
 1

‘Forget About It’: Signage at Preview Day 2003

Ian C. Millard, Gareth V. Hughes, Danius T. Michaelides, David E. Millard, m. c. schraefel, Mark K.
Thompson, Mark J. Weal

Intelligence, Agents, Multimedia Group,
School of Electronics and Computer Science,

University of Southampton

{ icm02r, gvh, dtm, dem, mc, mkt, mjw} @ecs.soton.ac.uk

In this report we present a brief introduction to the Signage Project, a multidisciplinary
research collaboration exploring the physical-digital space, and detail our first
experimental system which was deployed during a University ‘Preview Day’ for Sixth
Form students. This system allowed the students to ‘ tag’ posters and demonstrations on
display that they found interesting during the day, enabling an adaptive, digital after-
experience that provides access at the user’s convenience to further information on those
topics which were of interest. We describe the motivation for our work, explain the
Preview Day system, and discuss the future work stemming from this initial effort.

1 Introduction

The Signage project at the University of Southampton is an interdisciplinary effort
within the IAM Group in the School of Electronics and Computer Science. Signage is
designed to consider how the digital information space can augment human activity
carried out in the physical space. Signage is uniquely situated in Southampton as a
‘bridge’ project between two EPSRC funded IRCs: AKT1 in the semantic web space,
and Equator2 in the infrastructure/interaction space. Signage also has participant
researchers from the fields of AI and e-Science.

Our focus for the project is on the Visitor. The concept of the visitor is a rich one for
focusing interdisciplinary research and collaboration in the area of exploring the
physical-digital space. The visitor focuses us on the multiple aspects of
physical/digital requirements: that the visit takes place in a physical space; that a visit
is a temporal event; that there are different classes of visits and visitors.

Each of these visit attributes has implications that must be solved concurrently, from
which systems will be offered when to whom, to software architectures to support
new information and services, to multiple devices accessing the system, to the
services provided themselves. We must also consider the ways the visitors can engage
with the information and services provided, and how their privacy is protected in any
such exchange.

For instance in our case, that of a university research school, we have a range of
regular visitors: UCAS students who visit at different times of the year to evaluate

1 http://www.aktors.org/
2 http://www.equator.ac.uk/

 2

universities for their studies; industrial visitors who are looking for possible research
cooperation; collaborators from different institutions, and of course, drop in visitors
from elsewhere on the campus or local area, not specifically associated with the
School. For each of these visitors, a visit system will optimally afford distinct
information and services appropriate to the number and kind of visitors within the
space/system. What we are exploring in Signage, through the visit scenarios are
questions like the following:

�
 How can we augment the environment to support visitors’ understanding of the

site, appropriate to the kind of visit in which they are engaging?
�

 How can we support their information needs, from navigation to communication,
in the physical context?

�
 How do we assist collaboration between internal and external information sources

while the visitor is on site?
�

 How can we sustain persistence of their interactions with the site, so that
participants can recover relevant parts of those events on demand?

In order to understand the role of pervasive computing in this context, we are
considering questions from four related streams:

�
 Infrastructure: infrastructure to support multiple devices, services and

information interacting concurrently
�

 Semantic Web Technologies: for delivery of information and services
�

 Hypermedia: for representation and delivery of information
�

 Interaction: consideration of affordances, constraints and requirements for
service deployment.

In the following sections, we describe our first effort to explore the integration of
these areas in order to support one class of visitor to our School. We describe the
motivation for work, the system we developed and the future work stemming from
this initial effort.

2 First Prototype

2.1 Motivation
We were challenged to provide a service for Preview Day visitors; these are once-a-
year visits by Lower Sixth Form students who visit a variety of University Schools
over the course of a day in order to gain a sense of areas of interest to them and their
parents. The Computer Science School was tasked to provide a demonstration area
where students could see examples of the different research projects currently being
undertaken.

Based on a previous study we have carried out with UCAS visitors, we know that the
school handbook, listing modules in various streams in the school, is not regarded as
particularly engaging material. In addition, we have learnt from the academic staff

 3

Figure 1 – An

iButton and key fob

running the event that students are more interested in “gee-whiz” demonstrations
rather than those which address deeper research questions.

2.2 ‘Forget About It’
We came up with a design we call “Forget About It” 3, allowing students to ‘tag’
posters/demonstrations for later retrieval. By supporting tagging, we hypothesised that
we could help students engage with poster/demonstration presenters without having to
worry about taking down notes about posters or people of interest. Students simply
‘ tagged’ posters of interest (explained below). Later, they could visit a web site that
presented a page of just the posters/demonstrations they had visited. Further
information relating to these posters/demonstrations was presented, and augmented
with information about the project, project URLs, and in particular, a list of
undergraduate courses they might like to take based on the content of the demo. The
listed courses were linked to the appropriate Calendar entries on the University web
site. In this way, we hypothesised that we had provided a context for students to learn
about some of the courses they might take, as well as having a concrete reason for
taking them. In other words, we used the demos as an event/context for learning more
about the research and the associated curriculum.

We supported the tagging process with iButtons4, see
Figure 1. As students arrived at the demonstration they
were given an iButton and encouraged to optionally
register their name and email address. As the iButton has a
unique identifier, any information registered and all
subsequent events with that iButton were associated with
that id, hence still allowing interaction without having to
specify any personal details.

Students were given the iButton to keep, as a persistent
reminder of the event. They were also given a handout
explaining where the URL for their web page would be and
how to get to their customised page.

The following sections of this paper present a discussion of the infrastructure, storage,
devices and systems issues with deployment of this Signage visit demo. We conclude
with some lessons learned and next possible steps for Signage as outcomes of the
process of deploying this demonstrator.

3 Infrastructure

The infrastructure on which the Preview Day experience was hosted consists of a
distributed client/services architecture as described in Figure 2, with multiple
processes interacting via the Elvin content based messaging system5.

3 http://signage.ecs.soton.ac.uk/visit03.html
4 http://www.ibutton.com/
5 http://elvin.dstc.edu.au/

 4

Figure 2 – Conceptual ‘high level’ architecture diagram

Each of these asynchronous services connects to a central Elvin daemon, which
allows them to publish and/or subscribe to particular Elvin notifications. These
notifications consist of a group of key-value pairs, and they are routed by the daemon
to all clients that have registered subscriptions for those types of message. These
interactions are depicted in Figure 3, and the messages passed are listed in detail in
Appendix A.

Figure 3 – Interactions of Elvin clients in the Preview Day infrastructure

 5

The data storage mechanism underpinning Preview Day experience is the AKT
Triplestore6, a specialised RDF repository and inference engine. Java utilities were
created to provide access to the Triplestore’s HTTP RDQL interface, allowing queries
to be made and their results returned. In addition, the RDFAsser t er Elvin client ran on
the Triplestore server to allow the assertion of RDF in real-time when an ‘assert’
notification was received. Each time such a notification arrived, a file was opened on
the server and RDF data written to it. Subsequently, the Triplestore import program
was executed such that the data in the new file was incorporated into the repository.

3.1 iButton docks
iButtons are a class of 1-Wire7 device that both communicate and receive power over
a serial bus. These busses can be driven by an interface connecting to a standard PC
serial port. In the signage implementation, a separate 1-Wire bus was routed for each
docking station, isolating each station from bus shorts, but also providing a
mechanism by which location could be cued: each bus, and therefore each PC serial
port, represented a discrete location.

For the Preview Day experience, one PC served as a 1-Wire bus master for all of the
docking stations at posters and demonstrations, and also for some of the visualisation
stations. In order to demonstrate that different hosts could participate as message
producers of equal stature, 1-Wire bus masters were deployed on each of the
Registration Terminals. For each 1-Wire bus master, a Java thread would poll the bus
for device arrival or departure events. Upon observing such an event, an Elvin
notification was generated comprising the identifier of the device observed, the nature
of the event (arrival or departure), and the physical location keyed on the bus on
which the event was observed.

Where iButton docks were placed alongside hosts that were running applications for
visualisation, registration and demonstration, the coupling between message source
(e.g. an iButton being docked in its receptacle) and sink was distributed, an artefact of
the nature of the iButton device.

The physical characteristics of certain iButton docks meant that under certain
conditions, the arrival or departure of a device would electrically short the bus,
resulting in the process monitoring the bus wrongly reporting that there were no
devices present: any other device on the bus would be reported as having departed for
the duration of the short, and then re-arriving once the short resolved. This is a point
of confusion for some of the applications that registered interest in device events.

There are other techniques to providing tree-like 1-Wire bus structures that are
resilient to bus shorting, and addressable to the extent that different sections of the bus
could represent different physical locations. Whilst interesting to research for larger
scale, more permanent deployments, the approach of a single ‘dock station master’ PC
with 16-way serial port multiplexer where each port masters its own 1-Wire bus
sufficed for the Preview Day experience.

6 http://triplestore.aktors.org/
7 http://www.maxim-ic.com/1-Wire.cfm

 6

4 Preview Day Applications

4.1 Registration Terminal
When students arrived at the Preview Day, they were given an iButton and requested
to enter their details at a registration terminal. This terminal combined an iButton
docking point and a Ki oskDi spl ay – a simple Java web browser that could also be
instructed to display specific pages by means of publishing an Elvin notification. The
Regi st r at i onCont r ol l er process detected iButton arrival messages, and advanced
the display from a welcome screen to an input form, allowing the user to enter their
name, school and optionally their email address. On submission of the form, the web
server asserted this information as RDF in the Triplestore, associated against the
unique iButton identifier, and displayed a confirmation/thank you screen at the
terminal. If at any point during the registration process the iButton was removed, then
the Regi st r at i onCont r ol l er cancelled the registration and returned the screen to
the welcome state.

When iButton arrival or departure notifications were received by the
I But t on2Ri chI nf o client, the Triplestore was queried to return any information
associated with the ID of the iButton and the location from which it had occurred.
This was then republished as another Elvin notification for use by other applications,
such as the I nt r oduct i onSer vi ce and Event Vi sual i sat i on.

In addition to the mogrification of arrival and departure notifications, the
Asser t Locat i ons client stored a time-stamped record of each arrival by asserting an
RDF resource in the Triplestore detailing both the iButton ID and the location of the
visit.

4.2 Visualisations
To provide some exposure of the underlying infrastructure to the visiting students,
two visualisations were constructed and displayed in the room on a projected screen,
in conjunction with an explanatory poster. The Event Vi sual i sat i on gave a
real-time scrolling ‘ log’ of the events received, detailing arrivals, departures and other
events within the room. In addition, the Locat i onVi sual i sat i on provided a
dynamic map of the room, emitting circular ‘pings’ representative of the location of
the source of each Elvin notification. Although crude, studying this display gave a
rough representation of which demonstrations were popular, as they could be seen to
emit pings more frequently than those which were less popular. A screenshot of these
visualisations can be seen in Figure 4, below.

 7

Figure 4 – Visualisations of iButton dockings

In addition to the user-facing visualisations, an Elvin sub-system health monitor
visualisation tool was deployed, as shown in Figure 5, which assisted in the ‘comfort’
level of those researchers responsible for the liveness of the system. The nature of
interaction using Elvin means that no individual component needs to understand all
the various notification elements, their name, purpose or type. However, because the
Preview Day was a closed system in that all of the code was developed by a small
team of researchers, the meaning of the various components of the notifications (such
as which attributes appear together, what the purpose of each attribute and notification
was) was known. Leveraging this knowledge, a set of subscription expressions was
identified that captured the entire spectrum of possible notifications, which was then
used to seed the eMatrix Elvin traffic visualisation tool8. Each different type of
notification is associated with a character, which scrolls down the screen as such
events occur. This system was utilised to resolve the difficulty of attempting to watch
a raw log of the Elvin notifications in real-time, as there are so many events occurring
that they cannot be seen before they have scrolled off the screen. Watching the
comparatively slow ‘ trickle’ of characters moving down the screen allowed the
researchers to monitor the events occurring at a more abstracted level, with any lack
of a particular type of event indicating a possible problem or failure.

8 http://elvin.dstc.edu.au/projects/ematrix/

 8

Figure 5 – eMatr ix Elvin traffic visualisation tool

Whilst not particularly usable by non-specialists, the visualisation enabled a simple
mechanism by which the overall health of the various components participant in the
experience.

4.3 Introduction Service
As part of the trials, two iButtons were associated to an introduction service. This was
a Director movie9 that used the Xtrae4 plug-in10 to subscribe to Elvin notifications. A
screen shot of the introduction service is shown in Figure 6.

There were a number of objectives to the construction of the I nt r oduct i onSer vi ce.
�

 To provide an entertaining demo for the visitors day.
�

 To look at the distribution of devices connected by a notification message
format. The interface was separated from the iButton code. Ideally, the display
could have been separated from the application as well, with a fixed display
that simply receives notifications and displays the identified text. There wasn't
time for that for this trial however.

�
 To begin to look at automatic configuration or indeed service discovery. The

I nt r oduct i onSer vi ce receives notifications to tell it the location identifier of
the iButton dock for which it has to respond. This form of simple
configuration by notification could form the basis of more automatic
configuration strategies.

9 http://www.macromedia.com/software/director/
10 http://elvin.dstc.edu.au/projects/xtrae4/

 9

�
 To look at how the Triplestore could be used to augment information flowing

through the infrastructure. Initial ideas centred on the I nt r oduct i onSer vi ce
querying the Triplestore by asynchronous notifications. In the end, the
I But t on2Ri chI nf o client intercepted the original iButton notifications and
added the additional information from the Triplestore. Variations on these
strategies could be tried and compared.

The architecture for this visualisation is fairly straight forward. The
I nt r oduct i onSer vi ce process listens for the rich arrival/departure notifications,
which contain data extracted from the Triplestore as and when people arrive or depart
from an iButton dock. When two people are docked at the Introduction Terminal, it
generates an introduction and sends a notification to the rest of the system to indicate
that it has introduced two people. After ten seconds the introduction service returns to
its main screen and waits for two new people to dock with the system.

Once two people have docked and the notifications are successfully decoded, an
introduction is produced on the interface. This is created from introduction
information loaded from the XML data file [Appendix B] and combined with the
details from the Triplestore concerning the two people to be introduced.

There are two types of template in the script. The first is a brief piece of introduction
text, allowing greetings to be made in the format “ [name1] i nt r o_t ext [name2] ” .
The script file contains these snippets between <i nt r oduci ng> tags.

The second type of template is an anecdote about the person. The anecdotes are
intended to be non-gender specific and ludicrous to the point of non-believability. It
was not our intention to offend anybody with these anecdotes. The format of the
anecdote is always “ [name] anecdot e” , with the anecdotes being selected randomly
from those in the script file, encapsulated within <anecdot e> tags.

There is a random chance that instead of an anecdote, if data is available, the school
of the person will be mentioned in the form “ [name] goes t o [school] ” , in a
pitiful attempt to at least occasionally ground the introduction in reality.

So once there is a per son1 and per son2 docked at the iButton the screen will
introduce them as shown here in Figure 6.

Figure 6 – An example introduction from the IntroductionService

 10

It can be seen that all of the introductions appear to be different, even though each
follows the described format –

[name1] i nt r oduct i on_t ext [name2]

[name1] anecdot e

[name2] anecdot e

The I nt r oduct i onSer vi ce listens for, and is configured by an Elvin notification in
the form

i But t onI nt r o: " r eset "
i But t onName: <i But t on_l ocat i on_i d>

Receiving this notification will tell the I nt r oduct i onSer vi ce that there are no
buttons currently docked. This became necessary as due to shorting problems with
some versions of the iButton docks, the I nt r oduct i onSer vi ce could get into a
confused state where it believed a button was still docked when it had been removed.

The i But t onName parameter is used to configure the I nt r oduct i onSer vi ce to
monitor a specific iButton dock, from which it listens for the arrivals and departures
of people that are required in order to generate introductions.

In addition, when it introduces two people the I nt r oduct i onSer vi ce gives details on
the meeting of the two people, by sending an Introduction notification in the format

i But t onI nt r oduct i on: " i nt r oduced"
Per son1: [name1]
Per son2: [name2]
I nt r oduct i onText : [name1] [i nt r oduct i on_t ext] [name2]
Per son1Text : [name1] [anecdot e1]
Per son2Text : [name2] [anecdot e2]

5 Post-visit experience

After the visit the students were allowed to keep their iButtons and were given a web
address where they could retrieve a personalised brochure for the school.

When they visited the site they were presented with a simple web form that asked for
either their email address or the unique id written on their iButton. These were then
passed to a Servlet that generated an adaptive brochure page, as shown in Figure 7.

 11

Figure 7 – An example ‘after-experience’ web page

The Servlet first queries the Triplestore to retrieve a list of all the demonstrations and
poster displays that the student visited and selected on the day. It then builds those
into a user profile. The brochure itself is stored as a FOHM structure [2] in Auld
Linky contextual link server [1]. Each part of the structure has metadata attached to
say in which contexts it is visible. When the Servlet queries Linky it does so in the
context of the selected demos. This causes parts of the returned brochure structure
(those demos that the student was not interested in) to be removed. The Servlet then
crawls over the remaining structure and renders it into DHTML.

The top level of the brochure structure is a list of demos but each demo entry can
itself be made up of other sub-structures. Thus the brochure is more of a tree than a
list.

The sub-structures can be typed and the Servlet renderer uses the type of each
structure to decide how to render it. For example, lists are rendered as a sequence. In
addition to lists we also use LoD (Level of Detail) structures. These represent a set of
content describing a single concept, but in increasing levels of detail. When it
encounters a LoD the renderer uses the lowest level of detail but places a [+] next to it

 12

and inserts DHTML such that the [+] expands into the next piece of content in the
LoD structure.

Figure 7 shows how we used this to arrange the brochure. Each demo has a title,
picture and small paragraph of explanation. These are then followed by LoD
structures describing each school course that is applicable to that demo. If the user
decides to expand a course name then a description is shown along with a link to the
home page for that course.

In this first version of the post-visit Servlet the user context is used only to select
which demos will be described. However, the context could also be used to alter the
descriptions of the demos and the courses. For example, the descriptions could
describe relationships with other demos if it was known that those had also been
selected and course descriptions could include specific information on how selected
demos were applicable to them.

6 Event playback

The definition of an agreed schema for all of the notifications distributed throughout
the system [Appendix A] meant that an event capture process could be set up to
record all device and process interactions. Each new event is marked by three dashes
and the ISO8601 standardised time of the notification, with the body of the
notification represented as a list of attribute-value pairs. For example,

- - - 2003- 06- 18 10: 57: 45. 417312+0100 - - -
Pr esence- Locat i on:
" ht t p: / / www. ecs. sot on. ac. uk/ l ocat i on/ #B59. 1257. r egi st r at i on"
Pr esence- Act i on: " Ar r i ved"
Pr esence- I dent i f i er : " ur n: si gnage/ i but t on#860000000B23080C"

- - - 2003- 06- 18 10: 57: 45. 814310+0100 - - -
Ki osk- I dent i f i er : " Regi st r at onTer mi nal 1"
Updat e- URL:
" ht t p: / / s i gnage. ecs. sot on. ac. uk/ i nf o. php?i But t on=860000000B23080C"

In this fragment there are two events, the first of which originates from the
I But t onPr oducer process, polling the 1-Wire bus pertaining to the iButton dock at
the first registration station, and the second is from the Regi st r at i onCont r ol l er
process, instructing the Ki oskDi spl ay to navigate to the next page. As discussed
previously, each of these notifications would be routed by the Elvin daemon to
processes that had registered an interest in them.

Having a log complete with individual timestamps enables the replay of any part of
the experience in order to analyse what processes worked well, visualise which
stations were visited the most, or test new processes without actually requiring all of
the 1-Wire hardware to be set up and running. This record-replay-reflect cycle not
only assists in gleaning valuable research data from the experience beyond more
typical user interaction studies, but it also readily enables visual demos of the system
to visitors that couldn't make the 'installation demo', or perhaps wouldn't receive as
much benefit from a videoed recording.

 13

7 Discussion

7.1 Re-visiting
Students seemed enthusiastic about the process – comments like “cool” were heard at
the registration desk. Comments like “this sucks,” happily, were not. To those
students who registered an email address, we mailed out a note a day after the event to
remind them of the URL to the web site and how they could access their page: either
by entering the id number on their iButton or by entering the email address they gave
us. In the two weeks after the event, of 85 students who picked up iButtons, 30
returned to the site, logged in and loaded their custom web page. This one-third plus
return to the system is a positive indicator. It suggests that students were interested
enough in the system or the associated material to go through the trouble of logging in
and looking around the page. What we need to investigate further are the attributes
responsible for generating a return to the information: the interaction with the
iButtons, the notion of a customized page based on those deliberate interactions,
interest in a specific demonstration, the convenience of having subjects of interest
gathered in one place, and so on.

7.2 System events
Beyond the interaction, we have also been able to test our infrastructure for handling
multiple events (some 7000 in 2 hours) and for our Triplestore technology to handle
that many assertions into it in real time.

7.3 Registration, Queues, Bottlenecks and Ergonomics
The Preview Day experience was planned as three, one hour slots during which time
the visiting students would arrive, register, and engage with poster presenters around
the room. The School indicated to us that it would be impossible to know in advance
the numbers that would arrive. We were given estimates of approximately 20 to 30
students per session. With little else to go on we ordered 100 standard identity
iButtons, 100 plastics fobs for iButtons and printed 100 colour instruction sheets to
hand to each student on entry. The primary purpose of the sheet of paper was to carry
the URL to the post-experience web page. There was a labour cost in fixing iButton to
fob, printing the sheets and sticking each fob to the sheets. The reality was that 45
people arrived for the first session, slightly more for the second and slightly less for
the third. We had set up one registration terminal on a normal height table just outside
the door to the seminar room. A quick speech to each group by one of the team to the
visitors before they entered the room explained what we were doing and that each
person should taken an iButton, register and go and explore. It quickly became
apparent that the registration process would become a bottleneck.

The time for each person to register was two to three minutes. The majority of
students filled in all three fields (name, email and school) even though we explained
they were optional. The registration terminal was on a normal height table, so users
had to put their things down, reorganise their bags and familiarise themselves with a
keyboard and screen, then type. Most were fast typists and nearly all had email
addresses. It should be noted that pressing the Return key did not activate the Submit
button. The mouse needed to be used or a user had to tab to the Submit button and

 14

then press Return. This was a cause of slight confusion and delay in some cases. The
cumulative effect was a queue that blocked the foyer of the School for approximately
ten minutes in advance of the first session.

We quickly changed plan and told people to take an iButton, go straight in and
register later as and when the terminal became available. Acknowledging a user’s
interest for a poster/demo required only the iButton to be docked, and due to the
nature of the way in which the data was stored in the Triplestore using the iButton ID
their registration and visit data automatically tied up when they subsequently came to
register. However, the applications requiring registered information, such as the
I nt r oduct i onSer vi ce, could not be used until that information was registered with
the system.

The “register whenever” approach helped reduce congestion but still led to a queue
for the terminal. For the second session we set up a second registration terminal using
a laptop. This was easy to do as the messages it sent were no different to the other
machine and the rest of the infrastructure was unaffected. This was a definite plus
point to using asynchronous messaging. Unfortunately the laptop keyboard was a little
harder to use than a normal keyboard but it had the desired impact on the queue of
people. The recommendation is that laptops should not be used as data entry terminals
for the public. A second recommendation is that a public terminal to be used by a
standing person should be placed on a bar-height location, not a table. There also
needs to be a certain amount of room around each terminal to avoid choke points.

As we used up our entire iButton stock by the end of the second session we packed
away the system before the start of the third session while the demonstrations and
posters were left up. If the system was deployed for other types of events, such as a
conference, there is the advantage of having pre-registration. Then an iButton, or
other identifying device such as an RFID tag, can be pre-registered to users and
handed out on arrival with the rest of the conference material. There is still an
additional workload with this as well as the requisite for technical support to be on
hand to support the people running a conference registration desk. There are also
going to be a non-trivial number of people who arrive at a conference who are not
fully registered, then the registration process must available on the day.

7.4 Infrastructure issues
The key challenge to the infrastructure posed by this visit day is to provide a suitable
layer of abstraction so that applications and experiences can be built and deployed as
efficiently as possible. Whilst the visit day was a temporary installation, we envisage
permanent deployment of hardware around the building on which many applications
can be run, both permanently and for specific events.

The use of the content-based routing means that any number of applications or
services can connect to the messaging system and be instantly aware of any events
occurring. However, this assumes a common understanding of what the key-value
pairs in the messages mean. We envisage an Elvin Dictionary that describes possible
messages and their contents. For the Forget About It application the dictionary would
be quite small, but for more complex applications, the dictionary could be quite large.
Ontological descriptions of message contents would allow translation to facilitate
communication between components.

 15

In addition, descriptions of messages and processes that produce them would be an
aid to the developer during building and debugging. Ultimately, the construction of an
experience could be as simple as dragging and dropping suitable components
together.

The use of the Elvin messaging system provides one possible cut through the
infrastructure space. Elvin does not provide any form of state or persistence; instead
we relied on specific listening processes to create triples for storage in the Triplestore.
Other possible infrastructures we may choose to use/evaluate (perhaps in conjunction
with Elvin):

�
 tuple-spaces with triggers

�
 web-services with service composition and workflow

�
 modelling the world (eg a semantic mud)

7.5 Use of the Triplestore
The manner in which the Triplestore was used during the Preview Day experience
was somewhat outside of that anticipated as it was designed. As part of the work
undertaken in the AKT IRC, the Triplestore was conceived to be a high volume store
of relatively static RDF data, which would be updated in large batches from data
acquired from over-night runs of content harvesting applications. Quite conversely,
the Preview Day experience required the real-time assertion of large numbers of very
small RDF files, and subsequently some problems were encountered.

First, there was no external interface to the Triplestore for asserting data. The
RDFAsser t er client was written to provide this functionality, however although it was
sufficiently operational, the repeated opening and writing of files and execution of the
import utility was far from efficient.

Second, after the students had left, a simple script was used to combine the (several
thousand) individual RDF files asserted during the day into two RDF files describing
person data and visit information, for the purpose of ease content management and to
improve database efficiency.

Subsequent discussions have determined that a native interface should be
implemented as part of the Triplestore software to allow for the import of small RDF
models in real-time.

8 Future work

In this report, we have outlined the rationalisation for the Signage Project. We have
described in detail the first prototype system, ‘Forget About It’ . The system integrates
the layers of adaptive infrastructure, semantic web resources, hypermedia information
representations and interaction design. Through this integration, we have been able to
begin to explore where the digital meets the physical for visitors to semi-public
spaces. The purpose of the Visit Day deployment was to allow us to carry out a
loosely formative study of this research space. By building, deploying and watching
the system in use, we have begun to gain an understanding of the questions we will
need to address to support visitors.

 16

Future research in the area of adaptive infrastructure for the visit scenario will need to
consider, for instance, the description, discovery and configuration of services and
devices.

In the semantic web space, we need to consider the engineering aspects of the
Triplestore design for real-time data assertion. This is an initially unanticipated
requirement that has come from this first study.

In the area of interaction research, the questions are legion, and range from both sides
of the interaction with the physical. We are looking at adding features to the tagging
interaction to support short annotations on site. We want to better understand how to
add appropriate affordances to the resulting web space so that the participant can
make better and ongoing use of the resources associated with the artefact they
selected as of interest.

We are also interested to see how we might be able to tie such visit experiences to
persistent information flows both on site and off. For instance, a visitor may indicate a
set of artefacts that have a semantically discoverable relationship. That relationship
might be usable for connecting the visitor to associated resources, such as researchers
in the area, talks to be given, or other events throughout the year.

While this has only been an initial probe into the visit space, it has revealed the space
as a rich one, and a powerful scenario for focusing interdisciplinary research
questions for physical-digital systems and interactions.

9 References

[1] Danius T. Michaelides, David E. Millard, Mark J. Weal, David C. De Roure
Auld Leaky: A Contextual Open Hypermedia Link Server in Proceedings of the
7th Workshop on Open Hypermedia Systems, ACM Hypertext 2001
Conference. Post-Workshop Proceedings to be published by Springer Verlag in
the Lecture Notes in Computer Science (LNCS) Series, August, 2001, Arhus,
Denmark.

[2] David E. Millard, Luc Moreau, Hugh C. Davis, Siegfried Reich. FOHM: A
fundamental open hypertext model for investigating interoperability between
hypertext domains. In proceedings of the 2000 ACM Conference on Hypertext,
May 30 - June 3, 2000, San Antonio, TX

 17

10 Appendices

Appendix A Elvin notification dictionary

Figure 8 represents the sources and sinks of Elvin notifications within the Preview
Day scenario. Examples of each are listed below.

Figure 8 –Producers and Consumers of Elvin noticications

Arrival/Departure
- - - 2003- 06- 18T11: 57: 08. 000000+0100 - - -
Presence-Location: " ht t p: / / www. ecs. sot on. ac. uk/ l ocat i on/ #B59. 1257. r eg2"
Presence-Identifier: " ur n: s i gnage/ i but t on#5D0000091A7C2101"
Presence-Action: " Ar r i ved"

Rich Arrival/Departure
- - - 2003- 06- 18T11: 57: 08. 000000+0100 - - -
Presence-Location: " ht t p: / / www. ecs. sot on. ac. uk/ l ocat i on/ #B59. 1257. r eg2"
Person-iButtonID: " 5D0000091A7C2101"
Presence-Action: " Ar r i ved"
Person-PrettyName: " Joe Bl oggs"
Person-SchoolName: " Sout hampt on Hi gh School "
Person-EmailAddr: " j oe@bl oggs. com"
Person-ResourceID: " ht t p: / / www. akt or s. or g/ ont ol ogy/ s i gnage#per son- 5D0000091A7C2101"
Location-PrettyName: " Regi st r at i on Ter mi nal 2"
X-Mogrified-By: " I But t on2Per sonI nf o (t r i pl est or e. akt or s. or g/ 152. 78. 64. 96) "

 18

Assert RDF
- - - 2003- 06- 18T11: 57: 08. 000000+0100 - - -
Assert-RDF-In-File: " l ocat i on- of - per son- 5D0000091A7C2101. r df "
Assert-RDF-Content: " <?xml ver s i on=' 1. 0' encodi ng=' UTF- 8' ?>
 <! DOCTYPE r df : RDF [
 <! ENTI TY r df ' ht t p: / / www. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#' >
 <! ENTI TY akt ' ht t p: / / www. akt or s. or g/ ont ol ogy/ por t al #' >
 <! ENTI TY ecsl oc ' ht t p: / / www. ecs. sot on. ac. uk/ l ocat i on/ #' >
 <! ENTI TY s i gnage ' ht t p: / / www. akt or s. or g/ ont ol ogy/ s i gnage#' >
] >

 <r df : RDF
 xml ns: akt =' &akt ; '
 xml ns: r df =' &r df ; ' >

 <akt : Per son r df : about =' &si gnage; per son- 5D0000091A7C2101' >
 <akt : i s- at - l ocat i on r df : r esour ce=' &ecsl oc; B59. 1257. r eg2' / >
 </ akt : Per son>
 </ r df : RDF>"

Update Kiosk
- - - 2003- 06- 18T11: 57: 08. 000000+0100 - - -
Kiosk-Identifier: " Regi st r at i onTer mi nal 2"
Update-URL: " ht t p: / / s i gnage. ecs. sot on. ac. uk/ get - det ai l s . php?i But t on=5D0000091A7C2101"

Introduction reset/config
- - - 2003- 06- 18T09: 45: 12. 000000+0100 - - -
iButtonIntro: " r eset "
iButtonName: " ht t p: / / www. ecs. sot on. ac. uk/ l ocat i on/ #B59. 1257. i nt r oduct i on"

Introduction
- - - 2003- 06- 18T11: 23: 30. 000000+0100 - - -
iButtonIntroduction: " i nt r oduced"
Person1: " Ni ck Jenni ngs"
Person1Text: " Ni ck Jenni ngs can' t pr onounce t he wor d f l ange pr oper l y . "
Person2: " Ni gel Shadbol t "
Person2Text: " Ni gel Shadbol t onl y eat s t ur ni ps on Tuesdays. "
IntroductionText: " Ni ck Jenni ngs has j ust been i nt r oduced t o Ni gel Shadbol t "

 19

Appendix B IntroductionService configuration file

<?xml ver s i on=" 1. 0" encodi ng=" UTF- 8" ?>
<scr i pt >
 <i nt r oduci ng>al l ow me t o i nt r oduce</ i nt r oduci ng>
 <i nt r oduci ng>l et me i nt r oduce</ i nt r oduci ng>
 <i nt r oduci ng>I ' m pl eased t o i nt r oduce</ i nt r oduci ng>
 <i nt r oduci ng>pl ease meet </ i nt r oduci ng>
 <anecdot e>was bor n on t he f our t h of Jul y . </ anecdot e>
 <anecdot e>onl y eat s t ur ni ps on Tuesdays. </ anecdot e>
 <anecdot e>once pl ayed mahj ong wi t h t he Sul t an of Br unei . </ anecdot e>
 <anecdot e>l ost a pet hamst er t o Bar bar a Wi ndsor i n a poker game. </ anecdot e>
 <anecdot e>hat es bei ng i nt r oduced t o peopl e. </ anecdot e>
 <anecdot e>appear ed on Quest i on Ti me. </ anecdot e>
 <anecdot e>i s al l er gi c t o sungl asses. </ anecdot e>
 <anecdot e>l i ves i n a f our s t or y one bedr oom f l at . </ anecdot e>
 <anecdot e>can' t pr onounce t he wor d f l ange pr oper l y . </ anecdot e>
 <anecdot e>l i kes t o dr ess up l i ke t he Queen. </ anecdot e>
 <anecdot e>once had J. K. Rowl i ng as a pen pal . </ anecdot e>
 <anecdot e>used t o be addi ct ed t o j el l y babi es. </ anecdot e>
 <anecdot e>l ear nt t o r ead at t he age of 13. </ anecdot e>
 <anecdot e>can onl y use di gi t al c l ocks. </ anecdot e>
 <anecdot e>l i kes Bar r y Mani l ow. </ anecdot e>
 <anecdot e>pl ays t he t uba i n a gar age band. </ anecdot e>
 <anecdot e>has a pet woodwor m cal l ed gnasher . </ anecdot e>
</ scr i pt >

