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ABSTRACT
This paper presents new clearing algorithms for multi-unit
single-item and multi-unit combinatorial auctions with piece-
wise linear demand/supply functions. We analyse the com-
plexity of our algorithms and prove that they are guaranteed
to find the optimal allocation.
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1. INTRODUCTION
Traditionally, the most common forms of online auction are
the simple, single-sided auctions in which a single item is
traded (e.g. English, Dutch, first price sealed-bid and Vick-
rey). However, such auctions are inefficient when there is
a correlation between different items that bidders want to
purchase. When there are such synergies (i.e. benefits from
combining complementary items), the inability to bid on
groups of items means the bidder faces the risk of winning
only a part of the desired set. To overcome the problems as-
sociated with correlated items, more sophisticated market-
places are needed in which multiple units of multiple (po-
tentially inter-related) items can be traded simultaneously.
Such auctions are called combinatorial auctions.1 In this
type of auction, bidders may bid for arbitrary combinations
of items. For example, a single bid may be for q units of

∗The first author is a PhD student and is funded by BTexact
Technologies.
1If there is only a single unit of each type of item, the auc-
tions are called single-unit combinatorial auctions. If there
are multiple units of each type of item, the auctions are
called multi-unit combinatorial auctions [10].

item 1 and 2 ∗ q units of item 2 at price 40 ∗ q if q < 20, at
price 34 ∗ q if 20 ≤ q < 40, and at price 30 ∗ q if q ≥ 40.

While combinatorial auctions have many potential bene-
fits from an economic perspective [5], their main disadvan-
tages stem from the lack of efficient clearing algorithms2 for
determining the prices, quantities and trading partners as a
function of the bids made. To overcome this problem, there
has been considerable recent work in this area (see section
4 for more details). However, almost all of this work (e.g.
[3], [4], [6], [7], [10]) has considered bids to be atomic propo-
sitions that are either accepted in their entirety or rejected.
This view, while appropriate in some cases, has the disad-
vantage of limiting the choice, and hence the potential profit,
available to the auctioneer. For example, consider the case
where there are only two bids for the same good: x1 units at
price p1 and x2 units at price p2, and the auctioneer wants to
trade fewer than x1 + x2 units of the good. In this case, the
auctioneer has no choice other than selecting one or other of
the two bids. This may prevent the auctioneer from max-
imising its payoff. For example, the auctioneer may find it
more beneficial to accept both bids partially; that is, trade
y1 (y1 < x1) units with bidder 1 at price y1

x1
· p1 and trade

y2 (y2 < x2) units with bidder 2 at price y2
x2

· p2.
Moreover, if the bids are expressed in terms of the correla-

tion between the quantity of items and the price (rather than
the simple linear extrapolation above3), there will be even
more choice for the auctioneer, and, consequently, even more
chance of maximising its payoff. When viewed from the bid-
der’s perspective, the atomic nature of bids and the inability
to explicitly relate price and quantity means that opportu-
nities for trade are lost because the auctioneer may not want
the entire package being offered, even though elements of it
may be acceptable. Although nearly all the aforementioned
work permits XOR (exclusive-or) bids4, and, in theory, the

2Also called the winner determination problem [10] or the
bid evaluation problem [4].
3In many cases, linear extrapolation simply doesn’t work
because bidders value bundles of items non-linearly. This
may occur, for example, because there is a high set-up cost
and then producing multiple versions of the same bundle is
comparatively cheap.
4An XOR bid is one in which a bidder submits an arbitrary
number of atomic proposition bids with the condition that



correlation function between the quantity and the price may
be expressed using XOR atomic proposition bids to specify
points; in practice, it is nearly impossible as the number of
points on the graph of the function could be exponential.
For example, suppose a bidder wants to trade 1000 units
with unit price 10 if the quantity is less than 100, and with
unit price 9 if the quantity is in the range between 100 and
1000. With XOR bidding, the bid has to be expressed as
XOR of 1000 atomic proposition bids, in which each atomic
bid is a pair of quantity and price for every quantity from 1
to 1000. This is clearly inefficient.

To overcome the aforementioned shortcomings associated
with atomic propositions, Sandholm and Suri consider the
case in which agents can submit bids that correspond to a
demand or supply curve depending on whether it is an auc-
tion or a reverse auction respectively [9]. Thus, bids are
expressed in terms of a curve that correlates the quantity
with the price of an item. For example, an agent may ex-
press the bid as q = 2 ∗ p + 1, which means that the agent
is willing to trade up to q = 2 ∗ p + 1 units if the unit price
equals p.5 Unfortunately, their work is limited to multi-unit
single-item auctions and does not deal with the combinato-
rial case. Other researchers have further considered multi-
unit combinatorial reverse auctions with supply curves [3]
[4]. However, in this work, bidders submit separate supply
curves for different items, and it is assumed that the price
of a package of items is equal to the sum of all the prices
of the separate items.6 This means that these auctions are
not truly combinatorial in nature as the correlation between
items is ignored. In previous work [2], we have developed al-
gorithms for multi-unit combinatorial reverse auctions with
supply function bidding, however, these algorithms, while
running in polynomial time and producing solutions that
are within a finite bound of the optimal, are not guaranteed
to find the optimal allocation.

Against this background, we advance the state of the art
in this paper by making two important contributions. First,
we develop a compact bid representation for multi-unit com-
binatorial auctions with demand/supply curves that allows
bidders to express the correlation between separate items.
Secondly, we develop optimal clearing algorithms for this
class of auctions. Thus, our work removes the shortcom-
ings associated with the atomic proposition and the non-
combinatorial nature of the aforementioned work.7 Specifi-
cally, we consider multi-unit single-item and multi-unit com-
binatorial auctions in which bids contain an agent’s de-
mand/supply function. We develop provably optimal clear-
ing algorithms and analyse their computational complexity
for the case where the demand/supply curves for each indi-
vidual commodity are piece-wise linear functions. This case
is important to consider because such curves are commonly
used in industrial trading applications [3] and any general
curve can be approximated arbitrarily closely by a family of
such functions [9].

The remainder of the paper is organised as follows. Sec-

it is willing to obtain at most one of these bids [8].
5Their price function calculates quantity from unit price.
However, in our work, the price function will calculate unit
price from quantity, because we find the later more natural.
6This property is called additive separability in [4].
7This paper just reports on the reverse case (for reasons of
space) although the same algorithms and results can also be
applied to the forward case (see [1] for more details).

tion 2 formalises the problem of auction clearing. Section
3 presents the algorithms for the case of piece-wise linear
function bids. Section 4 discusses related work, and section
5 concludes and presents future work.

2. AUCTION CLEARING WITH SUPPLY
FUNCTION BIDS

This section formalises the problem of clearing in multi-unit
combinatorial auctions with supply function bids. Assume
there are m items (goods or services): 1, 2, ..., m and n bid-
ders a1, a2, ..., an. The auctioneer has a demand (q1, q2, ..., qm),
in which qj is the quantity of item j that the auctioneer is
willing to buy. Let uj

i be the maximum quantity of item j
that ai is able or willing to sell (if ai is not willing to sell an
item j, then uj

i = 0). Let N be the set of natural numbers
and R∗ be the set of non-negative real numbers.

The supply function is the price function of the items that
each bidder is willing to sell. The supply function of bidder
i is:

Pi : Nm → R∗,

where Pi(r1, r2, ..., rm) is the price offered by bidder i for
the package of items (r1, r2, ..., rm) and rj is the quantity of
item j, rj ∈ N, 0 ≤ rj ≤ uj

i , ∀ 1 ≤ j ≤ m.
Having determined the demand function, we now consider

the supply allocation which is the amount that the auctioneer
trades with each bidder.

Definition 1. A supply allocation is a tuple 〈rj
i 〉, 1 ≤ i ≤

n, 1 ≤ j ≤ m such that the auctioneer buys rj
i units of item

j from each agent ai.
8

Given the definitions of the supply function and the supply
allocation, the problem of reverse auction clearing is then to
find a supply allocation 〈rj

i 〉, 1 ≤ i ≤ n, 1 ≤ j ≤ m that:

• Satisfies the demand constraint:
n∑

i=1

rj
i ≥ qj , ∀1 ≤ j ≤ m (1)

That is, the quantity of each item that the auctioneer
buys from all bidders is not less than the auctioneer’s
demand for that item.

• Optimises the auctioneer’s total revenue:

P (〈rj
i 〉) =

n∑
i=1

Pi(r
1
i , r2

i , .., rm
i ) is minimal. (2)

That is, the total price of all the units of all the items
supplied by the bidders should be as small as possible.

However, the auction clearing problem has been shown to
be NP-complete, even for the simplified case of single-items
with piecewise linear demand/supply curves [9].9 Thus, it is
impossible to find a polynomial algorithm that is guaranteed

8Because the auctioneer buys items at the price the bidders
offer, it may well be the case that the auctioneer will buy
the same package from different bidders at different prices.
Thus, the auctions have discriminatory pricing (which is a
widely used assumption in the literature).
9Although [9] does not explicitly consider our cases, their
proof also holds for them.



to find the optimal allocation, unless P = NP. To this end,
the next section presents our algorithms for the case where
the function curves for each individual commodity are piece-
wise linear. In this paper, we concentrate on optimality and
so, necessarily, our algorithms are not polynomial.

3. PIECE-WISE LINEAR SUPPLY CURVE
BIDS

In this section, we consider the case where:

Pi(r1, r2, ..., rm) = ωi(t1, t2, ..., tm) · (
m∑

j=1

P j
i (rj))

where P j
i is the price function of agent i for item j, in the

form of a piecewise linear curve (i.e. the function’s graph is
composed of many segments, each of which is linear), tj is
the segment number of P j

i that rj belongs to and

ωi : {(t1, t2, ..., tm)|tj is a segment number of P j
i } → R

is the function that expresses correlations between items in
the set S.

More precisely, each piece-wise linear function P j
i is com-

posed of N j
i linear segments, numbered from 1 to N j

i . Each

individual segment with segment number l, 1 ≤ l ≤ N j
i , is

described by a starting quantity sj
i,l and an ending quantity

ej
i,l, a unit price πj

i,l and a fixed price cj
i,l, with the mean-

ing that: bidder i wants to trade any r units of item j,
sj

i,l ≤ r ≤ ej
i,l with the price:

P = πj
i,l · r + cj

i,l

Note that the function P j
i is not required to be continuous;

that is, (sj
i,l+1−ej

i,l) may not equal 1. Also, for convenience,
we call segment number 0 the segment in which the starting
quantity, the ending quantity, the unit price and the fixed
price are all equal to 0. Thus, the number of segments of
P j

i , including this special segment, will equal N j
i + 1.

The correlation function ωi has many potential uses in
real-life scenarios. For example, suppose bidder i, selling 3
items (1, 2 and 3), wants to express things like “I am willing
to sell r1 units of item 1 and r2 units of item 2 together
with a price p, but not separately”. Using our correlation
function, this can be expressed by adding segments t1 and
t2, which contain only r1 and r2, to the functions P 1

i and
P 2

i , respectively, then giving ωi(t1, t2, t3) a very small value,
for every t3, and giving P 1

i (r1) and P 2
i (r2) very big values.

This way, the auctioneer will never choose to buy r1 or r2

separately.
Although this is not our main focus, this means of rep-

resenting bids is novel and superior to those previously dis-
cussed. Compared with [9], [3] and [4], for instance, it is
more expressive as it allows bidders to detail the correla-
tion between separate items. Compared to XOR atomic
proposition presentations, it is as expressive but much more
compact (as per our example in section 1).

For convenience, from this section on, we will use the fol-
lowing terms.

Definition 2. A valid allocation is a supply allocation that
completely satisfies the demand constraint.

Definition 3. A supply allocation 〈r̄j
i 〉 is not less profitable

than a supply allocation 〈rj
i 〉 if the former brings the auc-

tioneer an equal or bigger revenue than the latter. That
is:

P (〈r̄j
i 〉) ≤ P (〈rj

i 〉)

According to this definition of profitability, the most prof-
itable valid allocation optimises the auctioneer’s total rev-
enue. Thus, this is what our algorithms aim to find. We
first consider the multi-unit single-item case (section 3.1),
before moving onto the combinatorial case (section 3.2).

3.1 MULTI-UNIT SINGLE-ITEMS
Using the notation from the previous section, the single-item
case can be re-formulated as follows. Let n be the number
of bidders. The auctioneer has a demand q. Each bidder i
submits bids in the form of a piece-wise linear supply curve:
Pi : N → R, which is composed of Ni linear segments. Each
segment l, 0 ≤ l ≤ Ni is described by a starting quantity
si,l and an ending quantity ei,l, a unit price πi,l and a fixed
price ci,l.

Definition 4. The dominant set D is the set of all alloca-
tions (r1, r2, .., rn) such that there exists a k, 1 ≤ k ≤ n,
such that all rλ1 , ..., rλk−1 equal the ending quantity of the
segments that they belong to, and all rλk+1 , ..., rλn equal

the starting quantity of the segments that they belong to:10{ rλi = eλi,tλi
,∀1 ≤ i ≤ k − 1

rλi = sλi,tλi
,∀k + 1 ≤ i ≤ n

rλk = q −
∑n

i=1,i6=k rλi

where:

• ti is the segment on Pi that ri belongs to. That is,
si,ti ≤ ri ≤ ei,ti .

• (λi)
n
i=1 is any permutation of (1, 2, ..., n) such that

{πλ1,tλ1
}n

i=1 is sorted increasingly:11

πλ1,tλ1
≤ πλ2,tλ2

≤ ... ≤ πλn,tλn

From this, a number of lemmas follow:

Lemma 1. For every allocation (r1, r2, ..., rn) there exists
an allocation in the dominant set D that is not less profitable
than it.

Proof. Let (r1, r2, ..., rn) be an allocation. Let ti be the
segment that ri belongs to. Suppose (λi)

n
i=1 is a permuta-

tion of (1, 2, ..., n) such that:

πλ1,tλ1
≤ πλ2,tλ2

≤ ... ≤ πλn,tλn
(3)

Step 1: we prove that there exists an allocation 〈r(1)
i 〉, that

is not less profitable than 〈ri〉, where r
(1)
i belongs to segment

ti of Pi, ∀1 ≤ i ≤ n and, either r
(1)
λ1

= eλ1,tλ1
or:{

r
(1)
λi

= sλi,tλi
,∀2 ≤ i ≤ n

r
(1)
λ1

= q −
∑n

i=2 r
(1)
λi

Let us consider the case where rλ1 < eλ1,tλ1
and there

exists a k, 2 ≤ k ≤ n, such that rλk > sλk,tλk
.

10There may be many dominant sets D, as there may exist
many permutations (λi)

n
i=1.

11There may exist many such permutations (λi)
n
i=1, as there

may be many ways to sort the set {πi,ti}n
i=1.



Consider the allocation (r′1, r
′
2, ..., r

′
n) where:{

r′λ1 = rλ1 + 1
r′λk

= rλk − 1
r′λi

= rλi ,∀1 ≤ i ≤ n, i 6= 1, i 6= k

Because rλ1 < eλ1,tλ1
and rλk > sλk,tλk

, r′i belongs to
segment ti of Pi, ∀1 ≤ i ≤ n.

Now let us compare the revenues of two allocations 〈ri〉ni=1

and 〈r′i〉ni=1. We have:

P (〈ri〉)− P (〈r′i〉)

=

n∑
i=1

(Pλi(rλi))−
n∑

i=1

(Pλi(r
′
λi

))

= Pλ1(rλ1) + Pλk (rλk )

−(Pλ1(rλ1 + 1) + Pλk (rλk − 1))

= (πλ1,tλ1
· rλ1 + cλ1,tλ1

) + (πλk,tλk
· rλk + cλk,tλk

)

−(πλ1,tλ1
· (rλ1 + 1) + cλ1,tλ1

)

−(πλk,tλk
· (rλk − 1) + cλk,tλk

)

= πλk,tλk
− πλ1,tλ1

But by inequation (3): πλk,tλk
≥ πλ1,tλ1

. Thus:

P (〈ri〉) ≥ P (〈r′i〉)

This means by taking 1 more unit from bidder λ1 and tak-
ing 1 less unit from bidder λk, we will have a new allocation
that is not less profitable than the original one.

Repeating the above process, we will always get a new
allocation that is not less profitable than the original one.

Eventually we get an allocation 〈r(1)
i 〉, that is not less prof-

itable than the original one, where r
(1)
i belongs to segment

ti of Pi, ∀1 ≤ i ≤ n, and either r
(1)
λ1

= eλ1,tλ1
or:{

r
(1)
λi

= sλi,tλi
,∀2 ≤ i ≤ n

r
(1)
λ1

= q −
∑n

i=2 r
(1)
λi

Step 2: In the case if r
(1)
λ1

= eλ1,tλ1
and r

(1)
λ1

< q −∑n
i=2 sλi,tλi

, by repeating the above step, there exists an

allocation 〈r(2)
i 〉, that is not less profitable than 〈ri〉, where:

• r
(2)
i belongs to segment ti of Pi, ∀1 ≤ i ≤ n.

• r
(2)
λ1

= r
(1)
λ1

= eλ1,tλ1

• Either r
(2)
λ2

= eλ2,tλ2
or:{

r
(2)
λi

= sλi,tλi
,∀3 ≤ i ≤ n

r
(2)
λ2

= q −
∑n

i=1,i6=2 r
(2)
λi

By repeating the above steps again and again, we will finally

stop at some step k, 1 ≤ k ≤ n and get an allocation 〈r(k)
i 〉,

that is not less profitable than 〈ri〉, where r
(k)
i belongs to

segment ti of Pi, ∀1 ≤ i ≤ n, and:{ r
(k)
λi

= eλi,tλi
,∀1 ≤ i ≤ k − 1

r
(k)
λi

= sλi,tλi
,∀k + 1 ≤ i ≤ n

r
(k)
λk

= q −
∑n

i=1,i6=k r
(k)
λi

The above lemma leads directly to the following corollary:

Algorithm 1. For every tuple 〈ti〉ni=1 such that ti is a
segment on Pi:

• If
∑n

i=1 ei,ti < q or
∑n

i=1 si,ti > q:
Continue; // Jump to the next 〈ti〉 tuple.

• Sort {πi,ti} increasingly.

• For k = 1 to n do:

– If
∑k

i=1 ei,ti +
∑n

i=k+1 si,ti > q:

∗ Set:{ ri = ei,ti ,∀1 ≤ i ≤ k − 1
ri = si,ti ,∀k + 1 ≤ i ≤ n
rk = q −

∑n
i=1,i6=k ri

∗ End k for loop.

• Compare P (〈ri〉) with the price of the best allocation
found so far.

Figure 1: Clearing algorithm for multi-unit single-
item case with piece-wise linear supply function
bids.

Corollary 1. The dominant set D must contain an op-
timal allocation.

Lemma 2. The number of elements in the set D is not
more than

∏n
i=1(Ni + 1).

Proof. For each tuple 〈ti〉ni=1, in which ti is a segment on
Pi, there exists at most one k,12 so the number of elements
in the set D is not more than the number of such tuples.
But the number of tuples 〈ti〉ni=1 is

∏n
i=1(Ni + 1). Thus:

|D| ≤
n∏

i=1

(Ni + 1)

With these lemmas in place, we can now present our al-
gorithm for the single-item case (see figure 1). Basically,
the algorithm searches through all the allocations of the set
D and chooses the most profitable valid one. We can now
analyse the algorithm to assess its properties.

Theorem 1. The algorithm is guaranteed to find an op-
timal allocation.

Proof. The algorithm searches all the allocations of the
dominant set D. Also, by corollary 1, the dominant set
D contains an optimal allocation. Thus the algorithm is
guaranteed to find an optimal allocation.

Theorem 2. The complexity of the algorithm is O(n ·
(K + 1)n), where K is the upper bound on the number of
segments of Pi.

Proof. The number of allocations searched by the algo-
rithm is equal to the number of elements of the dominant
set. By lemma 2, the number of elements of the dominant
set is not more than

∏n
i=1(Ni +1) ≤ (K +1)n. Also, it takes

O(log n) to sort {πi,ti} and O(n) to find k, so the complexity
of the algorithm is O(n · (K + 1)n).

12There may be more than one k, for example, in the case
where si,ti = ei,ti for every i, but in such cases, it does not
matter which k is chosen.



Having dealt with the multi-unit single-item case, the next
section generalises the algorithm to the multi-unit combina-
torial case.

3.2 MULTI-UNIT COMBINATORIAL ITEMS
As before, we define a dominant set that is proved to contain
an optimal allocation.

Definition 5. The dominant set D is the set of all allo-
cations 〈rj

i 〉 such that for every 1 ≤ j ≤ m, there exists a

kj , 1 ≤ kj ≤ n, such that all rj

λ
j
1
, ..., rj

λ
j
k−1

equal the end-

ing quantities of the segments that they belong to, and all
rj

λ
j
k+1

, ..., rj

λ
j
n

equal the starting quantities of the segments

that they belong to :13

{ rj

λ
j
i

= ej

λ
j
i ,t

j

λ
j
i

,∀1 ≤ i ≤ k − 1

rj

λ
j
i

= sj

λ
j
i ,t

j

λ
j
i

,∀k + 1 ≤ i ≤ n

rj

λ
j
k

= qj −
∑n

i=1,i6=k rj

λ
j
i

where:

• tj
i is the segment on P j

i that rj
i belongs to.

• (λj
i )

n
i=1 is any permutation of (1, 2, ..., n) such that

{ω
λ

j
i
(〈tj

λ
j
i

〉) · πj

λ
j
i ,t

j

λ
j
i

}n
i=1 is sorted increasingly:

ω
λ

j
1
(〈tj

λ
j
1
〉) · πj

λ
j
1,t

j

λ
j
1

≤ ω
λ

j
2
(〈tj

λ
j
2
〉) · πj

λ
j
2,t

j

λ
j
2

≤ ... ≤ ω
λ

j
n
(〈tj

λ
j
n
〉) · πj

λ
j
n,t

j

λ
j
n

From this, a number of lemmas follow:

Lemma 3. For every allocation 〈rj
i 〉 there exists an allo-

cation in the dominant set D that is not less profitable than
it.

Proof. Let 〈rj
i 〉 be an allocation. Let tj

i be the segment

that rj
i belongs to. Suppose (λj

i )
n
i=1 is any permutation

of (1, 2, ..., n) such that {ω
λ

j
i
(〈tj

λ
j
i

〉) · πj

λ
j
i ,t

j

λ
j
i

}n
i=1 is sorted

increasingly:

ω
λ

j
1
(〈tj

λ
j
1
〉) · πj

λ
j
1,t

j

λ
j
1

≤ ω
λ

j
2
(〈tj

λ
j
2
〉) · πj

λ
j
2,t

j

λ
j
2

≤ ... ≤ ω
λ

j
n
(〈tj

λ
j
n
〉) · πj

λ
j
n,t

j

λ
j
n

(4)

For any j̄, 1 ≤ j̄ ≤ m, by proving in similar manner to
lemma 1, there exists an allocation 〈r̄j

i 〉, that is not less

profitable than 〈rj
i 〉, where r̄j

i belongs to segment tj
i of P j

i ,
∀1 ≤ i ≤ n, ∀1 ≤ j ≤ m and for some k, 1 ≤ k ≤ n:

r̄j̄

λ
j̄
i

= ej̄

λ
j̄
i ,t

j̄

λ
j̄
i

,∀1 ≤ i ≤ k − 1

r̄j̄

λ
j̄
i

= sj̄

λ
j̄
i ,t

j̄

λ
j̄
i

,∀k + 1 ≤ i ≤ n

r̄j̄

λ
j̄
k

= qj −
n∑

i=1,i6=k

r̄j̄

λ
j̄
i

r̄j
i = rj

i ,∀1 ≤ i ≤ n,∀1 ≤ j ≤ m, j 6= j̄
13Similar to section 3.1, there may be many dominant sets
D.

Algorithm 2. For every tuple 〈tj
i 〉, 1 ≤ i ≤ n, 1 ≤ j ≤

m such that tj
i is a segment on P j

i :

• For every j = 1 to m do:

– If
∑n

i=1 ej

i,t
j
i

< qj or
∑n

i=1 sj

i,t
j
i

> qj:

Continue; // Jump to the next 〈tj
i 〉 tuple.

– Sort {ωi(〈tj
i 〉) · π

j

i,t
j
i

} increasingly.

– For k = 1 to n do:

∗ If
∑k

i=1 ej

i,t
j
i

+
∑n

i=k+1 sj

i,t
j
i

> qj:

· Set:

{ rj
i = ej

i,t
j
i

,∀1 ≤ i ≤ kj − 1

rj
i = sj

i,t
j
i

,∀kj + 1 ≤ i ≤ n

rj
kj

= qj −
∑n

i=1,i6=kj
rj

i

· End k for loop.

• Compare P (〈rj
i 〉) with the price of the best allocation

found so far.

Figure 2: Clearing algorithm for multi-unit combi-
natorial case with piece-wise linear supply function
bids.

Repeating the above step for every j̄ from 1 to m, we
complete the proof.

The above lemma leads directly to the following corollary:

Corollary 2. The dominant set D must contain an op-
timal allocation.

Lemma 4. The number of elements in the set D is not
more than

∏n
i=1

∏m
j=1(N

j
i + 1).

Proof. Consider an allocation 〈rj
i 〉 in D. By lemma 2,

for each j̄ ranging from 1 to m, the number of possible

values of a tuple 〈rj̄
i 〉

n
i=1 is not more than

∏n
i=1(N

j̄
i + 1).

Thus, the number of possible values of 〈rj
i 〉 is not more than∏n

i=1

∏m
j=1(N

j
i + 1).

With these lemmas in place, we can now present our al-
gorithm for the combinatorial case (see figure 2), which, as
before, searches through all allocations of the dominant set
D and chooses the most profitable valid one. We can now
analyse the algorithm to assess its properties.

Theorem 3. The algorithm is guaranteed to find the op-
timal allocation.

Proof. Same as that of theorem 1.

Theorem 4. The complexity of the algorithm is O(mn ·
(K + 1)mn), where K is the upper bound on the number of
segments of P j

i .

Proof. Same as that of theorem 2.

Note that this is a worst-case analysis. In many real-
life scenarios, each bidder is likely to provide only a strict
subset of the set of goods/services, not all of them. So if
bidder i does not provide an item j, then N j

i = 0, meaning



the number
∏n

i=1

∏m
j=1(N

j
i + 1) is much smaller than (K +

1)mn. For example, given the values suggested in [4] (that
are claimed to resemble real-life problems in the domain of
e-commerce), the complexity of our algorithm reduces to

O(mn ·3
m(n+4)

2 ). While this is certainly not an average case
analysis, it provides an indication of the complexity that
may be encountered in practice.

4. RELATED WORK
As noted in section 1, most of the work on auction clear-
ing to date has concentrated on the atomic proposition case
which is neither as compact nor as economically efficient
as demand/supply bidding. However, some work has ex-
amined more general settings. For instance, [9] considered
multi-unit single-item auctions with bids in the form of sup-
ply/demand curves. By limiting these curves to a specific
type (linear and piecewise linear curves14), they were able to
analyse the complexity and suggest an algorithm for clear-
ing.15 However, this work does not deal with the multi-unit
combinatorial case.

Other researchers, such as [3] and [4], have further con-
sidered multi-unit combinatorial reverse auctions with sup-
ply curves. They showed that in the case where the sup-
ply curves are piecewise linear, the clearing problem can
be modelled as a Linear Program and solved using Linear
Programming techniques. However, in this work, bidders
submit separate supply curves for different items, and they
assumed additive separability. This means that their auc-
tions are not truly combinatorial in nature as the correla-
tion between items is ignored.16 [2] have developed algo-
rithms for multi-unit combinatorial reverse auctions with de-
mand/supply function bidding when the bidding functions
exhibit specific properties (free disposal and sub-additive
pricing). These settings are truly combinatorial as the bid-
ders submit the bidding functions for combinations of items.
The algorithms run in polynomial time and produce solu-
tions that are shown to be within a finite bound of the opti-
mal. However, they are not guaranteed to find the optimal
allocation.

5. CONCLUSIONS AND FUTURE WORK
This paper presents, for the first time, optimal clearing
algorithms for multi-unit single-item and multi-unit com-
binatorial auctions where bids are expressed through sup-
ply/demand functions. Specifically, we consider the class of
supply/demand functions where the demand/supply curves
for each individual commodity are piece-wise linear (an im-
portant and often considered case). This means our algo-
rithms enable us to deal with a more general case than any
previous work in this area. Moreover, we believe this degree

14Their concepts of linear and piecewise linear curves are
different from ours, as they consider the unit price function,
not the total price function. Thus, when they speak of a
linear unit price function, this means a quadratic total price
function.

15They provided an algorithm for the linear case only, not
for the piecewise linear case.

16Note that in the case where the assumption of additive
separability is adopted, it is possible to use our single-item
algorithm to clear the auction, by repeating the algorithm
for every item. This gives an optimal allocation algorithm
whose complexity is O(mn · (K + 1)n).

of expressiveness is important for obtaining the maximum
benefit from combinatorial auctions in practical settings.
For the future, we aim to evaluate the algorithms empiri-
cally with real-life scenarios and to reduce the complexity
of the algorithms which, we believe, can be achieved using
standard combinatorial search techniques such as Branch-
and-Bound and heuristics.
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