
Event-Based Modelling and Refinement of Distributed Monitoring
and Controlling System (Extended Abstract)

Abdolbaghi Rezaza Michael Butler deh
ar02r@ecs.soton.ac.uk mjb@ecs.soton.ac.uk

Declarative Systems & Software Engineering Group
Department of Electronics and Computer Science

University of Southampton
Highfield, Southampton SO17 1BJ, United Kingdom

Introduction
The importance of using formal methods in developing critical safety systems is now widely

recognised [1, 2]. One of the well-known formal methods that supported with some tools is the
B-method [3, 4, and 5]. B-method can support the whole life-cycle of software development. It
has been applied to many research case studies and it has also been used in various industrial,
critical applications like railway system, healthcare and etc. with high level of safety concern [6,
7].

Some effort has already been taking place in applying B-Method for system-level modelling
[8] and there are varieties of suggested amendments in original B-Method available to make it
more suitable for modelling of distributed and event-based systems [9, 10].

In this case study, we considering an event-based, system-level, modelling and refinement of
a “Distributed Monitoring and Control System” for vehicle entering and leaving a controlled area
using B. The system consists of different subsystems like the safety barriers and the remote-
control. The main property of the undertaken system is the asynchronous nature of the
communication between subsystems which is susceptible to delay, loss and error. This property
can cause data to become inconsistent.

As usual we start with an informal presentation of the system followed by a very high-level
formal specification of user requirements in single machine. By introducing stepwise
refinements of preliminary formal specification we have tried to show how a single machine can
be refined to a set of concrete machines that precisely define the operations of a whole
distributed system.

Informal presentation of the Monitoring and Control System

The main idea is to elaborate a distributed monitoring and security control system, which will
be able to monitor and control the access of certain authorised vehicles to some hazardous areas
according to a predefined security policy. The system consist of two main physical parts, remote-
control and safety barriers. These two parts communicate with each other through external
communication link. The barriers can control access to two different areas, which are called
Controlled and Protected Areas. A simple illustration of such areas is provided in fig (1). The
Controlled Area surrounds the Protected Area. According to a predefined policy only during
some special intervals of times a vehicle can enter the Controlled Area. In addition only
authorised vehicle can enter the protected area based on the current security policy. The policy
for accessing Controlled and Protected Area can be updated by an on-site official using the
Remote-Control and the updated information will be send to related barriers.

 1

mailto:ar02r@ecs.soton.ac.uk
mailto:mjb@ecs.soton.ac.uk

fig. (1)

Barrier
Remote-Control

Barrier Controlled
Area

Protected
Area

Barrier

Access to areas will be controlled by safety barriers which are able to communicate with the
Remote-Control unit. It is clear that communication links are bidirectional and both parts are
able of sending and receiving information. The communication link between barrier components
and remote-control unit are at risk of delay, loss and error that must be taken in to account during
system design. Implementing the security policy using special security tags on authorised
vehicles has been considered. A set of valid tags can be introduced in the system and the remote-
control is able to update the system with a new tag. Every tag is associated with particular access
policy and this policy can be changed according to an update from the remote-control.

The remote-control can monitor the status of any barrier unit, change the status of controlled-
area from blocked to unblocked or vice versa, update the set of valid tags, update the set of
authorised vehicles, update the access policy associated with every valid tag and communicate to
barriers unit with information related to above actions. The remote-control also can override the
security policy in emergency cases to allow the system for entrance of an unauthorised vehicle to
protected area.

 The Barriers of protected-area can detect the presence of a vehicle, detect whether it contain
a security tag and distinguish between different types of tag. Access is granted only to a single
vehicle with an appropriate tag. Otherwise access is denied. A barrier can be opened for a single
vehicle when the security policy permits access and will be closed immediately after that vehicle
passed through. For vehicle exiting there is no need for tag checking. The barriers also
communicate about vehicle passing information with remote-control.

The barriers in the controlled area perform much simpler tasks. They must allow a vehicle to
pass through when the controlled-area is unblocked and otherwise access is denied. They also
communicate with the remote-control.

Event-B system specification

The first task in our formal development is to create an abstract B-action system from
informal presentation of case study in previous section. The above informal presentation of the
system does not pretend to be complete or to have covered all the technical aspects. Indeed, it is
merely the starting point for constructing the final concrete system. In the event-based discrete
modelling a system is characterised by a finite list of variables that are modified by a finite list of
events. An invariant establishes properties satisfied by variables and maintained by activation of

 2

events reacting to the environment, when guards are true. Based on the undertaken approach now
we are going to extract the main elements and building blocks of the first formal specification;
they are state variables and related events.

First illustration of system is presented in fig (2). BARRIER is a type to identify the set of
barriers units and BARRIER_STATUS to model the status of barriers. CTRL_STATUS represent
two possible status of controlled-area and VEHICLE, TAG and MSG are types that have been
used to identify vehicles, tags and messages respectively. The fact that every vehicle in system
must be in some places and the type of access for a specific vehicle that approaching a barrier in
protected or controlled areas demonstrated by LOC and ACCESS types. It can be perceived that
the two types of barriers in protected and controlled area are presented with PBARRIER and
CBARRIER as subset of barriers and m1 to m4 represent the format of different messages that can
be exchange between barriers and remote-control. Before considering the VARIABLES and
INVARIANT clause some clarifications about order of events occurrence in the system seems to
be necessary.

MACHINE AccessCtrl1

SETS BARRIER;
 BARRIER_STATUS={open,close,failed}; CTRL_STATUS= {blocked,unblocked};
 VEHICLE; TAG ;MSG; LOC={outside,controlled,protected};
 ACCESS={permitted,denied,directly_obtained,withheld}
CONSTANTS
 PBARRIER, CBARRIER,
 m1,m2,m3,m4
PROPERTIES
 PBARRIER⊆ BARRIER ∧ CBARRIER⊆ BARRIER ∧
 PBARRIER ∩ CBARRIER = ∅ ∧ PBARRIER ∪ CBARRIER = BARRIER ∧
 m1: (TAG×ACCESS) MSG ∧ m2: (VEHICLE×TAG) MSG ∧
 m3: (CTRL_STATUS) MSG ∧ m4: (VEHICLE×LOC) MSG
VARIABLES
 kmsgbuf,bmsgbuf, kctrl_state,kloc,ktag,kaut,kpolicy,
 ctrl_state,loc,tag,aut,policy
INVARIANT
 kmsgbuf∈ seq(MSG)∧ bmsgbuf∈ seq(MSG)∧
 kctrl_state∈ CTRL_STATUS ∧ kloc∈ VEHICLE→LOC∧ ktag ⊆ TAG ∧
 kaut∈ VEHICLE ktag ∧ kpolicy∈ ktag→ACCESS ∧ ctrl_state∈ CTRL_STATUS ∧
 loc∈ VEHICLE→LOC ∧ tag⊆TAG ∧ aut∈ VEHICLE tag ∧ policy∈ tag→ACCESS

fig (2)

Some basic events in system can be identified as adding new tag, assigning a tag
to a vehicle, changing current access policy and changing the status of
controlled-area. Regarding the asynchronous nature of the system these events can not
happen in the remote-control and different barriers unit simultaneously. For example consider a
simple scenario where the Remote-Control updates the system with information about a new
access policy associated with a valid tag and meanwhile a vehicle with the same tag approaches
a barrier which has not yet received the updated policy. In this situation the barrier will deal with
the approaching vehicle according to old policy that it is no longer valid form view point of the
Remote-Control. In other words, the variables in the Remote-Control and the barriers can be
inconsistent in some time intervals due to delay and errors in communication links between these
two parts. Therefore two different versions of variables have been considered for remote-control
with a prefix of “k” and for barriers without this prefix. For example ctrl-sate represents the
status of the controlled area as understood by barriers and kctrl-sate is state as understood by
the Remote-Control. Accordingly for those events that can happen both in the Remote-Control

 3

and the barriers we considered two different versions. These connected pairs of events are
labelled with “initialise” and “finalise” prefixes.

The variable kmsgbuf is holding the messages that remote-control is sending for barriers and
bmsgbuf is holding messages from barriers to remote-control. Both have the type of sequence
to preserve the order of messages as a critical property of communication link. Considering the
fact that authorised vehicles are a subset of all vehicles that holding a valid tag and each valid tag
is mapped to a specific access type are reflected in invariant type definition of kaut, kpolicy,
aut and policy.

fig (3)

OPERATIONS
 InitialiseAdd_tag(tt,aa) =
 PRE tt∈ TAG ∧ aa∈ ACCESS THEN
 SELECT tt∈ TAG ∧ tt∉ ktag ∧ aa∈ ACCESS THEN
 ktag:= ktag ∪ {tt} || kpolicy:= kpolicy ∪ {ttaaa} || kmsgbuf:= kmsgbuf← m1(tt,aa)
 END
 END;
FinaliseAdd_tag =
 ANY tt,aa WHERE tt∈ TAG ∧ tt∉ tag ∧ aa∈ ACCESS ∧ kmsgbuf≠ []∧ first(kmsgbuf)= m1(tt,aa) THEN
 tag:= tag ∪{tt} || policy:= policy ∪ {ttaaa}|| kmsgbuf:= tail(kmsgbuf)
 END;
 InitialiseAssign_tag(vv,tt) =
 ……..
FinaliseAssign_tag =
 ………….
InitialiseChange_policy(tt,aa) =
 ……
FinaliseChange_policy =
 ……..
Enter_controlledArea(vv) =
 PRE vv∈ VEHICLE THEN
 SELECT ctrl_state= unblocked ∧ loc(vv)= outside THEN
 loc(vv):=controlled || bmsgbuf:= bmsgbuf← m4(vv,controlled)
 END
 END;
 Enter_protectedArea(vv) =
 PRE vv∈ VEHICLE THEN
 SELECT loc(vv)= outside ∧ policy(aut(vv))= permitted THEN
 loc(vv):=protected || bmsgbuf:= bmsgbuf← m4(vv,protected)
 END
 END;
 InitialiseEmer_Enter(bb,vv) =
 PRE bb∈ PBARRIER ∧ vv∈ VEHICLE THEN
 skip
 END;
Exit_Area(vv) =
 PRE vv∈ VEHICLE THEN
 SELECT vv∈ VEHICLE ∧ loc(vv)≠ outside THEN
 loc(vv):=outside || bmsgbuf:= bmsgbuf← m4(vv,outside)
 END
 END;
………

 4

 5

In fig (3) some events of the system-level specification are illustrated. These events represent
some observable behaviour of overall system but we have not put a clear boundary around
individual subsystems. Furthermore we have not demonstrated the detailed operation of barriers.

First Refinement of system

In the first refinement both data and event refinements have been undertaken. Some detailed
operations of the barriers in connection with the approaching vehicle and remote-control are
introduced. For example events like VehArv_CBarrier, VehArv_PBarrier, Detect_tag,
Deny, Open, Close and Close_timeout are internal operation of barriers that can be observed
in that level. Introducing the barrier definition in the refinement process brought the feasibility of
refining some operations of the first-level formal specification like FinaliseAssign_tag,
FinaliseChange_ctrlArea, Enter_controlledArea, Enter_protectedArea and
Exit_Area. The monitoring task is another aspect of the Remote-Control functionality that it is
presented by Request_barrierstate, Barrier_sendstate and Read_barrierstate
events.

Decomposition to subsystem and further refinement

 Decomposition is a main approach to dealing with inherited complexity of distributed
systems which is stated in [8] and [11]. From the previous refinement, decomposition of system
to asynchronous subsystem is a straightforward task. The system as a whole comprises three
subsystem named Remote-control, Communication and Barrier. Each subsystem can be
represented by a single machine at that point which these machines are susceptible to further
refinement. Some operation of communication mechanism is introduced in this level and more
refinement can be envisaged for error handling, loss and security aspect like encryption.

Conclusion

We presented an event-based system-level modelling for an asynchronous distributed system
with B. Dealing with complex properties of such systems can be a time consuming approach
which needs sufficient training and skills in formal methods, system modelling and distributed
systems. For better understanding and sufficient modelling maybe consideration of a variety of
methodologies and tools could help developers. As further work more refinement of the barrier
unit intending to model interactions between different physical parts of this subsystem could be
considered. Communication subsystem can be subjected to more refinement for error-handling
and security aspect modelling.

References
[1] A. Hall. Seven Myths of Formal Methods. IEEE Software, September 1990
[2] J. Bowen and M. Hinchey. Seven More Myths of Formal Methods. IEEE Software, July 1995
[3] J.-R. Abrial. The B book - Assigning Programs to Meanings. Cambridge University Press,
1996.
[4] B-Core. B Toolkit. www.b-core.com
[5] ClearSy. AtelierB. www.atelierb.societe.com
[6] E. Sekerinski and K. Sere (eds.). Program Development by Refinement - Case Studies Using
the B Method. Springer-Verlag, 1998.
[7] P. Luigia et al. A Methodology For Integrating of Formal Methods in a Healthcare Case
Study. TUCS Technical Report No 436 December 2001
[8] M. Butler. A System-Based Approach to Formal Development of Embedded Controllers for a
Railway. Design Automation for Embedded Systems Vol 6. PP 355-366. July 2002
[9] JR Abrial and L. Mussat. Introducing Dynamic Constraints in B. In D. Bert editor, B'98:
[10] ClearSy . Event B Reference Manual -- June 2001
[11] M. Butler and M. Waldén. Distributed system development in B. Proceedings of the 1st
Conference on the B Method, Nantes, France, pp 155-168, November 1996.

http://www.b-core.com/
http://www.atelierb.societe.com/

