all_tokens */

’=*=>’(Place,Tokens,Marking,AfterMarking) :-

lookup_value(Place,Marking,Tokens),

Tokens \= [],

store_value(Place,[],Marking,AfterMarking).

/* delete_one_token */

’=-=>’(Place,Token,Marking,AfterMarking) :-

lookup_value(Place,Marking,MultiSet),

delete(Token,MultiSet,NewMS),

store_value(Place,NewMS,Marking,AfterMarking).

/* add_all_tokens */

’<=*=’(Place,Tokens,Marking,AfterMarking) :-

lookup_value(Place,Marking,MultiSet),

insert_all(Tokens,MultiSet,NewMS),

store_value(Place,NewMS,Marking,AfterMarking).

/* add_one_token */

’<=+=’(Place,Token,Marking,AfterMarking) :-

lookup_value(Place,Marking,MultiSet),

insert(Token,MultiSet,NewMS),

store_value(Place,NewMS,Marking,AfterMarking).
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store_value(Var,Value,[],[bind(Var,Value)]) :-

print(’!WARNING: Identifier not yet defined: ’), print(Var),nl.

store_value(Var,Value,[bind(Var,_)|T],[bind(Var,Value)|T]).

store_value(Var,Value,[bind(V,VV)|T],[bind(V,VV)|UT]) :-

\+(Var=V), store_value(Var,Value,T,UT).

lookup_value(Id,State,Val) :-

(member(bind(Id,Val),State) -> true

; (print(’!ERROR: Identifier does not exist for lookup: ’),

print(Id),nl,

fail) ).

member(X,[X|_]).

member(X,[_|T]) :- member(X,T).

delete(X,[X|T],T).

delete(X,[H|T],[H|RT]) :- delete(X,T,RT).

insert_all([],MS,MS).

insert_all([H|T],InMark,OutMark) :-

insert(H,InMark,Int), insert_all(T,Int,OutMark).

insert(X,[],[X]).

insert(X,[H|T],Res) :-

( (X @=< H) -> (Res = [X,H|T]) ; (Res = [H|RT], insert(X,T,RT))).

insert(X,Z,[X,Z]) :- Z \= [], Z\=[_|_],

print(’!type error, place not a list: ’), print(Z),nl.
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