Automating Checking of M odels built using a Graphically
Based Formal M odelling L anguage

Robert John Walters
Declarative Systems and Software Engineering Group,
Department of Electronics and Computer Science,
University of Southampton, Southampton, UK.
R.J.Walter s@ecs.soton.ac.uk

Abstract

RDT is a graphical formal modelling language in
which the modeller works by constructing diagrams of
the processes in their model which they then join to-
gether to form complete systems. Aside from the benefits
which accrue as a side effect of building a formal model
of a proposed system, these diagrammatic models can be
useful as a means of communication between the devel-
opment team and the users. However one of the greatest
benefits of a formal model is that it can be subjected to
rigorous examination to ensure that it satisfies proper-
tiesrequired of the system.

This paper describes the transformation used by the
RDT toolset to generate Promela code (the input lan-
guage of the SPIN model-checker) automatically from a
model.

1. Introduction
As computer and other systems become larger and more
complex we need to find methods which enable us to
manage this complexity. A winning technique in other
aress has been to break the problem into pieces and com-
bine these into systems. In eectronic hardware this ap-
proach has been spectacularly successful [2-6, 8, 10, 18].
The size of the pieces is a balance. Smaller pieces are
easier to handle, but more difficult to assemble into a
useful whole

There are two issues which need to be addressed
when a system is constructed from components: we need
to connect the components, then we have to get the be-
haviour we want. The question of how to make pieces
of software fit together has been the subject of consider-
able effort and systems and schemes exist which address
these issues (COM, EJB, RMI, MSMQ...) [11, 13, 17,
19-21]. Typically, these arrangements work by requiring
components to conform to rules about how they interact
with the others. Components are prevented from damag-
ing each other [7] and constrained to perform interac-

tions which should be understood. We see this tech-
nique applied in the physical world with things like the
standardised physical plugs and sockets we use for vari-
ous applications. The other problem is more subtle and
difficult. We need to ensure that the assembled system
behaves as required. Outside of software, this is often
quite simple because the behaviour at the interface is
simple.

Unfortunately, just being able to connect software
components does not ensure that the resultant system
will do what we want or expect and thisis where models
can help. They can give us answers to questions about
the behaviour of systems before they have been built.
However, to get these answers we need to build appro-
priate models and then analyse them. This analysis
could be simple reasoning based on a diagram but, to be
really useful, it needs to be more thorough - and for that
we need models which have sufficient formality to per-
mit analysis using techniques such as execution or model
checking.

The marked reluctance of potential users of these
techniques to get to grips with traditional text based for-
mal modelling languages inspired the creation of the
RDT moddling language [22]. In RDT, the modeller
works with a tool to draw diagrams of their processes
and how they are combined into complete systems. The
RDT toolset includes an execution tool with which the
modeller can experiment with the behaviour of their
model, but if the modeller isto make assertions about the
behaviour of a mode confidently, the analysis needs to
be more rigorous. This analysis could have been pro-
vided by building model checking into the toolset, but
RDT uses the alternative approach of providing an
automated trandation of models into the input language
of aleading model checker.

2. RDT inoutline
RDT [22] is a graphically based formal modelling
language. It isasmall language which does not attempt

to emulate the expressive power of more traditional
modelling systems. Instead it providesaminimal collec-
tion of features inspired by the pi-calculus [14, 15]. The
intention is for the language to be small enough for a
new user to assimilate its essential concepts in a few
hours whilst being powerful enough to describe useful
models. A complete model in RDT comprises of a col-
lection of processes which are connected and communi-
cate using channels.

The behaviour of a process is described by a
RAD-like diagram [16]. The events of a process are
shown as squares and its states (which are named) are
shown as circles. An event causes the process to move
from one named state to another. An event is joined to
the named state which precedes it by a line from above
and to the state which follows it by a line from below.
These lines are branched or joined asrequired. All proc-
esses start in adistinguished state called “initial”.

In addition to the internal change of named state in
the process, each is associated with a communication.
There are threetypes, Send, Receive and Create. A Send
is shown as a clear square and causes a named value to
be placed into a channdl. A Create event is a specia
case of a Send event distinguished in the diagram by a
crossin itsbox in which anew value (or channdl) isfirst
created, associated with the local name used by the proc-
ess for the value being sent and then sent on the channd.
The final type of event is Receive which is complemen-
tary with the Send and Create events and is shown by a
black square. It takes a value from a channel and associ-
ates it with the local name specified in the event. In con-
trast with the pi-calculus in which communications are
synchronous, RDT permits the modeller to sdlect the
length of channels at runtime.

Figure 1 shows an example of a process description
in RDT. To generate a process description, the modeller
describes just the events in which the process takes part
to the RDT model generation tool. The tool generates
and displays the diagram each time an event is added or
altered. The process shown represents that of a Barber
in a traditional gentleman’s barbershop. The process
startsin the initial state from which it has choice of two
actions. It may send a new value (which it refersto lo-
cally by the name, “ MyCh”) onto the channd it knows
as “Custs’. In doing so, the process moves to a state
named, “ Awaiting Ingtructions’. From this state, the
Barber receives ingtructions (from its customer) along
the new channd “ MyCh” and moves to the named Sate
“Cutting”. Thisis followed by a further pair of interac-
tions concerned with obtaining payment. The Barber is
then returned to its initial state and is ready to start
again. Asin a RAD, an RDT process description per-
mits states which are re-visited to be re-drawn lower in
the diagram. RDT uses “=" suffixed to a state name to
highlight that the state appears in more than one location

on the diagram. From the initia state, the process may
alternatively follow the other path along which it places
notifications on the channe it knows as “Info” that the
Barber istaking a break followed by their return to work.

Q Initial
Get Customer MyCh -> Custs
Awaiting Eﬂ TakeBreak Leave -> Info
Instructions
Receive Instruction Work <- MyCh
Outside
Cutting utst
Request Fee Cost -> MyCh
Return Return -> Info
Awaiting Payment
Receive Payment Cash <- MyCh
&) Initial=

Figure 1: An Example process describing
the behaviour of a barber

The second part of the description of a complete
RDT system isthe“ modd” diagram in which the modd -
ler specifies a collection of processes and how the chan-
nel names they use are connected, if at all. Aswith the
pi-calculus, the values passed along channels may be
used as channels so that the initial connections between
processes specified in this diagram may be supplemented
and changed during execution of the model. Figure 2
shows an example of this type of diagram showing a
model in which two instances of the Barber process
(named Barberl and Barber?2), two instances of a Cus-
tomer process (hamed Customerl and Customer2) and
one of a Sink process (named Info) are connected to
form a complete model. To theright of the box for each
of the processes, each of the channel names known to it
is shown by a filled rectangle joined to the box. Asso-
ciations or connections between these channds are
shown by lines connecting them. To draw this diagram,
the modeller uses the modd generation tool again to
specify the process instances they require and then the
connections between them. The diagram is generated

automatically by the tool each time the user makes a
change.

Notice that RDT makes an important distinction be-
tween these two diagrams:. the process diagram describes
a type of behaviour. The “modd” diagram deals with
instances of processes and how they are interconnected.

In addition to the model generator, the RDT tools
provide an animation tool in which a modeller may exe-
cute their model by hand (and a trandation tool which
performs an automated conversion into Promela).

Barbershop

MyCh

y .
Barberl: Barber %
Info -

MyCh
yCh g
Barber1: Barber =

Info -

MyCh -
Barb
Customerl : Customer 2" Jll—
Info -
MyCh -
Customerl : Customer 220" g |
Info -

Info : Sink

-

Figure 2: A Barbershop model with two
Barbers and two Customers

3. Selecting a target M odel Checker

If we are to model check our models using an exist-
ing tool, we first need to select a suitable target. The
models described by RDT in its diagrams are finite state
machines, so it would be possible to use any of the many
model checking tools to analyse its models. However,
two model checking tools stand out as potential candi-
dates, FDR [1] and SPIN [10]. Both are mature, well
established and respected systems, with attractive win-
dow based user interfaces, though they differ signifi-
cantly in their input language and the way that the prop-
erty to be verified is specified to the system.

FDR uses a variant of CSP [9] asits input language.
The language is powerful and fully featured though it

would not look familiar to a programmer. Its communi-
cation is synchronous along typed channels. By con-
trast, SPIN uses its own input language which has a syn-
tax reminiscent of, but not the same as, the “C” pro-
gramming language [12]. Communication in SPIN is
also by typed channels, but permits the modeller to spec-
ify their length. After consideration, the SPIN mode
checker was sdlected for the following reasons:

- At some point the modeller may need to relate
the code generated for the model checker to
their model. It is fet that our target users are
likely to be familiar with programming lan-
guages and so will fee more comfortable with
the Promela code of SPIN with its superficial
similarity to the “C” programming language
than the process algebra inspired input language
of FDR.

- Although the actual code required is potentially
difficult to construct, the notion of giving the
property to be checked to SPIN directly is
likely to fed more natural to our target audi-
ence then the “refinement” based notion used
by FDR.

- Promela channds have a more natural corre-
spondence with the channels of RDT.

A final advantage of the SPIN model checker is that
it isavailable free of charge for use on several platforms,
including Windows, the platform on which the RDT
tools run. This permits the curious potential user to ex-
periment with this the tool without first making an initial
financial commitment.

4. Translating from RDT to Promela in

outline

Promela is a rich, expressive language in which to
specify models for analysis with SPIN so there will be
many possible representations of RDT models in the
language. This paper describes the one which is per-
formed automatically by the RDT tools.

The description of an RDT mode is made in two
parts and the trandation follows the same pattern. First,
each of the processes istransformed into a Promela proc-
esses and then a collection of instances of them need is
assembled into the completed system as specified in the
“modd” diagram.

4.1. Processes

During execution of a model by the RDT execution
tool, as each event occurs each of the processes in the
model reconstructs its list of available events. Whether
an event is available depends on the present state of the
process (instance) concerned and the willingness of the
channe the event interacts with to accept the write or

read associated with the event. This suggests a structure
for a Promela description of one of our processes as a
Promela process with a variable to record its state and a
single "do" loop with each branch representing one of its
events. Each branch of the loop would be "guarded" by
a conditional statement dependent on the current value
of the "state variable" of the process and the availability
of the required communication. However, this schemeis
unsatisfactory for two reasonsin particular:

- SPIN would consider such aloop to be asingle
statement. Consequently it would regard a
process created in this manner as having a sin-
gle statement and one which performed even a
single event would appear to SPIN as one
which had been thoroughly exercised.

- Promeladoes not have a string type, so the state
of the process would have to encoded into a
numeric form which would make interpretation
difficult for the human reader. (Promela does
have "symbolic constants' which could be used,
but just one declaration of this typeis permitted
in each file, soif it were used, al of the states
of al of the processes would have to be de-
clared in asingle collection.)

The solution adopted is to use labels and explicit
"goto" statements which are permitted in Promela. Each
of the labels in the code for a process description corre-
sponds to a named state of the RDT processit represents.
Using the process state names for these labels eases the
task of relating the automatically generated code to the
diagram of the processin RDT.

Source
() Initial

Send

L]

Out -> Out

() Initial=

Figure 3: A “ Source” process in RDT

Each of the labels in the process corresponds with
one of the named states of the RDT process and is nor-
mally followed by an “if” statement. Within this state-
ment, there is a branch for each of the possible events

which can follow this named state in the RDT process
diagram. Each branch starts with an expression which
performs the communication associated with the appro-
priate event followed by a “goto” statement taking exe-
cution to the labelled point in the description corre-
sponding to the “after” state of the chosen event, the new
named state of the process. In the case of a state which
is not the before state of any event, the process is unable
to proceed further and the “if” statement is replaced with
“skip”.

Sink
() Initial

Read

Val <- In

() Initial=

Figure 4: A "Sink" process in RDT

Figure 3 and Figure 4 show two elemental processes
in RDT. The process in Figure 3 Sends a value (the
name of the channd it is writing to) on a channd it
knows as “ Out” repeatedly. Figure 4 shows a comple-
mentary process which repeatedly reads a value on the
channdl it knowsas“In” which it stores (and islater able
to refer to) as “Vva”. Usdng the trandation outlined
above, these two RDT process descriptions can be trans-
formed into the Promela code shown in Figure 5

proctype Source(chan Qut)
{
initial:
i f

Qut!Qut; goto initial;
fi;

proctype Sink(chan In, val)
{
initial:
i f
In?Val ; goto initial;
fi;
}
Figure 5: Promela Code for simple Source
and Sink Processes

4.2. “Modds’

With the transformation of the process descriptions
into Promela complete, code is then required to assemble
instances of these into the complete system specified in
the RDT “mode” diagram. The technique adopted was
to construct the system required in an “init” process.
Where a process with the distinguished name “init” is
defined in a Promela file, SPIN’s first action on starting
the modd is to create a single instance of this process
and st it running.

Each RDT process has a number of names for chan-
nels. Each of these may need to be associated with a
channd at the start of execution as a consequence of
being connected to another in the "model diagram”, but
there is no requirement for this to be the case. It is not
an error for at least some of the channel names known by
a process not refer to a channd initially since they may
become associated with channels during execution as a
side effect of read and create events.

However, in Promela channels need to be declared
(like variables in many programming languages). These
declarations may be global, within the process or (de-
clared elsewhere and) passed to the process as a parame-
ter. Where a connection exists at the start of execution,
the required channel is declared in the “init” process and
then passed to the connected processes as a parameter.
This leaves the question of how to handle channels for
which processes have names, but are not connected at
the start of execution. They need to be declared since
otherwise SPIN generates errors. Declaring these chan-
nels as local variables within the process is problematic
because it requires knowledge of the connections made
in the "mode” part of the system description to be ap-
plied to the general descriptions of processes. It would
also mean that coping with a "modd™ in which different
combinations of channels known to a process are the
subject of connectionsin different instances of that proc-
ess, probably requiring multiple versions of the process—
one for each arrangement of initial connections. The
solution adopted is not to declare any channels within
process descriptions. Instead, all are passed as parame-
ters to the process. Where a process has hames which
are not initially connected, it is supplied with place-
holder channd names. The “init” process generated for
aparticular RDT “modd” is generated as follows:

1) Channes of the required length are declared for
each of the required connections between the proc-
ess instances.

2) Placeholder channels are declared to be supplied to
process instances as placeholders for any channe
names they know, but are unconnected initially.
Separate channels are needed for each such parame-
ter of each process instance to guarantee that no

communication can occur on these channeds inad-
vertently.

3) Process instances are brought into existence by a
sequence of "run" statements.

Out
Sourcl : Source

Sink1 : Sink Val

Figure 6: A model showing a Source proc-
ess with its “ Out” channel connected to the * In”
channel of a Sink process

All of the statements in the "init" process are en-
closed in an "atomic" statement to instruct the model
checker to execute them all asif they were a single indi-
visible action. This ensures that the whole of the model
system and its (initial) interconnections are in place be-
fore any part of the system starts to operate.

Figure 7 shows the code generated from the RDT
model shown in Figure 6. Sincethe RDT notation itself
is silent on the length of channels, the RDT modd exe-
cution tool dicits this information from the modeller at
runtime. This information is also needed when the
model is trandated to Promela so it is also dicited from
the modeller by the trandation tool. The chosen value (4
in the example) is defined as a constant at the start of the
generated Promela code to permit the modeller to change
the channel length easily without regenerating the whole
file. Notice also that a channe (chO) is created and
passed to both processes to make the connection shown
in the diagram and that, since the channel known to the
process “Sink1” as “Va” is initialy unconnected, a
placeholder channd (nch0) is declared and passed to the
process.

#defi ne CHLEN 4
chan chO = [CHLEN] of {chan};
chan nch0 = [0] of {chan};

/* Process definitions here */

init

{ atomc {

run Source(cho0);

run Si nk(chO, nchO);

P

Figure 7: The "init" process

4.3. Channels and Values

Communication is RDT is inspired by the
pi-calculus [15] in which thereis just one type of value
(referred to as a “name’). RDT takes the same view:
values passed in communications are al of the same
type. In some contexts, a value passed between proc-
esses may represent a value such as the result of a com-
putation. In others the value passed may be a channd
which may be used for later communications. It is this
ability to pass channe typed values along channels
which permits the dynamic re-configuration of RDT
models.

In contrast with the pi-calculus and RDT, Promela
channels are typed according to the kind of values they
carry. One of the permitted types of value that a Proe-
mela channd is permitted to carry is a channel and, since
potentially an RDT process may use any value it knows
as a channd, it is this type of channd which is used
throughout the Promela code generated from an RDT
modd.

5. Issues

Two issues remain which have not been addressed
in the transformation described so far. The first con-
cerns a difference between the acceptable use of the
“Read” event in RDT and the action of reading from a
channel in Promela. The second concerns the “Create”
event in RDT. This event is useful as it permits proc-
esses to create the new channels needed to create new
connections between processes at runtime (although they
may also be used just as simple values).

5.1. A Special case of a Read event in RDT

RDT permits a process to read a value on a channel
and assign the name received to the name used as shown
in Figure 8.

Proc 1

Initial

AnEvent

Second

Figure 8

According our scheme for trandating models to
Promela, this would cause the following code to be gen-
erated:

i f
11 X?X; goto second;
fi;

Unfortunately, "x?x" causes SPIN to generate an er-
ror, so the tool generates the following alternative code
where necessary:

chan tnp;

i f
atom c{X?tnp; X = tnp; } goto
second;
fi;

5.2." Create"

The problem deriving code for the behaviour of the
“RDT"” Create event is not so easily addressed. An in-
terim workaround has been implemented in the tranda-
tion tool by which any process which contains a cre-
ate-type event is given a supply of channels. The proc-
ess then allocates a channel from this supply whenever it
needs one for a "create" event. When the supply is ex-
hausted, the process will be unable to carry out another
"create" event. This supply of channes is declared as
part of the description of each process. So long as the
number of channelsin this supply is sufficiently largein
the context of the model, this solution does not impact
on the behaviour of the moddl. (The size of this cache of
channels is dicited from the modeller at the same time
asthe channd length.)

A complete solution to this problem which is not yet
implemented would be based on the following observa-
tion:

In an RDT model, each process knows some num-
ber of channels which it refers to using its own collec-
tion of local names. The assignment of these channelsto
names changes at runtime when a process reads a chan-
nel or uses “Creat€’ to generate a new channe — and if
the name to which the new value is assigned aready
refers to a channd, the existing value is overwritten. A
consequence of overwriting channd names is that,
unless the process has taken explicit steps to prevent it,
knowledge of the overwritten channel islost at the same
time. Processesin RDT are unable to locate channels by
any method other than being told of them by other proc-
esses (and creating new ones). Consequently, should a
channel ever reach a condition where none of the execut-
ing process instances has it associated with any of their

names, the channdl isirretrievably lost to the model and
the system could safely destroy that channel (together
with any values stored in it).

Since, for a channel to be used by a process in-
stance, it must “know” the channel by having it associ-
ated with one of its channel names, no running RDT
mode can possibly have more channelsin use than there
are local names for them in all of the process instances
of the model. Consequently, the trandation tool could
generate code which, by the reclaiming of channds
which are no longer visible to any of the process in-
stances could guarantee to always have a channel avail-
able to allocate to a process which sought to perform a
“Create’ event. (A complete implementation of this
scheme would need to note any values found in recov-
ered channels as their presence may be an indication of a
fault in the model.)

6. Conclusion

The RDT modeling language together with its
model generation and execution tools demonstrates that
it is possible to construct useful formal models using a
graphical idiom in place of the usual text based input.
However, to make the best use of these models, their
behaviour needs to be much more rigorousy examined
than the modeller can hope to achieve by hand using an
execution tool. This might have been achieved by the
construction of a model checking tool to supplement the
existing RDT tools. However, model checking software
is already available which is known to be accurate, pow-
erful and efficient so it was felt that a better approach
would be to find a trandation which could transform an
RDT mode into a form suitable for input into an exist-
ing moddl checker.

The modd checking software chosen was SPIN
with its programming-like input language, Promela. The
motivation in the development of RDT isto make formal
modelling as easy as possible for the inexperienced user
so, the trandation of an RDT modd into Promela code
had to be performed automatically. We cannot expect
the user to apply the transformation manually. At the
same time, the transformation has to be into Promela
code which is sufficiently readable for the modeller to be
able to identify its relationship to the original features of
the RDT mode.

The transformation described above can be per-
formed mechanically and has been implemented in a tool
which is able to take a mode built using the RDT mode
generation tool and transform it into correct Promela
code automatically. Using this code, the modeller isable
use SPIN to perform “standard” analyss (e.g., unreach-
able code and deadlock detection) of their model without
learning the syntax of Promea and with an absolute
minimum of knowledge of SPIN itself.

7. References:

[1] "FDR2 User Manual,".: Formal Systems
(Europe) Limited, 2000.

[2] M. Barjaktarovic, S.-K. Chin, and K. Jabbour,
"Formal Specification and Verification of
Communication Protocols Using Automated
Tools," presented at First IEEE International
Conference on Engineering of Complex Sys-
tems (ICECCS95), Fort Lauderdale, Florida,
USA, 1995.

[3] B. Beizer, N. Juristo, and S. L. Pfleeger,
"Cleanroom process modd: A critical examina-
tion," IEEE Software, pp. 114-118, 1997.

[4] E. M. Clarke, O. Grumberg, and D. E. Long,
"Modd Checking and Abstraction,” ACM
Transactions on Programming Languages and
Systems, val. 16, pp. 1512-1542, 1994.

[5] A. M. Gravell and P. Henderson, "Executing
formal specifications need not be harmful,”
IEE/BCS Software Engineering Journal, vol.
11, 1996.

[6] O. Grumberg and D. Long, "Modd Checking
and Modular Verification,” ACM Transactions
on Programming Languages and Systems, val.
16, pp. 843-871, 1994.

[7] P. Henderson, "Laws for Dynamic Systems,"
presented at International Conference on Soft-
ware Re-Use (ICSR 98), Victoria, Canada,
1998.

[8] P. Henderson and R. J. Walters, "System De-
sign Validation Using Formal Methods," pre-
sented at Tenth IEEE International Workshop
on Rapid System Prototyping (RSP99), Clear-
water, Florida, 1999.

[99 C. A. R Hoare, Communicating sequential
processes: Prentice-Hall International, 1985.
[10] G. J. Holtzmann, "The Modd Checker SPIN,"
IEEE Transactions on Software Engineering,

val. 23, pp. 279-295, 1997.

[11] IBM, "MQSeries Family,"., 2001.

[12] B. W. Kernighan and D. M. Ritchie, The C
Programming Language: Prentice Hall, 1988.

[13] Microsoft, "Microsoft Message Queuing Ser-
vices,".: Microsoft, 2001.

[14] R. Milner, Communication and Concurrency:
Prentice Hall, 1989.

[15] R. Milner, "The Polyadic pi-Calculus. a Tuto-
rial," in Logic and Algebra of Specification, F.
L. Hamer, W. Brauer, and H. Schwichtenberg,
Eds.: Springer-Verlag, 1993.

[16] M. A. Ould, Business Processes - Modelling
and Analysis for Re-engineering and Improve-
ment: John Wiley and Sons, 1995.

[17]D. S. Platt, Understanding COM+: Microsoft
Press, 1999.

[18] K. Sullivan, J. Socha, and M. Marchukov, "Us-
ing Formal Methods to Reason about Architec-
tural Standards," presented at 19th International
Conference on Software Engineering, Boston,
1997.

[19] Sun Microsystems, "Enterprise Java Beans,".

[20] C. Szyperski, Component Software: Longman,
1998.

[21]A. Thomas, "Enterprise JavaBeans Technol-
ogy," Patricia Seybold Group, White Paper pre-
pared for Sun Microsystems Inc December
1998.

[22] R. J. Walters, "A Graphically Based Language
for Condgructing, Executing and Analysing
Models of Software Systems," presented at 26th
Annua International Computer Software and
Applications Conference (COMPSAC 2002),
Oxford, 2002.

