The Use of Formal Methods in the Analysis of Trust
(Position Paper)

Michael Butler, Michael Leuschel, Stéphane Lo Presti, Phillip Turner *

University of Southampton, SO17 1BJ, Southampton, United Kingdom
{mjb,mal, splp,pjt}e@ecs.soton.ac.uk

Abstract. Security and trust are two properties of modern computing systems
that are the focus of much recent interest. They play an increasingly significant
role in the requirements for modern computing systems. Security has been stud-
ied thoroughly for many years, particularly the sub-domain of cryptography. The
use of computing science formal methods has facilitated cryptanalysis of security
protocols. At the moment, trust is intensively studied, but not well understood.
Here we present our approach based on formal methods for modelling and vali-
dating the notion of trust in computing science.

1 Introduction

Recent years have seen a growing concern with security properties of computing sys-
tems. This concern is mainly caused by two reasons. First, there is an increasing number
of faults in computing systems. This increase in turn ensues from two facts. The pene-
tration of computing science in our professional and personal lives is still expanding, as
new computing paradigms such as pervasive computing show. At the same time, pro-
grams become overly cluttered and computationally and semantically more complex.
The second reason explaining security concerns is that the concept of security itself is
widening. This is illustrated by recent problems like privacy breaches (e.g. spam) or
violations of legal obligations (e.g. liability via software license).

Notions of trust are constituent in several cryptographic methods, representing the
confidence in the association of a cryptographic key to the identity of a principal. Recent
multidisciplinary studies on trust envisage the concept as a more general and richer
notion than security. Many models of trust have been devised, each concentrating on
disparate aspects, among which are recommendations and reputation, belief theory, or
risk and uncertainty. It appears that the vast number of notions composing trust defies
its systematic analysis.

Computing science formal methods [11] stem from mathematics and aim to help
design, develop, analyse and validate software so that it is correct, error-free and robust.
Formal models are built on well-known mathematical elements, like sets or functions,
and can be analysed against accurate properties, such as consistency or completeness.
Formal methods include Petri nets, abstract state machines, process calculi, temporal

* This work has been funded in part by the T-SAS (Trusted Software Agents and Services in
Pervasive Information Environment) project of the UK Department of Trade and Industry’s
Next Wave Technologies and Markets Programme.

and belief logics, and languages such as Z [4], CSP [5] and Alloy [9]. The last decade
has seen a trend to use formal methods in computing science, notably in the context
of industrial software engineering, because they provide solid methods, produce clear
models and have good tool support.

In this paper, we present in section 2 how the security field has used formal methods
to solidly build some of its foundations on mathematically proven results. We show
initial works in the application of formal methods in trust in section 3, arguing that trust
is only at the beginning of its path to make the most of formal methods. Our structured
approach based on UML [14] and B [13] formal methods is finally defined in section 4.

2 Formally Proving Security Properties

Security is one of the major problems that computer scientists have to confront nowa-
days. Security analysis of computing systems consists of creating models of how they
operate, may be attacked, and should behave. Formal methods are helpful at modelling
and validating existing computing systems with regard to security properties because
they provide a structured approach and accurate notations.

In the context of security, the system model must not only abstract the programs
implementing the system functionalities but also the communication protocols that are
used. Formal approaches have been successfully applied to that latter task, for example
with the Z notation or the B method [15]. Recently, the analysis [26] of layers of net-
work protocols, involving the commonly used TLS/SSL protocols, have been a further
beneficiary of the formal approach.

The model of the possible attacks to the system is called the threat model and defines
the capabilities of the attacker. The Dolev-Yao threat model traditionally represents an
attacker that can overhear, intercept, and synthesise any message and is only limited
by the constraints of the cryptographic methods used. This omnipotence has been very
difficult to model and most threat models simplify it, as, for example, the attacker in
ubiquitous computing [22].

Next, the desired properties of the system need to be defined. Security encompasses
six basic sub-properties: authentication, data integrity, confidentiality, non-repudiation,
privacy, and availability. Specification of the chosen properties is in general dependent
on the notation chosen for the system and threat models.

The last task is to verify that the security properties hold in the system model, com-
plemented by the threat model if it exists. Many formal methods ease this step by ap-
plying powerful automated techniques, like test generation or model checking. General
formal tools can be used, like the Coq theorem prover [3] that has been used for the
verification of the confidentiality of the C-SET protocol [8], or specific ones devised,
such as Casper [10] for compiling abstract descriptions to the CSP language, or SpyDer
[23] to model-check security properties in the spy-calculus.

In summary, formal methods have benefited security analysis of computing systems
by providing systematic methods and reusable tools in order to obtain mathematically
proven results. The use of formal methods for security analysis is a very active domain,
which evolves with progress from the formal methods and provides a testbed for them.

3 Formally Modelling Trust

Trust has recently attracted much focus, notably in the context of computing science
and more specifically computer security. Marsh [24] gave an early (1992) formal model
of trust, highlighting the combination of basic and general trust and agent capabilities
into situational trust via ad hoc notations. Griffiths et al [21] made use of the Z formal
notation to specify cooperative plans in multi-agent systems, annotating these plans
with trust information. Many mathematical models have also been devised, for example
in game theory (e.g. Birk’s model [2]) or probability theory (e.g. Jgsang’s Subjective
Logic [1]).

More recently, Grandison [25] devised the SULTAN trust management system and
his primitives were expressed in the manner of a logic programming language. SUL-
TAN is similar to works on trust policy languages. Trust policy languages (which are
inspired by security policies) specify what is permitted and prohibited regarding trust
decisions, rather than expressing how. They were first devised in the context of Public
Key Infrastructures, like IBM’s Trust Policy Language or Fidelis [28]. Recent works
exhibit more general policies, like those of the SECURE project [17] where domain
theory is used to define trust policies able to specify spam filters.

Trust is a complex notion that is not well understood. Growing interest in modelling
the notion of trust has given rise to a plethora of models and many aspects of trust are
currently being studied. However, these models are difficult to compare directly because
they are expressed in diverse ways, i.e. sociological or economic terms, and furthermore
use specific notations, thus preventing an unambiguous interpretation. Identifying trust
requirements is not always easy and, because they lead to a clearer model of a system
and guide its analysis, formal specifications can ease that identification.

4 An Approach tothe Modelling and Validation of Trust

The T-SAS (Trusted Software Agents and Services in Pervasive Information Environ-
ment) project [27] aims to identify critical trust issues in pervasive computing. In partic-
ular, it aims to develop tools and rigorous techniques for validating the trustworthiness
of agent and Semantic Web/Grid technologies that support pervasive systems.

The identification of critical trust issues for pervasive environments is hampered by
both the diverse literature on trust and lack of expertise by system designers and analysts
at identifying issues of trust. As noted above, existing definitions of trust also tend to be
either specific to particular problem domains, or contrarily, too general. This often leads
to specifications impoverished of trust content suitable for analysis and formalisation.
Finally, pervasive systems require that user-centric issues are at least as important as
purely technical concerns.

To address these problems, whilst ensuring that scenarios studied are sufficiently
realistic, the initial phase of this project has focused on the development of an anal-
ysis framework grounded in propitious (healthcare) scenarios and use-cases [16]. It is
an iterative process of scenario validation by domain experts (e.g. clinicians), identifi-
cation of trust issues with cross-scenario checking, and domain expert aided scenario
maturation. As this process repeats, the scenarios become increasingly rich with trust

related detail and the taxonomy of trust derived from the input scenarios stabilises. In
our analyses, trust issues have fallen into eleven basic areas. Viz., Source versus Inter-
pretation, Accuracy, Audit trails, Authorisation, Identification, Personal Responsibility,
Reliability/Integrity, Availability, Reasoning, Usability and Harm. The relationship be-
tween trust categories was broadly in agreement with the literature.

Our current work focuses upon the formal specification stage of a software and
hardware prototype. The prototype healthcare application operates on a PDA to support
clinicians in a pervasive environment with medical image messaging services. This ap-
plication is based on a use-case representing a clinician roaming in the pervasive envi-
ronment of his hospital and using his PDA to display pictures on a neighbour device or
to access the information of a patient in an adjoining bed. The PDA currently has image
capture, wireless transmission and receipt and can provide telemetry for location de-
termination. The prototype PDA and infrastructure provides furtive ground for dealing
with real-time and practical issues whilst retaining many trust concerns.

Using a single method (whether formal or not) to develop complex software and/or
hardware systems may limit the ability to adequately tackle complex problems in the
large. Unfortunately, many issues of trust are interrelated and highly context dependent.
Therefore, simplification of a system which results in loss of this context or corruption
of trust interdependencies and interactions is dangerous.

Formal methods are often associated with applications with some critical aspect
with severe consequences of fault. For example, safety-, economic-, or security-critical.
We believe that users’ trust in pervasive computing environments is prone to significant
collapse and also that the consequences would be equally undesirable. In short, perva-
sive computing applications are trust-critical. Yet, the widespread adoption of formal
techniques to deal with trust issues is not solely based on risk aversion — tools must be
developed that will be used by software engineers, designers and system analysts. Also,
formal specifications are not readily communicable to the non-specialist.

In addition to the ability to visually communicate and simplify complex designs,
semi-formal techniques such as UML offer the developer additional benefits such as
maintainability and re-usability. Despite several studies showing that formal devel-
opment requires approximately the same overall effort as traditional approaches [12]
whilst providing the detection and correction of specification errors early in the devel-
opment life-cycle, uptake has again, remained slow.

Finally, given the currently limited understanding of trust, it seems sensible to adopt
an approach that automatically detects inconsistencies and enables system designers to
produce unambiguous and consistent specifications.

In order to successfully negotiate the problems of developers (expertise and think-
ing methods, visualization, re-usability, maintenance, communicability), we use UML
case tools which provide a powerful visual notation which can itself be analysed, tested
and validated automatically. The UML is an intuitive and powerful visual notation that
decomposes a formal model of a system into various diagrams, such as class, collab-
oration or statechart diagrams. To automate validation of the models we need to use
a method which allows formal proof. We chose the B language, which is an abstract
machine notation that structures systems into hierarchy of modules. Each B module is

made of components that are themselves refined at different levels of abstraction. Figure
1 portrays an overview of this approach.

e
| rprofie | -UHLB medel. 7 28 ool 8 machine

UML CASE tool
(Rational Rose) Atelier B | ProB tool

Fig. 1. Overview of approach

To annotate UML with B, we use a UML Profile, called UML-B [6], that defines
a specific kind of UML model that has a particular semantics. Figure 1 illustrates a
UML-B model. In UML-B, class and statechart diagrams are annotated with B code
using an object-oriented dot style. A tool, called U2B [7], then automatically generates,
whenever possible, an equivalent B specification from the UML-B model.

bocToR |

DOCUMENTD !

S actionattibues | POWSTRING)
& dacumentame : STRING

0 w\m\mmn

1 PDAD
@avaiabisDevces | POWNATT)
&0 NaTt

LOCATIOND
ssssssssssssssss

&0 NATI

POW(STRING)

Sregister) - ID
SsendToExtemalDevice(dochame : STRING, D ; NAT1)
SqueryAvailableDeviees(Dict : POWNAT!))

Fig. 2. UML-B screenshot

The final step is to validate our B models using a combination of automated test case
generation (e.g. ProTest [19]) and model checking (e.g. ProB [18]). Figure 3 shows
a screenshot of the ProB tool. The top left shows the B machine under examination,
bottom left shows the current machine state and status of the invariants. Right of the
figure shows the states visited during the model checking of the specification.

In the context of our use-case, the basic components of trust will be expressed by
means of invariants of the B machines. At this stage during our development, the invari-
ants represent properties of the categories Accuracy, Authorisation, Identification and
Reliability/Integrity that hold between the various elements of the system (e.g. PDA,
Web Services, etc.). We are testing in these models, among other aspects, whether the
PDA displays a picture on a wall-mounted screen in a trustworthy manner. Figure 2
shows an example class diagram relating a doctor, his PDA, a document (for viewing
on an external device), an external device (display), and a centralised system for man-
aging services based on the user’s location, gained from WiFi 802.11 signal processing.

These tools will verify that our UML-B models are consistent, thus proving the
trust properties that we have specified in the B invariants. If the properties do not hold,
the test case or the counter-example provided by the model checker will enable us to
analyse where the problem is and formulate a solution. We would then go into another
round of modelling and validation. Finally, we note that this UML and B hybridisation

INITIBLSATION an s =0

StacPrperies Enstiodperaions
~[[Facirrack

Fig. 3. ProB screenshot

has been favourably examined in an industrial setting, showing that not only are the
features of the B-Method and UML complimentary, but that development with these
tools was acceptable to commercial enterprise [20].

5 Conclusion

Formal methods for the specification of computer systems and their required properties
have shown themselves a valuable tool for security analysis. Much work in the domain
of trust devised more or less formal models, thus providing insight into the notion of
trust but without formal proofs of the claimed results. The notion of trust remains elu-
sive and has not yet achieved the same level of knowledge that security has.

The lack of formality in the followed approaches is sometimes the cause of misun-
derstanding and prevents the validation of the proposed models. We believe that vali-
dation is necessary to acquire a sufficient confidence in a model and formal methods
can provide us with the tools to exhaustively check the proposed solutions. Here we
suggest that the rigorous process of formal specification, with its associated techniques
and tools for model checking and test case validation, will be as valuable to the study
of trust as it has been to date for security.

Prior work in our project, based on several real-world scenarios and applications,
produced a set of basic components of trust, which with tools for assisting formal spec-
ification and validation are being utilised to expedite formal analysis and test this sug-
gestion. We believe that the practical application of formal methods can facilitate the
development and evolution of the field of trust analysis in computing systems.

References

1. A.Jgsang. Trust-based decision making for electronic transactions. In Proc. of the 4th Nordic
Workshop on Secure IT Systems (NORDSEC’99), Sweden, November 1999.

2. Andreas Birk. Learning to Trust. In Trust in Cyber-societies, Integrating the Human and
Artificial Perspectives, volume 2246 of LNCS. Springer, 2001.

3. B. Barras and al. The Coq proof assistant reference manual: Version 6.1. Technical Report
INRIA RT-0203, May 1997.

4. C. Boyd. Security Architectures Using Formal Methods. IEEE Journal on Selected Areas in
Communications, 11(5):694-701, June 1993.

(8]

10.

11.
12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

C. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

C. Snook, M. Butler and I. Oliver. Towards a UML profile for UML-B. Technical Report
DSSE-TR-2003-3, University of Southampton, UK, 2003.

Colin Snook and Michael Butler. Verifying Dynamic Properties of UML Models by Trans-
lation to the B Language and Toolkit. In Proc of UML 200 Workshop Dynamic Behaviour in
UML Models: Semantic Questions, York, October 2000.

D. Bolignano. Towards the Formal Verification of Electronic Commerce Protocols. In Proc.
of the 10th Computer Security Foundations Workshop. IEEE Computer Society Press, 1997.
D. Jackson. Alloy: a lightweight object modelling notation. ACM Transactions on Software
Engineering and Methodology (TOSEM), 11:256-290, 2002.

G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. In Proc. of the 10th
IEEE Computer Security Foundations Workshop, pages 53-84, USA, 1997.

J. Bowen. Formal Methods. http://www.afm.lsbu.ac.uk.

J. Draper, H. Treharne, B. Ormsby B. and T. Boyce. Evaluating the B-Method on an Avionics
Example. Data Systems in Aerospace Conf (DASIA’96), pages 89-97, 1996.

J-R Abrial. The B-Book. Cambridge University Press, 1996.

J. Rumbaugh, 1. Jacobson and G. Booch. The Unified Modelling Language Reference Man-
ual. Addison-Wesley, 1998.

M. Butler. On the Use of Data Refinement in the Development of Secure Communications
Systems. Formal Aspects of Computing, 14(1):2-34, October 2002.

M. Butler and al. Towards a Trust Analysis Framework for Pervasive Computing Scenarios.
In Proc of the 6th Intl Workshop on Trust, Privacy, Deception, and Fraud in Agent Societies,
Australia, July 2003.

M. Carbone, M. Nielsen and V. Sassone. A Formal Model for Trust in Dynamic Networks.
In Proc. of the Intl Conf on Software Engineering and Formal Methods, SEFM 2003, pages
54-61. IEEE Computer Society, 2003.

M. Leuschel and M. Butler. ProB: A Model-Checker for B. In Proc of FM 2003: 12th Intl.
FME Symposium, pages 855-874, Italy, September 2003.

M. Satpathy, M. Leuschel and M. Butler. ProTest: An Automatic Test Environment for B
Specifications. In International Workshop on Model Based Testing, 2004.

M. Satpathy, R. Harrison, C. Snook and M. Butler. A Comparative Study of Formal and
Informal Specifications through an Industrial Case Study. IEEE/ IFIP Workshop on Formal
Specification of Computer Based Systems, 2001.

N. Griffiths, M. Luck and M. d’Inverno. Annotating Cooperative Plans with Trusted Agents.
In Trust, Reputation, and Security: Theories and Practice, LNAI 2631. Springer, 2002.

S. Creese, M. Goldsmith, B. Roscoe and I. Zakiuddin. The Attacker in Ubiquitous Com-
puting Environments: Formalising the Threat Model. In Proc. of the 1st Intl Workshop on
Formal Aspects in Security and Trust, pages 83-97, Italy, 2003.

S. Lenzini, S. Gnesi and D. Latella. SpyDer, a Security Model Checker. In Proc. of the 1st
Intl Workshop on Formal Aspects in Security and Trust, pages 163-180, Pisa, Italy, 2003.

S. Marsh. Trust in Distributed Artificial Intelligence. In Artificial Social Systems, (MAA-
MAW’94, LNCS 830, pages 94-112. Springer, 1994.

T. Grandison. Trust Management for Internet Applications. PhD thesis, University of Lon-
don, UK, 2003.

The FORWARD project. Protocol Synthesis Feasibility Report, FORWARD Deliverable D2.
http://www.nextwave.org.uk/downloads/forward psfr.pdf.

University of Southampton and QinetiQ. T-SAS (Trusted Software Agents and Services in
Pervasive Information Environment) project. http://www. trustedagents.co.uk.
W. Teh-Ming Yao. Fidelis: A Policy-Driven Trust Management Framework. In Proc. 1st Intl
Conf on Trust Management (iTrust 2003), Greece, May 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

