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Abstract. We introduce a new algorithm for autonomous experimenta-
tion. This algorithm uses evolution to drive exploration during scientific
discovery. Population size and mutation strength are self-adaptive. The
only variables remaining to be set are the limits and maximum resolution
of the parameters in the experiment. In practice, these are determined by
instrumentation. Aside from conducting physical experiments, the algo-
rithm is a valuable tool for investigating simulation models of biological
systems. We illustrate the operation of the algorithm on a model of HIV-
immune system interaction. Finally, the difference between scouting and
optimization is discussed.

1 Introduction

Perplexing complexity is prevalent in biology across the scale from single cells
to ecosystems. Unraveling the intricate and manifold interplay of components in
biological systems necessitates comprehensive information. Acquiring this infor-
mation is challenging because the complexity of living systems entails extensive
factor interaction. As an implication of these interactions the results of biolog-
ical experiments have in general a narrow scope. Thus it is often impossible to
synthesize quantitative system-level models form data in the existing literature,
because measurements were obtained in disparate or unreported contexts.

Consequently, experiments are the limiting resource for quantitative systems
biology. Automated high-throughput methods and recent sensor technologies are
well suited to address this problem. To realize their potential, however, compu-
tational techniques have to be brought to bear not only to discover regularities
in existing data, but rather the experimental procedure itself has to be embed-
ded in a closed-loop discovery process. Only the latter affords the intervention
of the computer during the experimental process required for full utilization of
both the material subject to investigation and equipment time [1, 2].

With the advent of large-scale biological models the need to apply autonomous
experimentation also to simulations became apparent. For example, a differential
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Fig. 1. Scouting combines the notion of information being equivalent to surprise value
[11] with evolutionary computation for autonomous exploration. See text for details

equation model of the epidermal growth factor receptor signaling pathway con-
tains 94 time varying state variables and 95 parameters [3]; or a recent model
of E. coli contains more than 1200 metabolites and reactions [4]. Aside from
the combinatorial explosion of the parameter space with increasing number of
parameters, the analysis of the dynamic behavior of such systems is further com-
plicated by the the rich interactions among the parameters that is typical for
biological systems.

In the present context, the work by Kulkarni and Simon [5] is of particu-
lar interest. They developed a program that attempts to generate experiments,
in which unexplained phenomena are enhanced. Notably, the program does not
start out with a pre-set goal as is common in optimization experiments but
decides on its objectives dynamically. This work demonstrated that an algo-
rithm can successfully navigate an immense search space by emulating the in-
terplay of adjusting hypotheses and modifying experiments, which is character-
istic of human experimenters [6]. Recently, evolutionary computation has been
applied to autonomous experimentation [7] and was employed in conjunction
with computer-controlled fluidics to characterize protein response with regard
to chemical signals [8]. This method, named scouting, has also been suggested
for detecting and localizing unusual chemical signatures [9]. A drawback of the
scouting algorithm so far was that several application-dependent parameters
need to be set by the user to achieve good performance.

We developed self-adaptive scouting combining the scouting algorithm with
two parameter adaptation strategies. In the following, first the improved scouting
algorithm with self-adaptive mutation strength and population size is presented.
Then, we illustrate the operation of the new algorithm on a simulation model
of HIV-immune system interaction [10]. Finally, the crucial difference between
scouting and optimization is discussed in Section 4.

2 The Self-adaptive Scouting Algorithm

The scouting algorithm is an evolutionary experimentation method for design-
ing experiments dynamically, and experiments are scheduled to achieve maxi-
mal information gain at each step. In accordance with communication theory,
information is quantified as the surprise value of arriving data [11]. No a priori
knowledge about the system under investigation is required. An overview of the
algorithm is depicted in Fig. 1. Given an experiment f , the scouting algorithm



interacts with it by sending specifications x of the experiment and receiving
observed responses r. During the scouting run, every experiment performed con-
tributes to an experience database, which stores the observations (pairs of x and
r). This database together with a prediction mechanics (labeled as expectation)
forms an empirical model f ′ of the experiment given, and this model is used to
formulate an expected response r′ from the experiment. The deviation d(r, r′)
between the expected and the real response constitutes the surprise for the spec-
ification. In the evolution step, the specification is an individual offspring and
the surprise value is used as the fitness in generating the next offsprings. As
a result of this algorithm, experiments are performed densely in regions where
unexpected observations occur.

2.1 Adaptive Mutation Strength

In the evolution step of the algorithm, an offspring is created from the parent
by adding a normally distributed value with mean 0 and standard deviation σ.
Varying σ controls the strength of the mutation. Given the current surprise
value s and the current mutation strength σ, the mutation strength is adapted
as follows:

σ ← σ · e(s̄−s)/s̄, (1)

where s̄ is the average surprise value over all past experiments. As a result of
this adaptation, the region from which offspring are chosen shrinks if the current
surprise is above the average surprise. A surprise value below the average, on the
other hand, causes the region to expand—eventually leading to random search.

We also investigated standard step size adaption methods from evolution
strategies (ES), e.g., ref. [12, 13] and found that those adaptation methods fail
to keep up with the dynamics of our fitness landscape1.

2.2 Adaptive Population Size

Originally, the population size λ had to be given by the user and determines
the number of offspring generated from one parent (i.e., a (1, λ)-strategy in ES-
terminology). If the population size is constant, we found that some individuals
with high fitness are discarded because there was one individual with even higher
fitness selected as the parent for the next generation. Conversely, it also happened
that individuals with low fitness were selected as a parent.

The second adaptation scheme is developed to avoid this situation. We in-
troduced an adaptive generation change. Whenever the surprise value is higher

1 In the scouting algorithm, the fitness is obtained as the deviation between an ex-
pectation computed from the experience database and an observation. Since every
experiment is stored in the experience database, the expectation improves contin-
uously and the fitness landscape changes rapidly. In a deterministic setting (e.g.,
where the experiment is a simulation without randomness) even the individual with
the highest fitness will have zero fitness when it is evaluated a second time (cf. [14,
15]).



than a threshold, the specification of the experiment is selected as a parent. The
threshold at generation g is denoted as Θ(g) and defined as the average surprise
value of the second-best individuals in the past generations:

Θ(g) :=
1

g − 1

g−1∑

k=1

s
(k)
2;λk

for g > 1, Θ(1) := 0. (2)

Following Beyer and Schwefel [16], we use the notation of order statistics

(e.g., ref. [17]) by identifying the surprise value of the second-best individual out

of λk individuals of generation k by s
(k)
2;λk

. The population size at generation k is
λk. For a generation with only one member, we define this individual to be the

“second-best”: s
(k)
2;1 := s

(k)
1 , where s

(k)
i is the surprise value of the ith individual

of generation k (in the order of experiments performed).
The threshold is calculated as described above because the second-best sur-

prise value separates the best, which is selected as the parent for the next genera-
tion, from the other offspring. The second-best surprise value works implicitly as
a threshold in each generation. Furthermore, this method guarantees the thresh-
old to be above the average surprise value s̄, so that the mutation strength σ

can become both bigger and smaller using the scheme of Sec. 2.1.

2.3 Pseudo Code

The complete scouting algorithm is presented here in more detail as pseudo
code. During initialization (line 1–5), the minimum mutation strength σmin and
the number of experiments to perform tmax is set by the user. The mutation
strength σ is initialized with 1. The number of the current experiment t and the
number of the current generation g is set to 0. In line 6–9, an initial experiment
specification is randomly chosen, the experiment performed, and stored with

response r in the experience database DB. x
(g)
i is the experiment specification

of the ith individual of generation g. Within the while-loop, a new generation
is started by choosing the parent x(g) of generation g to be the last individual of
the last generation (line 13). The new generation is then populated within the
repeat-loop. In line 16, a new experiment specification is created as a mutated
copy of the parent individual (see Sec. 2.1), and the expectation r′ is computed
from the experience database. This is done here, as in ref. [8], by averaging
over the (up to) 5 closest experiment entries from the experience database with
inverse cubic distance weighting. The response r is derived by performing the
experiment, and the result is stored in the experience database. Finally, the
surprise value is calculated in line 21, and the mutation strength is adapted in line
22 (see Sec. 2.1). In generation g, the mean surprise value over all experiments
is calculated as follows:

s̄ :=
1

g

g∑

k=1

1

λk

λk∑

i=1

s
(k)
i . (3)

The repeat-loop is left and a new generation started, once the surprise value of
an experiment is above the threshold Θ(g) (see Sec. 2.2).



Algorithm: Self-adaptive Scouting

1 σmin ← minimum resolution # minimum resolution

tmax ← maximum experiments # number of exp. to perform

σ ← 1 # mutation strength

t ← 0 # time (experiments)

5 g ← 0 # time (generations)

x
(0)
λ0
← random specification # choose initial experiment

r ← f(x
(0)
λ0

) # conduct experiment

t ← t + 1 # increment time (experiments)

DB ← InsertIntoDB(DB, (x
(0)
1 , r)) # initialize experience db

10 while t < tmax do

g ← g + 1 # start a new generation

λg ← 0 # number of individuals

x(g)
← x

(g−1)
λ(g−1)

# choose the parent

repeat

15 λg ← λg + 1 # add a new individual by

x
(g)
λg
← Mutate(x(g), σ) # mutating the parent

r′ ← Predict(DB,x
(g)
λg

) # compute expectation

r ← f(x
(g)
λg

) # conduct experiment

t ← t + 1 # increment time (experiments)

20 DB ← InsertIntoDB(DB, (x
(g)
λg

, r)) # experience database

s
(g)
λg

← d(r, r′) # compute surprise

σ ← Max(σmin, σ · exp(1− s
(g)
λg

/s̄) ) # adapt mutation strength

until s
(g)
λg

> Θ(g) or t ≥ tmax

end

3 Scouting an HIV-immune System Model

Now we demonstrate the behavior of our new algorithm by applying it to a
concrete model of immunological control of HIV by Wodarz and Nowak [10].
The model is a 4-dimensional ordinary differential equation (ODE) system. A
mathematical analysis reveals that the model has two asymptotically stable fixed
points. Using scouting, we will now explore how the model behaves depending
on its initial state given a fixed parameter setting.

3.1 Definition of the Experiment

The experiment is a dynamic simulation of the the immunological control model
taken from [10], which contains 4 variables: uninfected CD4+ T cells x, infected
CD4+ T cells y, cytotoxic T lymphocyte (CTL) precursors (CTLp) w, and CTL
effectors z. The dynamics is given by the ODE system: ẋ = λ − dx − βxy, ẏ =
βxy − ay − pyz, ẇ = cxyw − cqyw − bw, ż = cqyw − hz. Uninfected CD4+ T
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Fig. 2. Surprise value s
(g)
i and mutation strength σ while exploring the behavior of the

HIV immunology model with the self-adaptive scouting algorithm. A surprise value
higher than the average decreases the mutation strength. The mutation strength is
increased, when the surprise value is less than the average (see Eq. 1). This muta-
tion strength adjustment helps the scouting algorithm to concentrate the samples on
surprising regions

cells are produced at a rate λ, decay at a rate dx, and become infected at a
rate βxy. Infected cells decay at a rate ay and are killed by CTL effectors at a
rate pyz. The production of CTLp at rate cxyw requires uninfected CD4+ cells,
virus load represented by y, and CTLp themselves. CTLp decay at a rate bw and
differentiate in CTL effectors at a rate cqyw. CTL effectors decay at a rate hz.
Here we set the parameters as in ref. [10]: λ = 1, d = 0.1, β = 0.5, a = 0.2, p =
1, c = 0.1, b = 0.01, q = 0.5, h = 0.1.

Given a specification x = (x1, x2, x3, x4), we perform the experiment and
obtain the response r = (r1, r2, r3, r4) in the following way: (1) We set the
initial state of the ODE system as follows: xt=0 = x1, yt=0 = x2, wt=0 = x3 ×

0.05, zt=0 = x4. (2) We integrate the ODE numerically (using lsode built in
octave [18]) for a duration of t1 (here, t1 = 500) and obtain the response as the
final state: r1 = xt=t1 , r2 = yt=t1 , r3 = wt=t1 , r4 = zt=t1 .

3.2 Scouting the Model

For scouting, we set the range of specification x of the experiment to [0, 1]4

and the minimum mutation strength σmin = 0.01. We allow a total number
of tmax = 2000 experiments in a scouting run. Every experiment integrates
numerically the ODE representing the HIV immunology model.

Figure 2 shows the progress of the surprise value s
(g)
j (left top) and mutation

strength σ (left bottom) of a typical run of (self-adaptive) scouting. On the right-
hand side, experiments 50–100 are shown in detail. Surprise value and mutation
strength are plotted together with the average surprise value s̄ to illustrate the
mutation strength adaptation. The difference between the current surprise value
and the average surprise determines the adaptation of the mutation strength
according to Eq. 1.

The time evolution of the population size λg is plotted on the lefthand side of
Fig. 3. For the purpose of explaining the population size adaptation, the right-
hand side of the graph shows in detail the surprise value of every individual



0

10

20

30

40

50

60

0 50 100 150 200 250 300 350 400

S
iz

e 
(#

 in
di

vi
du

al
s)

Time g (generations)

0

2

4

6

10 12 14 16 18 20

0

1000

2000

3000

4000

5000

6000

7000

25 30 35 40 45

S
ur

pr
is

e 
va

lu
e

Time t (experiments)

Time g (generations)

10 11 12 13 14 15 16 17

Surprise value
Threshold value

Second best value

Fig. 3. Population size λg and threshold Θ(g). See text for details

experiment from generation 10–17, the second-best surprise, and the threshold.
Generation 17 consists of 6 individuals x40 . . .x45 (xi denotes the ith experi-
ment conducted). Because the surprise of the 6th offspring is greater than the
threshold, the individual x45 is selected to be the parent of generation 18. The

surprise experienced by the experiment x43 = x
(17)
4 is the second-best surprise

value in the generation. This value is used to calculate the threshold for the fol-

lowing generation. Since the first offspring of generation 15 (x35 = x
(15)
1 ) yields

a higher surprise than the threshold, the population size of generation 15 is 1.
The second-best surprise value for this generation is, in this case, the best one.

Figure 4 shows the 2000 specifications sampled by the scouting algorithm.
The 4-dimensional data is projected on 6 graphs showing every possible combi-
nation of the four dimensions. Each point represents an initial state of the ODE
model. The sampling points seem to spread equally except for the last graph with
CTL precursors and effectors as axes. The pattern appearing in the last graph
matches with the border of the two basins of attraction of the two asymptotically
stable fixed points of the ODE model. The respective dynamical behavior of the
model is shown in Fig. 5. As seen in Fig. 4, scouting has explored the borderline
between the two modes of behavior more accurately, thus the borderline can
be described much more precisely than for cases where systematic or random
sampling would have been used. To illustrate this, a 2-dimensional projection of
systematic sampling given by a full 74 factorial design is shown in Fig. 6. In this
design of experiments, each of the 4 factors x1, . . . , x4 is explored equidistantly
on 7 levels [19]. With approximately the same number of experiments as in the
scouting method, the borderline can only roughly be approximated.

4 Scouting is not Optimization

It is important to note that scouting as described here is not a classical opti-
mization method. Generally, the aim of optimization algorithms is finding the
best solution among all possible solutions. More formally, given an objective
function F : Y → Q, which assigns to each solution from the search space Y a
certain quality q ∈ Q, an optimization algorithm tries to find the solution y ∈ Y

such that F (y) gets maximized. The result of optimization is a single best-so-far
solution y. For scouting, an experiment f : X → R is given, where X is the
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Fig. 4. Six different 2-dimensional projections of 2000 sampled locations (specifica-
tions) of a typical scouting run on the HIV immunology model developed by Woodarz
and Nowak [10]. This model is described as an ODE with four variables. The scouting
algorithm initializes the variables, which are plotted as dots, and observes the states
of the model after 500 time steps as the response. When the locations are plotted with
CTL precursors and effectors as axes (lower rightmost plot), a pattern of dense area
shows up. The pattern matches with the border of two modes of behavior of the model,
which are shown in Fig. 5

search space consisting of all possible experiment specifications and R the set
of all possible responses. In contrast to optimization, the objective here is not
to find a single best experiment x ∈ X (or a pareto set), but to gain as much
information about f as possible by conducting experiments. The result of scout-
ing is an experience database, which embodies the complete knowledge acquired
about f and can be considered as an empirical model.

Trivially, every computational problem can be formulated as an optimiza-
tion problem, e.g., by defining the objective function to be optimum when
its argument is the solution of the problem. For example, a sorted sequence
y = (y1, . . . , yn) optimizes the objective function F (y) =

∑
i<j(yi < yj). Most

sorting algorithms, however, contradict the typical picture of optimization where
a sequence of evaluations of the objective function leads to a solution. Bubble

sort, for instance, might be better regarded as a greedy strategy that seeks a
local optimum to achieve the global optimum. The same is true for scouting
with respect to the (implicit) aim of maximizing the total information about the
experiment f . Every step (or every generation) of the scouting algorithm can be
viewed as a step of a greedy strategy that tries to maximize the local information
gain in terms of maximal surprise in the next experiment.
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0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

C
T

L 
ef

fe
ct

or
s

CTL precursors

Fig. 6. Two-dimensional projection of systematic sampling. Initial state leading to a
damaged immune system are marked by •; initial states establishing CTL response
are indicated by ◦. Experiments with no initial infected CD4+ T cells are excluded.
Comparing to the lower rightmost panel in Fig. 4, the borderline of the two modes of
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5 Concluding Remarks

We introduced an algorithm capable of exploring unknown phenomena without
the need for manual adjustments aimed at an application domain. We described
how the two parameters crucial for the exploration, the mutation strength and
the population size, can be adapted automatically, and why existing techniques
for evolutionary optimization were not applicable. Our experience with the al-
gorithm provides some evidence that it can be applied usefully for exploring
complex systems. However, the next important step is to quantify the perfor-
mance of scouting systematically. A suitable assessment measure may be the
predicting strength of the experience database after a given number of sam-
ples. The process of evolution underlies the complexity observed throughout the
realms of biology—it may also hold the key to tackle this complexity.
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