The University of Southampton
University of Southampton Institutional Repository

Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality

Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality
Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality
A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.
1083-4419
598-608
Hong, X.
b8f251c3-e142-4555-a54c-c504de966b03
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Chen, S.
ac405529-3375-471a-8257-bda5c0d10e53
Hong, X.
b8f251c3-e142-4555-a54c-c504de966b03
Harris, C.J.
c4fd3763-7b3f-4db1-9ca3-5501080f797a
Chen, S.
ac405529-3375-471a-8257-bda5c0d10e53

Hong, X., Harris, C.J. and Chen, S. (2004) Robust neurofuzzy rule base knowledge extraction and estimation using subspace decomposition combined with regularization and D-optimality. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34 (1), 598-608. (doi:10.1109/TSMCB.2003.817089).

Record type: Article

Abstract

A new robust neurofuzzy model construction algorithm has been introduced for the modeling of a priori unknown dynamical systems from observed finite data sets in the form of a set of fuzzy rules. Based on a Takagi-Sugeno (T-S) inference mechanism a one to one mapping between a fuzzy rule base and a model matrix feature subspace is established. This link enables rule based knowledge to be extracted from matrix subspace to enhance model transparency. In order to achieve maximized model robustness and sparsity, a new robust extended Gram-Schmidt (G-S) method has been introduced via two effective and complementary approaches of regularization and D-optimality experimental design. Model rule bases are decomposed into orthogonal subspaces, so as to enhance model transparency with the capability of interpreting the derived rule base energy level. A locally regularized orthogonal least squares algorithm, combined with a D-optimality used for subspace based rule selection, has been extended for fuzzy rule regularization and subspace based information extraction. By using a weighting for the D-optimality cost function, the entire model construction procedure becomes automatic. Numerical examples are included to demonstrate the effectiveness of the proposed new algorithm.

Text
01262528.pdf - Other
Download (655kB)

More information

e-pub ahead of print date: 30 January 2004
Published date: February 2004
Organisations: Southampton Wireless Group

Identifiers

Local EPrints ID: 258821
URI: https://eprints.soton.ac.uk/id/eprint/258821
ISSN: 1083-4419
PURE UUID: 052b5d30-1d92-47e7-af05-c7122c64a34f

Catalogue record

Date deposited: 02 Feb 2004
Last modified: 19 Jul 2019 22:42

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×