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Abstract: This paper shows that the BER performance using (k) = [s(k) s(k—1) - - - s(k—L+1)]T € R¥*!is the vector
linear equalizer for channel equalization problem is signifi-of L = M + N transmitted digital symbols, arfd € RV*E
cantly dependent on delay order. To obtain optimum peris the channel convolution matrix given by

formance, the equalizer output should be derived from the

equalizer with delay order having the best BER performance. ho hi - hm 0 - 0
An efficient method to evaluate the upper bound BER perfor- . :
. ; : ) ) 0 ho M hm 0O
mance of a linear equalizer to find the optimum delay is pro- 7 = | _ _ _ (3)
posed. The method is novel as the evaluation is performed : e 0
using only the channel statistics and the equalizer’s weights. 0 0 ho hy - him

It is obvious from Eqgn.(2) that(k) depends only o, sym-
Key words: Linear equalizers, delay order, MMSE, MBER, bols in s(k) and hence the valid range of delay order is
BER de D =10,1,---,L — 1}. Itis well known that the choice
of d can affect BER performance significantly [3, 4].

: This paper focuses on the effect of delay order on BER per-
1 Introduction formance and presents an efficient scheme to evaluate the up-
The transmission of digital signal across a communicatiomper bound BER performance for a given set of equalizers to
channel is subjected to noise and Inter Symbol Interferencselect the optimal delay.

(ISI). At the receiver, these effects must be compensated by

an equalizer to achieve reliable data communications [1, 2]. n(k)

We consider a linear discrete-time communication channel
depicted in Fig. 1, whose output is given by

s(k)

y(k S(k-
x(k) Linear v Sted)

Equalizer

A
Channel h X

M
2(k) = his(k — i) + n(k) @

=0 . . . . Figure 1. Model of the channel equalization problem
where k& denotes sample index (k) is a white Gaussian
noise with variancer?, h; are the taps of the Channel Im-
pulse Response (CIR) which has a memafy ands(k) is ; ;
a binary input drawn from the symbol set1}. Although 2 The setof Linear Equallzers
the analysis presented assumes the case of binary transmite output of a linear equalizer with weightse RV *! is
symbols, the results can be generalized to more complicated T
transmit signal sets. y(k) = wx(k) )
The purpose of the equalizer is to use a vector of noisy obse
vationx (k) = [z(k) x(k —1)---2(k — N + 1)]T € RN*!
to estimates(k — d), where N denotes the equalizer input
length andd the decision delay order. The vecta(k) is
given by

For each delay order, the weight vectercan be evaluated
with respect to some criteria, e.g. the MMSE solution or
the MBER solution [7, 8]. We define the set of weights for
equalizers as

x(k) = Hs(k) + n(k) = x(k) + n(k) ) W = [wiws...wy] € RN*L 5)

wherex(k) € RV*! is the vector of noise-free input signal where the weights for delay € D equalizer isw,,; €
known as the channel statg(k) € RY*!isthe noise vector, RN*1.
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2.1 Linear or nonlinear separability The vector multiplicationw” %; is the response of the linear
equalizer for input; and|jw|| = vVwTw. For the channel

Not all the delay order will result in the equalization problem " L _
Statex; to be classified correctly, the output of the equalizer

being linearly separable [3, 6]. For a nonlinearly separabl X
problem, the corresponding solution in Eqn.(5) is ineffectiveMust satisfy

Ty — )
and a nonlinear approach [6] should be used. sgn(w X;) = SQM(sa-+1,i) (12)
_ _ _ Eqgn.9 shows that the BER performance is the average prob-

Let us examine Eqn.(2) as a matrix operation, ability of error for all the channel states. However, since the

. function@(e) decays exponentially, the BER performance is

X=HS+N ®)  dominated by the largegt (%;; d, w) wheno — 0. Hence,
where # € RN*N. hasN, — 2o columns of channel an upper bound for the BER performance is
state vectors, specifically = [X1, X2, -, %Xn.], andS € BE d _ <o d 13
REXNs with correspondinglV columns of distinct trans- Rus(d, w) 12?1%5{‘”6(}(“ W)} (13)
mission sequence, specificaly = [s1,s2,--,sy,] and

N e RN*N. is the noise matrix. For the noiseless Case,Therefore the evaluation of BER;(d, wa1) will indicate
i.e. V' = 0, the estimate of givenW is which delay will result in the best BER performance.

S—Wry (7 3.1 Distance of channel state to decision
boundary

When the equalization problem is linearly separable, all the
channel states can be classified correctly. In this case, the

To verify if the equalization problem for delayis linearly
separable, one can evaluate fog D

N, probability of error is most affected by the channel state near-
P(d) = Z ISON(8441,:) — SIN(Sa+1.4)] (8) estto the decision boundary, i.e. the channel state with the
i=1 minimum¢; v, and hence the large§p. (x;;d, w)}.

where| e | is the absolute value operator, afid; ands;, ; 10 find this nearest distance, the direct approach is to evalu-

are the elements at" row andi" column ofS andsS, re-  ate all the distance and find its minimum, i.e.

spectively. Ify)(d) = 0, the equalization problem for delay 1 i N.

d resulted in the correct classification of all the transmitted {G w}f\’:sl - wlx = {WTch} (14)
symbols in the noise free case, otherwise it did not. ’ [[wll [[wll i=1

Eqgn.(8) shows a direct way to examine linear separabili
which involves evaluating and comparing all its elements
to S. This procedure is inefficient as it is computationally
intensive while only yielding information regarding linear or

tyAn alternative approach is this:
SubstitutingX = HS and lettingp” = [p1 p2---pr] =
wlH in Eqn.14 yields

nonlinear separability. To extract more quantitative informa- 1 1 Ny

tion, the following subsection examines an efficient method {GwiNy = —pTS= {stl} (15)

to evaluate the upper bound BER performance of the equal- Iwl Iwl i=1

izer using only the matrigt andV. The correct classification criterion in Eqn.12 also implies
3 Bit error rate and Delay order SgN(Giw) = SYMs4+1,i) (16)

Given the equalizer’s weight vecter, the BER of the equal-

: ) For the above condition to be satisfied, Eqn.15 shows that
izer for a fixed delay ordef can be evaluated by [7, 8]

L [Pat1] > Z [p;] a7)
BER(d, W) =+ > _pe(i;d, W) ©) AT
S =1

wherep. (x;; d, w) denotes the probability of error due to the and the minimum distance ¢t };=, for delay ordext is

received channel state beifig, and is evaluated by therefore
ANd,w) = min {G.w
Q @ , X; correctly classified ( ) 19‘9\@{(’ }
pe(ki;de) = [Ciw] .
1-Q (TW) , otherwise 1
(10) = Wl pasil = D Ipl |(18)
whereQ(e) is the Gaussian error function [2]; , is the PR
distance of the channel stateto the decision boundary and
is given by A positive value ofA(d, w) indicates that the equalization
|wT%;| problem is linearly separable and its magnitude is the dis-

Giw = (11)

[wl| tance of the nearest channel state to the decision boundary.
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A negative value indicates that the equalization problem isx(k) (ko1
not linearly separable and its magnitude is the distance of o 7-1 __.( )
the nearest wrongly classified channel state to the decision
boundary. Hence)(d,w) measures the degree of linear
separability quantitatively. A negatived, w) with a larger : ? :__g
magnitude means that nonlinear separability is more severe, : _ _ 1
and a larger positive value af d, w) indicates that the chan- E'—'”GI"_"‘“ Linear Linear
nel states are located further away from the linear decision qd”i '(Z)er Eq(;’f“ier Eq;f"éer
boundary which implies better BER performance. r o
200 (T ok

3.2 Selecting optimal delay 0 1 2( (k)
The following steps list the operations required to find opti- Z-2 Z-l
mum delay,

1. EvaluateV using MMSE or MBER criteria. I I ]

y

2. Evaluate\(d, wy). . .
valuater(d, wa) Select Optimum Equalizer d* output

3. The optimum delay with corresponding weights is I

(19) s(k-2)

Figure 2. Schematic of combined linear equalizer for
The output of the equalizer is the decision from the equal#(z) = 0.5+ 1.027!, N =2 andL = 3
izer with the optimum delay. Since the optimum delay or-
der could be any value dP, and variable delay in decision
output is undesirable, each equalizer’s output is delayed
2I=1=4" to produce estimates efk — L-+1) simultaneously.

a° = arg max{\(d wa)}

b .

(Yonducted to evaluate BER performance using Eqn.(9), and

Hence, regardless the valuedst, the estimated output is al- the r_egults are illustrated in Fig. 3. The results sh_ow that
prediction by the value ok(d), namelyd = 0 results in a

wayss(k — L + 1). ) N .
To illustrate the proposal, consider the equalization probponlmearly separable equalization problem and 2 is the

lem with the transfer function of the CIR given B (z) = optimum delay order.
0.5+ 1.0z~ and an equalizer lengtN = 2. SinceL = 3,
the valid delay orders ar¢ € D = {0,1,2}. Fig 2 illus-
trates the implementation. The normalized soft output of

Channel H(z) =0.5+ 1.0z "}, N=2, d=0..2

each equalizer with delayfor inputx(k) is ) —_— -
T =
Falx()) = LX) (20) . oo

Delay d=2

and the output of the optimal delay equalizer ( Fig 2 )is

BER (log10)

S(k—L+1) =sgnz" """ fo- (x(k))  (21) °
4 Simulation results \
The following two sets of simulation results are presented. \
Channel Hy(z) = 0.5+ 1.0:7!, N = 2andd € D = E ° R ° ®
{0,1,2}. The channel convolution matrix is
Figure 3. Simulation results for Chann&l(z) = 0.5 +
[ 05 1.0 0.0 1.0z7t with N =2
= [ 0.0 0.5 1.0 } (22)

The weights were evaluated using the MMSE criterion. UsChannel Hy(z) = 0.6996 + 0.6646z~' — 0.262322,
ing Egn.(18), the evaluated, w,) areA(0, wy) = —0.65, N = 6andd € D = {0,1,---,7}. Using Eqn.(18), the
A(1,wy) = 0.43 and A(2,wz) = 0.65. The results indi- evaluated\(d, wy) are[A(0,,wqo) A(1,wy) - A(7,wr)] =
cate that the delay = 0 results in a nonlinearly separable [—0.46, —0.24,0.04,0.22,0.32,0.37,0.14, —0.87]. The re-
equalization problem ang* = 2 will produce the best BER sults indicate thal = 0,1, 7 result in nonlinearly separable
performance. To confirm these predictions, simulation wagqualization problems and the optimal delay ordeiis= 5.
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Channel H(z) = 0.6996 + 0.6646z ™ -0.2623z 2, N=6

k&elay d=7

Delay d=0

Delay d=1

Delay d=2

Delay d=6

BER (log10)
A

sk Delay d=3 |

elay d=4 1

elay d=5

Figure 4. Simulation results for chann&h(z) = 0.6996 +
0.6646z~1 — 0.26232"2with N = 6

To confirm these predictions, simulation was conducted and
the results illustrated in Fig. 4 agree with the predicted BER
performance. As in the previous example, the MMSE cost
functions was used to evaluate.

5 Conclusions

A simple and efficient method has been presented to evaluate
quantitatively if a selected delay order will result in a linearly
separable equalization problem. This provides a technique to
determine the optimal delay order for the linear equalizer.
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