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Veracruz, México
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Abstract. This paper presents and evaluates a decision making framework that enables autonomous

agents to dynamically select the mechanism they employ in order to coordinate their inter-related activ-

ities. Adopting this framework means coordination mechanisms move from the realm of something that is

imposed upon the system at design time, to something that the agents select at run-time in order to fit their

prevailing circumstances and their current coordination needs. Using this framework, agents make in-

formed choices about when and how to coordinate and when to respond to requests for coordination. The

framework is empirically evaluated, in a grid world scenario, and we highlight those types of environments

in which it is effective.
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1. Introduction

Effective coordination is essential if autonomous agents are to achieve their goals
in a multiagent system (MAS). Such coordination is required to manage the various
forms of dependency that naturally occur when the agents have inter-linked objec-
tives, when they share a common environment, or when there are shared resources.
To this end, a variety of protocols and structures have been developed to address the
coordination problem. These range from long-term social laws [37], through medium
term mechanisms such as Partial Global Planning [14], organizational structuring
[19] and market protocols [32], to one-shot (short-term) mechanisms like the Con-
tract-Net Protocol [38].
All of these coordination mechanisms have different properties and characteristics

and are suited to different types of tasks and environments. They vary in the degree
to which coordination is prescribed at design time, the amount of time and effort
they require to setup a given coordination episode at run-time, and the degree to
which they are likely to be successful and produce coordinated behaviour in a given
situation. In the majority of cases, these dimensions act as forces in opposing
directions; coordination mechanisms that are highly likely to succeed typically have
high setup and maintenance costs, whereas mechanisms that have lower setup costs
are also more likely to fail. Moreover, a coordination mechanism that works well in
a reasonably static environment will often perform poorly in a dynamic and fast
changing one. In short, there is no universally best coordination mechanism [20].
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Given this situation, we believe it is important for the agents to have a variety of
coordination mechanisms, with varying properties, at their disposal so that they can
then select a mechanism that is appropriate to the coordination episode at hand.
Thus, for particularly important tasks, the agents may choose to adopt a coordi-
nation mechanism that is highly likely to succeed, but which will invariably have a
correspondingly large setup cost. Whereas for less important tasks, a mechanism
that is less likely to succeed, but which has lower setup costs, may be more appro-
priate. Similarly, when it is difficult or expensive to setup a coordination activity (e.g.
because there are not many agents available) is it appropriate to pick a mechanism
that is highly likely to succeed (even though it will have a high setup cost). In
contrast, if coordination can be setup easily or cheaply then it might be more
important to choose a mechanism that promises to achieve the task in the quickest
possible way. However, to date, the choice of which coordination mechanism to use
in a given situation is something that the designer typically imposes upon the system
at design time (e.g., in a given application a particular social law will be used or it will
be decided that all coordination activities will be handled by the contract net pro-
tocol). This means that in many cases the coordination mechanism that is employed
is not well suited to the agents’ prevailing circumstances. This inflexibility means that
the performance of both individual agents and the overall system may be compro-
mised.
To rectify this situation, our aim in this research is to develop agents that can

reason about the process of coordination and then select mechanisms that are
appropriate to their current situation. That is, the choice of coordination mechanism is
made at run-time by the agents that need to coordinate. Thus, we claim that fixing on a
single coordination mechanism at design time is inappropriate, because there is no
scope for changing or modifying the mechanism to ensure there is a good fit with the
prevailing circumstances [2]. We believe this problem is particularly true in open and
dynamic environments, because of the wide variety of contexts in which coordina-
tion is likely to be needed.
To circumvent this problem, we will present a decision making framework that

enables agents to dynamically select the coordination mechanism that is most
appropriate to their circumstances. Thus, our work is not concerned with developing
actual coordination mechanisms that exhibit the varying properties discussed above,
nor with classifying existing coordination mechanisms along such dimensions. Ra-
ther, we view the coordination mechanisms in the abstract; representing them in a
quantitative way. In particular, we model the cost involved in the coordination and
the benefits of adopting a particular mechanism (as advocated by Lesser [29]). Our
framework is then concerned with deciding whether coordination should be at-
tempted in a given context (given the agent has a particular set of mechanisms at its
disposal) and, if so, which of the available mechanisms is the most appropriate to
employ in the prevailing situation. Once a particular mechanism has been chosen for
a particular coordination episode, the agents involved are expected to adhere to the
rules and procedures specified in the mechanism itself. Thus the rules indicate how
the coordination should actually proceed.
This work advances the state of the art in the following ways. Firstly, the very idea

of letting the agents dynamically select their coordination mechanism has not
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explicitly been addressed within the field of multi-agent systems to date. Although
some work has been done on flexible reasoning about coordination and the dynamic
selection of algorithms, the focus on the reasoning about coordination strategies is
new. Secondly, we present a formal framework for capturing the reasoning processes
the agents require in order to perform in such a manner (this covers making decisions
about when to coordinate and which coordination mechanism to use). Finally, we
provide a systematic empirical evaluation of the efficacy of such reasoning in an
idealized coordination scenario.
The remainder of this paper is structured as follows. Section 2 details our specific

coordination scenario. Section 3 formalises the decision procedures of the agents.
Section 4 evaluates the decision making framework. Section 5 deals with related
work and, finally, Section 6 concludes and presents the areas of further work.

2. The coordination testbed

The domain in which we perform our evaluations takes the form of a grid world in
which a number of autonomous agents (Ai) perform tasks for which they receive
units of reward (Ri). Each agent has a specific task (STi) which only it can perform;
there are other tasks that require several agents to perform them, called cooperative
tasks (CTs). Each task has a reward associated with it, the rewards for the CTs are
higher than those for STs since they must be divided among the coordinating agents.
The agents move around the grid one step at a time, up, down, left or right, or stay

still. At any one time, each agent has a single goal, either its ST or a CT over which
coordination may need to be achieved. On arrival at a square containing its goal, the
agent receives the associated reward. In the case of STs, a new one appears, ran-
domly, somewhere in the grid, visible only to the appropriate agent. In the case of
CTs, a new one appears, randomly, somewhere in the grid, but this is only visible to
an agent who subsequently arrives at that square. If an agent encounters a CT, while
pursuing its current goal (i.e., its ST), it takes charge of the CT2 and must decide on
both whether to initiate coordination with other agents over this task, and which
coordination mechanism (CM) it should use. In this context, each agent has a pre-
defined range of CMs at its disposal. Each CM is parameterised by two key attri-
butes: setup cost (in terms of time-steps) and chance of success (see Section 2.1 for
more details). For example, a CM may take t time-steps to setup (modelled by the
agent waiting that number of time-steps before requesting bids from other agents)
and have a probability, p, of success (thus when the other agent(s) arrive at the CT
square, the reward will be allocated with probability p, with zero reward otherwise).
An agent may well decide that attempting to coordinate is not a viable option, in
which case it adopts the null CM (i.e. the agent rejects adopting the CT as its goal).
The Agent-in-Charge (AiC) of the coordination selects a CM and, after waiting for

the setup period, broadcasts a request for other agents to engage in coordination.
The other agents respond with bids composed of the amount of reward they would
require in order to participate in the CT and how many time-steps away from the CT
square they are situated. If an agent’s bid is successful, then it is termed Agent in-
Cooperation (AiCoop) to denote the fact that it is a participant (not AiC) for a CT
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task. The role Agent-in-ST (AiS) is used to denote the situation where an agent is
working towards a ST. Figure 1 highlights the specific decisions which have to be
made (see Section 3 for more detail) and gives the protocol the agents follow at each
time-step.
Agents might receive more than one proposal at the same time-step, in which case

they reply with as many bids as the proposals they receive. However, they will only
accept one CT contract at a time. Agreements between AiCs and AiCoops to achieve
a particular CT are established via a contracting protocol. This contract-net-like
protocol consists of three steps. In the first step, AiC broadcasts a proposal to all
agents. It then waits for the bids. The second step involves selecting the bids and
contracts from AiCs and AiCoops respectively (both of them have to consider
refusals and denials of their corresponding offers). Finally, the third step consists of
the commitment about the terms of the contract and the time-step at which AiCoops
will arrive at the CT square.
In choosing a scenario in which to evaluate our model we are faced with one of

the perennial problems of empirical research (see [9]) for fuller discussion): do we use
a concrete real world domain or do we work in an abstract environment? Choosing
the former means concerns are raised about the generality of the results. Choosing
the latter means there are concerns about the applicability of the developed models
or the simplicity of the scenario (see [23] for a discussion of the relative merits of
such a choice). Our choice, a grid world scenario, obviously falls into the abstract
environment category. This decision was made because the primary objective is to
focus on the essential aspects of an agent’s decision making about coordination and
it was felt that this is best achieved without the extraneous constraints of a real-
world application. Nevertheless, it is believed that the scenario models the key
features related to making coordination decisions that are present in many real
world scenarios and that it incorporates the necessary degree of dynamism and
uncertainty to fully evaluate the coordination model. To this end, the scenario has

Figure 1. Basic protocol followed by agents.
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been deliberately setup to concentrate on the decision making involved in coordi-
nation. Thus we minimize the remainder of the agent’s decision making capabilities
so that differences in performance are solely attributable to decisions about coor-
dination and not anything else. For example, we say that an agent can only pursue
one goal at a time (meaning our results are not influenced by how effectively an
agent can interleave execution of multiple concurrent goals) and that agents cannot
renege on commitments (meaning we do not have to reason about commitment
strategies and types of sanctions). While adding such functionality would inevitably
improve the agents’ performance, we believe it may also make the effect of the
coordination decisions more difficult to determine. Moreover, the parameterized
behaviour of the environment means that the experimental conditions can be fully
reproduced in order to allow meaningful comparison between the different coordi-
nation techniques.

2.1. The coordination mechanism abstraction

The first step in characterising coordination mechanisms is to represent them in a
common manner so that they can easily be compared. To this end, we adopt a
characterization that covers the following issues: what are the requirements that need
to be fulfilled before the technique can be applied (requirements)?, what are the rules
that agents follow in order to complete their interactions (coordinating algorithm)?,
and finally, what degree of coordination is likely after the coordinating algorithm has
been applied (level of achievement)?. Now, to be able to reason about selecting a
particular mechanism in a given situation we need to abstract from this basic
description some meta information that enables us to distinguish between the
alternatives. In this case, we consider the run-time cost to setup the mechanism and
the likelihood of it being successful3 (as advocated in [29]). These meta data attri-
butes can be regarded, respectively, as being derived from the description of the
requirements and the level of achievement. Moreover, we need to find a simple way
of quantifying these values and for illustrative purposes in this section we choose a
simple qualitative scale of high, medium and low. Combining this altogether, we
produce the generic template of Table 1 for describing and reasoning about coor-
dination mechanisms.
To illustrate the use of our template we show how probably the most common

coordination mechanism, the Contract-Net protocol [38], can be represented
(characterizations of several others coordination mechanisms are given in [16]. In
this mechanism, a contractor agent (the task manager) is responsible for achieving
a given goal. It has to decompose this goal into subtasks and indicate to other
agents that it requires assistance with some of these subtasks.4 The task manager
broadcasts a task announcement to all the other agents in the system (along with
any special criteria that the bidders must fulfil). Each recipient then decides whe-
ther it is interested in taking on the task and, if so, it returns a bid indicating the
conditions under which it is willing to undertake the task. Finally, following the
expiration of the task announcement, the task manager evaluates the bids (task
deliberation) and awards the task to the most appropriate agent. Thus, a contract
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is established (task allocation) between the manager and the contractors with the
winning proposals. From this description, Table 2 shows our representation of this
mechanism.

Table 1. Generic template of a CM.

Coordination technique components

Requirements. The preconditions that need to be satisfied before the coordinating algorithm can be

executed. This covers things such as whether the protocol requires a setup phase (e.g., in multiagent

planning a goal decomposition is needed before sub-goals can be assigned to the agents) or whether it

needs a particular piece of information to be available (e.g. the number of agents in the system). These

requirements might be established at design time and/or during the run-time execution. Examples of the

former case are when the agent knows (because it has been hard-wired) how to contact the other agents

in the system, what are their corresponding capabilities and so on. Examples of the latter case are when

agents acquire the same information, but, as a result of their interaction with others.

Coordinating algorithm. The detailed plan of actions that have to be followed to achieve coordination

once the requirements have been fulfilled.

Level of achievement. The degree of coordination that is likely from following the steps specified in the

coordinating algorithm.

Meta-data attributes

Cost to setup: A value measuring the run-time costs associated with the requirements noted above.

Probability of success: The likelihood in a given environment that following the steps in the coordinating

algorithm will result in a successful coordination.

Table 2. Contract-Net Protocol CM.

Coordination technique components

Requirements. To apply the protocol the agents need to have information about how to contact one

another (the identification of the possible receivers of the offer) and how to rank incoming bids from

potential contractors (the selecting criteria). The information about contractors can be given at design

time (in static environments) or determined at run-time (in more dynamic cases).

Coordinating algorithm. The protocol consists of three phases: identifying potential contractors, making

a decision about which contractor to select and actually enacting the agreed task. These phases are

based on the message interchanges associated with the sending out of a request by the task manager, the

handling of the bids from the potential contractees and the contract assignment respectively.

Level of achievement. There are several reasons why, once selected, the protocol may fail to result in a

successful coordination. For example, the manager may receive no bids from potential contractees

(because they are too busy and unavailable or because they are not interested in the task at hand) or the

bids received may not satisfy the manager’s requirements, or the chosen contractee may not accept the

awarded contract.

Meta-data attributes

Cost to setup: The main setup cost is associated with awarding the contract. This is dependent on how

much time is required to determine the set of potential contractors to send the request to (if this is inbuilt

the cost is low, if it needs to be determined at run-time it will be more time consuming because it may

involve interacting with a broker [12] and the time the agent has to wait for responses before it can make

choices (the task announcement expiration-period).

Probability of success: Because of the many eventualities that might occur, the mechanism has a medium

likelihood of succeeding in the coordination tasks in the general case. If further information is available

about the specifics of the environment (e.g., many agents can provide various subtasks or the agents are

generally cooperative and will offer help whenever possible) then this qualification can be refined.
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3. The agent’s decision making procedures

This section formalises the decision procedures of the agents. To study the average
impact of coordination mechanisms, an infinite horizon model of decision making
[18] was adopted because we are interested in the long-term performance of agents; a
finite horizon model may lead to erratic behaviour as the last time-step approaches.
However, there are still two ways to model the agents’ decisions: by using average
reward per unit time or by discounting future rewards. Here, the former was chosen,
since it simplifies the decision analysis.
The agents’ aims are to maximize their reward, in particular their average reward

per unit time. Each agent keeps track of its own average reward, termed its reward
rate, and it uses this rate to decide how much to charge for its own services and
occasionally to approximate the expected rates of other agents (when it is not able to
build up a picture of them). Specifically, each agent uses its reward rate to evaluate
and compare the different actions available to it; if it can maintain or improve this
rate, it chooses to do so. Of course, this decision model approximates the true
relative values of different actions, however, since the environment may change
rapidly, we believe that a simple reactive decision procedure is appropriate (see [28]).
Agents may have various dispositions with respect to cooperation and the char-

acterization of sociality used here is captured by an agent’s willingness to cooperate
(WtC) factor (based on Hogg and Jennings [24]). This factor, x, represents the
weight an agent puts on opting to cooperate, relative to collecting its usual reward.
When reward units, effectively the agent’s utility, are of equal currency, a neutral
agent (x ¼ 1) only needs to receive the same reward from a CT as it would from its
ST. Thus, if x > 1 it can be described as greedy, asking for more reward than it
would normally expect to receive and if x < 1 it can be described as self-less, asking
for less than it would normally expect to receive. The decision procedures described
in this section will typically assume that agents are neutral, but will include x to
indicate where this factor comes into the calculations.
In our model there are four types of decisions that agents are required to make: (i)

the direction to move in; (ii) which CM to adopt, if any; (iii) how much to bid when a
request for coordination is received; and (iv) how to determine which bid to accept, if
any. Each of these is now dealt with in turn.

3.1. Deciding the direction to move

An agent always has a target square in which its current goal is located. The agent
decides to move towards its goal by selecting the direction, up, down, left, or right,
probabilistically according to the ratio of up/down to left/right squares away from
the goal it is. Formally, if the agent is at square [x1, y1] and its goal is at [x2, y2], the
probabilities (pmove) that it will move in any given direction are given by:

pmoveðup=downÞ ¼ jy1� y2j
jx1� x2j þ jy1� y2j

ðup if y2 < y1; down otherwiseÞ
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pmoveðleft/rightÞ ¼ jx1� x2j
jx1� x2j þ jy1� y2j

ðleft if x2 < x1; right otherwiseÞ

For example, if an agent’s ST is located 4 squares up and 3 squares to its
right, then with Probability 4/7 it will move up, and with probability 3/7 it will move
right.

3.2. Deciding which CM to select

An agent which, while pursuing its current goal, encounters a CT must decide
whether to initiate coordination with other agents in order to perform it. To do this,
the agent must determine whether there is any advantage in so doing. This depends
not only on the reward that is being offered, but also on the CMs available, as well as
on various environmental factors that affect the expected demands of the potential
coordinating agents.
To model the expected demands of the other agents, the AiC assumes they are

randomly distributed throughout the grid, and that their current goals are similarly
distributed. Thus some agents may be near the CT while others may be far
away; likewise, for some agents there would be a significant deviation from their
ST to reach the CT, while others may be able to coordinate over the CT enroute
to their own goals. The agent then assesses the possible CMs on the basis of
how long before the task can be performed and how much reward it is likely to
obtain after deducting the expected reward requirement of the other agents. In the
former case, it considers both the setup time and the average distance away each
agent is situated, whereas the latter value is based on the amount of time the agents
must spend deviating from their path and the CM’s probability of success. This
assessment determines the amount of surplus reward the agent can expect, over and
above what it expects to obtain during its normal course of operation, i.e., its own
average reward per time-step, r. The agent then selects the CM that maximizes this
surplus5.
To formalize this decision procedure, consider an M�N grid with reward size S

for STs, and R for CTs, a coordination mechanism, CM ¼ ðt; pÞ, that costs t time-
steps to setup and has a probability of success p. In this grid world of known size, the
agent can calculate the expected average distance (avedist) away of any randomly
situated agent from the CT square as well as the likely average deviation (avedev)
such agents would have to make to get there.
First, the average distance in each direction of a random square from a point [x, y]

is given by:

x distanceðxÞ ¼ 2xðx� 1Þ þMðMþ 1� 2xÞ
2M
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y distanceðyÞ ¼ 2yðy� 1Þ þNðNþ 1� 2yÞ
2N

Hence the ave dist of any given agent from [x, y] is:

ave distðx; yÞ ¼ x distanceðxÞ þ y distanceðyÞ

The average distance, ave dist, of an agent from its ST is the average distance
between two random points on the grid. This is given by averaging ave dist(x,y)

over all x and y:

ave dist ¼
PM

x¼1

PN
y¼1 ave distðx; yÞ
M�N

Finally, the average deviation of an agent to assist in a CT at square [x, y] and then
go on to its ST, as compared with going straight to its ST, is given by:

ave devðx; yÞ ¼ 2� ave distðx; yÞ � ave dist

Based on these figures, the agent can assess the average surplus reward from coor-
dinating over the CT at (x, y) using CMj ¼ ðtj; pjÞ. First, it must estimate its own cost
in terms of how long the CM will take to setup and how long it expects to wait for
the other agents to arrive. Since the AiC would usually expect to receive r reward
units per time-step (r ¼ S

ave dist
), the cost of CMj is given by:

costjðx; yÞ ¼ r� ðtj þ ave distðx; yÞÞ

Second, the AiC must estimate the average amount of reward the other m agents will
require based on their willingness to cooperate (x). To distinguish an agent’s own
average reward (r) from that of the others, r_AiCoop is used to refer to the average
reward of all the other agents in the environment. When AiC does not have any
knowledge of r_AiCoop it uses its own average reward as an approximation (see [17]
for further discussion of this matter).

ave bidjðx; yÞ ¼
r AiCoop� x� ave devðx; yÞ

pj
ð1Þ

Third, the AiC estimates the expected surplus (ave payoff) of CMj from adopting
the CT by taking into account the probability of success of the task (represented with
the reward R associated to the CT):

ave payoffjðx; yÞ ¼ pj � R ð2Þ
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Using these estimates, the AiC can evaluate the expected surplus reward of adopting
CMj:

6

ave surplusjðx; yÞ ¼ ave payoffjðx; yÞ � ðcostjðx; yÞ
þ ðm� ave bidjðx; yÞÞÞ

ð3Þ

When deciding which of its CMs to adopt, the agent computes its expected surplus
reward from each of them and selects the one that maximizes this value. If the
surplus associated with all CMs is negative, the agent adopts the option of the null
CM (which is defined to have zero surplus).
To exemplify this decision procedure, consider the simple scenario of Figure 2 at

one instant in time with two agents (AiS1 and AiS2), two STs, one CT and two CMs:
CM1(3, 0.9) and CM2(6, 1.0). AiS2 occupies a 5 � 5 grid and finds a CT requiring
one other agent with R ¼ 6 at square [3, 2]. Assume all agents have a WtC factor of
x ¼ 1. The average distance of other agents from [3, 2] is 2.6. Since the average
distance between two random squares is 3.2, the average deviation of any agent from
[3, 2] is 2. Assume that each ST has a reward S ¼ 2, then the average reward per
time-step of all agents is 2

3:2 ¼ 0:625. The expected surplus reward of adopting each
CM is given by:

cost1ð3; 2Þ ¼ ð0:625� ð3þ 2:6ÞÞ ¼ 3:5

ave bid1ð3; 2Þ ¼
ð0:625� ð1� 2ÞÞ

0:9
¼ 1:389

ave payoff1ð3; 2Þ ¼ ð0:9� 6Þ ¼ 5:4

ave surplus1ð3; 2Þ ¼ 0:511

cost2ð3; 2Þ ¼ ð0:625� ð6þ 2:6ÞÞ ¼ 5:375

ave bid2ð3; 2Þ ¼
ð0:625� ð1� 2ÞÞ

1:0
¼ 1:25

ave payoff2ð3; 2Þ ¼ ð1:0� 6Þ ¼ 6

ave surplus2ð3; 2Þ ¼ �0:625

Under these circumstances, AiS2 decides to attempt coordination with CM1

(becoming AiC) because it expects to obtain a profit. Note this is not the case with

Figure 2. Example of a coordination world grid.
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CM2, where the negative result indicates there is not likely to be a surplus. Thus, in
this case, if AiS2 only had CM2 at its disposal it would choose the null CM (expected
surplus zero) and it would continue towards its ST.

3.3. Deciding what to bid to become an AiCoop

When agents receive a request to participate in a CT they submit a bid based on the
amount of reward that they would require to compensate them for deviating from
their current goal. They also submit their current distance away from the CT square.
Thus, an agent’s required reward is determined by the amount of time spent in
deviating to the CT square, its average reward per time-step and the probability of
success of the CM being proposed.7

To formalise this, consider an agent, Ai, with xi and average reward per time-step
ri. The agent calculates its deviation, i.e., the number of extra time-steps it requires to
reach its ST if it goes via the CT square. Note that if, for example, the CT square lies
directly on a path to the ST, the agent’s deviation would be zero. Clearly, such an
agent will be in a position to submit a very attractive bid, since the cost of coordi-
nating is effectively zero.
Again by means of illustration consider the agents depicted in Figure 2. AiS1 at [5,

3] would take 4 time-steps to reach ST1 at [2, 4] directly, but 6 steps going via the CT
at [3, 2], a deviation of 2 timesteps. However, AiS2 at [1, 1] would take 7 time-steps to
reach ST2 at [4, 5] directly, and also 7 steps going via the CT at [3, 2]; AiS2 therefore
has a deviation of 0.
To compute the reward Ai requires from engaging in coordination over the CT, it

takes into account the compensation both for its deviation and for the possibility
that the CM might fail; it also takes into account its willingness to cooperate. Thus,
we have:

bidij ¼
ri � xi � deviationi

pj
ð4Þ

The agent submits its bid to coordinate and its distance from the CT square. If an
agent is selected to coordinate, it adopts the CT as its current goal. Its ST is only re-
adopted after the CT has been accomplished.

3.4. Deciding which AiCoop bids to accept

Once the AiC has received bids from all agents, it selects the set that maximizes its
surplus reward, given the new (definite) information it has received (cf. the
approximation in Section 3.2). For each agent, Ai, the AiC knows the amount of
reward it will require (bidij) and the time it will take to arrive (Ti).
The AiC’s selection bid process is based on the calculation of the cost of each bid

received. However, when more than two agents are required to achieve a CT, it is
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necessary to deal with the fact that an AiCoop may have to wait in the CT cell while
the remaining AiCoops arrive (because agents have to travel different distances).
There are many ways of dealing with this situation (see discussion below). However
to simplify the estimates of expected reward undertaken by the various agents, we
assume the AiC pays an additional reward for the time elapsed. Thus, AiC knows the
number of time-steps that each AiCoop is likely to have to wait (specified in the bid)
and the amount it will pay for waiting time at a specific predefined waiting rate (q).
The CT is achieved only when the AiC has received the confirmation of all m agents
involved in the cooperation. When an AiCoop notifies the AiC of its arrival at the
CT cell, it either receives its share of the CT reward or the waiting rate followed by
its share of the CT reward.
Thus, to decide which bids to accept, the general idea is that AiC selects the m

proposals with least cost (from the total bids received B). It does this by considering
the reward requested in the bid and the waiting time cost (cost bid) and then it
estimates its expected reward given this cost and its investment. Formally, AiC
calculates the cost of each subset b of B with m elements of the form (bidij, Ti).
From b, AiC selects the agent that will take the longest time to arrive (i.e.,
maxTb ¼ maxðbidij;TiÞ2b½Ti�), then it can determine the maximum time that each agent
will spend in the cell. Finally, it approximates the cost of each bid based on the
reward and the waiting time an AiC has to pay:

cost bidb ¼
X

ðbidij;TiÞ2b
ðbidij þ ðmaxTb � TiÞ � qÞ ð5Þ

Bringing all this together, AiC estimates the surplus it expects to obtain by taking
into account the cost of the selected bids and its own investment to wait for the last
AiCoop to arrive. The bids selected belong to the subset b of B which maximizes the
surplus given by:

surplusj ¼ pj � R� cost bidb � r� ðtj þmaxTbÞ ð6Þ

Now, it may be the case that no bids are received which give a positive surplus. Even
though the chosen CM had an expected surplus, by chance it may be that no agents
are sufficiently near to provide reasonable bids. In such a situation, the AiC aban-
dons the CT and returns to its ST.
It is important to emphasize the fact that the protocol specified in Figure 1

indicates only the general steps agents follow in this scenario. In order to formulate
the agent’s decision making procedures, some specific design choices had to be taken.
For example, the agent’s decision of which bids to select (as described in this section)
models the situation in which the AiC pays compensation for the AiCoops’s waiting
time because all AiCoops have to be in the cell to attain the CT. However, there are
other ways of dealing with the fact that various cooperative agents are required to
achieve a CT (step [1] of the protocol). For instance, in some circumstances, only two
agents might be needed to accomplish a CT or the cooperative agents may not need
to wait for the others in order to attain the CT. In both of these cases, the AiC would
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not need to pay compensation for the AiCoops’s waiting time. Additional situations
might occur if the agents are allowed to negotiate the waiting rate. However, many
of these alternatives can be modelled using the components and constituent factors
introduced in this section. To demonstrate this, in what follows, alternative for-
mulations to calculate surplus are illustrated.
In the situation in which only one more agent is needed to achieve a CT (the

simplest case), the bid selected is the one with the cost (cost bidb) that maximizes
the surplus reward estimated by equation surplus. This time, however, it does not
make sense to use maxT and Ti is used instead.

cost bidb ¼ bidij

If, however, more agents (to be precise m agents) are required to achieve a CT and
AiCoops do not need to wait for the rest to achieve the cooperative task, the
cost bidb must reflect the fact that the bids are not affected by the waiting time. In
this case, the cost of each subset b of m elements is approximated by:

cost bidb ¼
X

ðbidij;TiÞ2b
bidij

Note that for the calculation of surplus, although AiC does not pay compensation
for the waiting time, it still has to wait for the furthest AiCoop to arrive (maxTb).
Once again, with this new cost calculation, the surplus equation considers the
changes needed and the formulation is used transparently.
In summary, the alternative formulations presented for calculating cost bidb and

surplus illustrate that although there are many situations that agents might
encounter as a result of possible interactions, the main components and constituents
factors taken into consideration in the agent’s decision making are still valid.
Moreover, the same concepts can be used to formulate the particulars of alternative
applications domains. In particular, the modifications mainly occur in the calcula-
tion of cost bidb rather than in the whole evaluation of surplus (see [16] for further
details of how various rules associated with the achievement of CTs can be mod-
elled).

4. Evaluating the benefits of run-time selection of CMs

Having presented the basic formal framework, we now turn to its evaluation. In
particular, we concentrate predominantly on the fundamental hypothesis underlying
our work; namely that being able to select the CM at run-time is beneficial. We also
explore the impact of the model’s main parameters on the performance of the
individual agents and on the overall system.

4.1. Experimental setting

The following simulation parameters are fixed for all the experiments: time horizon
(duration of 10,000 time units8), number of CTs in the grid at any one time (1),
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number of agents (5), number of agents needed to achieve a CT (3) and ST reward
(1). The agents had the following CMs at their disposal: CM1(0, 0.6), CM2(15, 0.7),
CM3(30, 0.8), CM4(45, 0.9) and CM5(60, 1.0). These CMs were chosen to be con-
sistent with the observations that there is no best CM and the CMs more likely to
succeed take longer to setup (see Section 1).
The experimental variables were the size of the grid and the reward for CTs. The

variables that measure the agent’s effectiveness are: total agent reward obtained from
the accomplishment of its ST and CT tasks, which is termed Agent Utility (AU), and
the total number of CTs accomplished (TCT) by an agent.9

4.2. Selecting different CMs

The first thing to test is that agents do indeed select different CMs in different
circumstances. To this end, Figure 3 shows which CMs were selected in which grid
position. Here, the grid size was 20� 20 (the remaining three quadrants are simply a
mirror of the portion of the upper left shown) and the reward for CTs is 10. In the
centre of the grid, [10, 10], the agents choose CMs that minimize the setup cost (even
though they have a significant chance of failing to ensure coordination). However, as
the agents move further away from the centre, so they increasingly prefer mecha-
nisms that are more likely to succeed (even though they have a correspondingly
higher setup cost). The explanation for this behaviour is that as the distance from the
centre increases, so does the expected time for another agent to reach the CT square.
Thus, to justify its choice of a CT over its ST, the AiC needs to ensure that the
cooperation it does enter into do succeed. Whereas, towards the centre of the grid,
the time the AiC typically has to wait for another agent to arrive is much smaller and
so it can afford to have more cooperations fail. In between are the points where
success and setup time are traded off. Figure 4 shows the corresponding expected

Figure 3. Terrain map showing where the various CMs are selected.
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utility for the various CMs (ave surplus). Notice that the CM’s surplus expectation
decreases as the agent moves away from the centre of the grid.

4.3. Amount of cooperation

To measure the number of times that coordination is attempted, Figure 5 shows the
number of cooperative tasks achieved (TCT) by an agent as a function of the reward
for achieving a CT and the grid size. The Figure shows that once the reward for CTs

Figure 4. CM’s expected utility in the terrain map.
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is sufficiently high (above 4 in this case) then CTs start getting initiated (i.e. this value
is needed before ave surplus becomes positive). At the same time, the TCT in-
creases as the grid size decreases because in small grids agents simply have more
chance of finding the CT.
However, it is important to notice that the combination of size of grid and CT

reward does have an implication on the selection of the CM and, consequently, on
the number of CTs achieved. In the 5� 5 grid, for example, the TCT declines when
the CT reward is higher than 40. This is because although the agents initiate coor-
dination in exactly the same circumstances, they select a CM that takes more time to
set up.10 The reason for this behaviour is that since the reward is so high, the agents
select a CM that guarantees success, regardless of the time invested. As they spend
more time establishing coordination, they have less opportunity to find CTs and so
with a fixed time horizon they achieve fewer CTs. Similar behaviour is observed in
the other grid sizes, although the CT reward level at which coordination starts and
the level at which the number of CTs achieved starts to fall obviously varies. While
Figure 5 indicates how often the agents cooperated, Figure 6 shows how profitable
those decisions are. It is clear that the AU decreases as the grid size increases. Again
this is simply because the agents have less opportunity to engage in CTs. Following
the same example of the 5� 5 grid, it is observed that the agent’s utility stops
increasing when the CT reward is above 40. Once again, this is explained by the fact
that agents do not engage in coordination as often as they do with smaller values of
CT reward.
The final key determinant of the amount of cooperation that occurs in the system

is the WtC factor. To this end, Figure 7 shows the effect of this factor (the reward for
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515515CTs is here taken to be 10 and the grid size is 20� 20) on the cooperative tasks
accomplished. As expected, the more greedy the agents become (increasing x), the
fewer CTs that get initiated and achieved. The same figure (y axis) also illustrates the
relation between the TCT achieved and the agent’s reward. In this scenario, the more
CTs that are accomplished, the more AU that is gained. However, this hides the fact
that the various constituents that go towards making AU vary in their relative
importance as x changes. This is because x affects the amount asked to become a
AiCoop (equation bid) and, consequently, the surplus available for the AiC
(equation avesurplus). Thus, for instance, the more selfless an agent becomes, the
more reward is gained through the AiC role (the percentage of reward obtained by
the AiC and AiCoop roles with x ¼ 0:25 was 97 and 3% respectively). On the other
hand, the more greedy the agents become, the higher the percentage that is obtained
by being AiCoop (with x ¼ 3:0, AiC received 69% of the reward gained through
cooperative situations and 31% through being AiCoop).

4.4. Effectiveness of the agent’s decision making

Having analysed the effect of the decision making framework’s basic parameters, we
now consider the impact of being able to dynamically select a CM that is deemed to
be appropriate to the prevailing circumstances. A set of experiments were designed
as a formal methodology to provide information about the experimental variables.
To do this, we employ statistical inference methods; in particular analysis of variance
(ANOVA) [9] is used to test hypotheses about differences between the means
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collected. The null hypothesis (H0) of equal means can be rejected when the pro-
cedure reveals for all experiments that the differences among means are significant
(p < 0:05) or can be accepted in the contrary case. That is, the execution of an
algorithm in a specific environment generates a set of values for the experimental
variables that can be analysed under the same circumstances to probe hypotheses
using ANOVA. It is important to recall that although ANOVA may reject the
equality of means, it does not indicate where the differences between the various
elements lie. In our case, because we are interested in a particular agent’s perfor-
mance, it is important to determine which agent (or agents) performs the best. To do
this, a postanalysis is applied to the data collected. This test makes a comparison
between the data collected and builds groups (as many as necessary) that have
statistically homogeneous values. Each group is generated with an associated value
(the p value) that indicates the degree of confidence from which each group was built
(the higher the number (in a range of 0.0–1.0), the greater the confidence in the
grouping).11

To focus on the dynamic selection of CMs, the performance of agents that employ
a single CM is contrasted with that of an agent that has the full range of CMs at its
disposal. Thus, A1 only has the CM1(0, 0.6) to select from, A2 the CM2(15,0.7), A4

the CM4(45,0.9), A5 the CM5(60,1.0), and As the whole set of CMs.12 To test our
hypotheses we focus on the variable AU (again averaging by 10 simulations runs)
since this measures how much the agent’s performance improves depending on a
specific environment. Once again the experimental variables were the size of the grid
and the reward of the CT.
To evaluate our claim about the benefits of dynamically selecting the CM the

following hypothesis (H0) needs to be tested for each agent, in each environment
(defined by a specific CT reward and a grid size), using ANOVA.
H0: the AU obtained by As in a given environment is the same as that obtained by

A1, A2, A4 and A5.
To start with, Table 3 shows the result of evaluating H0 in an environment with a

CT reward of 10 and a grid size of 5� 5. Intuitively, we would expect a different level
of performance from the agents that have only one CM to select from and the agent
that has a set to select from. The ANOVA result is that the hypothesis is rejected
(p < 0:05) meaning that the agents’ performance does indeed have a statistically
significant effect on the AU obtained. To justify this result, Table 4 shows the groups
formed by the post analysis. The first thing to notice is that As and A1 are the agents
that perform best (they have the highest AU values). This is because, in this envi-
ronment, the less time that is invested in setting up a CM, the better (because the
agents have more opportunity to find CTs). Both A1 and As use the CM that takes
the least time to setup (thus, As selects CM1 all of the time).

Table 3. Agent’s performance: result of ANOVA.

CT reward = 10 M · N=5 · 5

Hypothesis to evaluate p Outcome

H0: AUA1
¼ AUA2

¼ AUAs
¼ AUA4

¼ AUA5
0.000 Rejected
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However a good coordination decision maker has to balance the time invested in a
CT through the CM selected and the final reward obtained. Thus, to validate this
reasoning, it is important to know the total number of CTs achieved by each agent.
This is shown in Figure 8. It can be seen that A1 and As did accomplish the most CTs
and this corresponds with the reward they obtained. The second best performing
group was A4 and A5 which have the CMs with the longest time to setup. However
from Figure 8 we notice that they did not accomplish any CTs. Instead, they use
their time accomplishing STs. This shows that the agent’s decision making about
when to attempt coordination (and when not to) is as important as selecting the right
CM. Thus, A4 and A5 gained more AU by not attempting coordination than they
would have done by attempting it. Finally the worst performance was by A2 which
attempted coordination some of the time and achieved some CTs, but the reward it
gained was not significant enough to make a difference in its AU.13

In summary, the post-analysis shows us that the best performance is obtained by
the agents which, on the one hand, gain the reward which justifies the time they

Table 4. Post-analysis of ANOVA.

Agent AU

1 2 3

A2 3266.3

A5 3337.7

A4 3353.3

A1 3794.3

As 3800.3

p 1.000 0.8728 0.9959
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invest on the cooperative tasks and, on the other, ensures that this reward is better
than that they could have obtained by achieving STs alone and having no cooper-
ative attitude.
Having shown the benefits of dynamically selecting CMs in one specific environ-

ment, the next step is to evaluate how this generalizes to other environments. In this
case, we consider 90 different environments; these have CT rewards in the range of
[10, 15, 20, 25, 30, 35, 40, 45, 50] (9 cases) and grid sizes in the range of [5� 5],
[10� 10], [15� 15], [20� 20], [25� 25], [30� 30], [35� 35], [40� 40], [45� 45],
[50� 50] (10 cases). To do this, we simply re-apply the same statistical test to each
different environment. Our premise is that the various single CM agents will perform
well in different environments, but As will perform at least as well as (if not better
than) the best of the others in all cases. Being more precise, our interest is to find
those environments in which H0 is rejected14 and then check (using the same post
analysis as described in Table 4) in each environment whether As belongs to the
group with the best performance (called the winner group hereafter).
Our results are as follows. Firstly, there were 55 cases in which H0 was rejected

and 35 cases in which it was accepted. This means that 61% of the time dynamically
selecting CMs had a significant effect on the AU in a given environment. In more
detail, Figure 9 (left section) shows the number of times that each agent belongs to
the winner group. The results are grouped by CT reward (i.e. CT ¼ 10 represents the
group of 10 environments (of different grid sizes) in which CT was 10). Figure 9
(right section) shows the same information in percentage terms. These results show
that As obtained a statistically significant better performance than the other agents
(61% of the time), A5 did this 44% of the time and so on. This provides the evidence
of the fact that As has the dominant behaviour over the other agents in most of the
environments.
While previous figures demonstrate As’s dominance over the other agents, they do

not show in which environments the different CMs are dominant. Again, taking the
CT reward of 10 as an example, Table 5 presents the winner agents on a per
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environment basis.15 From this it is clear that the CM with lower times to setup
(those associated with A1 and A2) are selected in smaller grids, while the CMs with
higher values are selected in bigger grids. From the same table, we can also observe
the grid sizes in which the agents’ selections do not have any effect on the AU (those
in which H0 was accepted). This figure helps us to clearly illustrate (as previously
discussed in Section 4.2) that the combination of CT reward and grid sizes has an
effect on the agents’ CM selection. Though the figure shows only a few of the
environments, the same pattern is followed in the remaining environments. Thus,
there are some environments in which some CMs are preferred over others and other
environments in which there is no significant difference on the CM selection.
However, what is more important is the fact that even though we recognize the
situations in which some CMs are preferred over others, what we have shown is that
As obtains a consistently better performance than the other agents.

5. Related work

There are three broad strands of work that are related to our model of reasoning
about coordination:

– work on techniques for coordinating multiple agents (Section 5.1),
– work on the dynamic selection of problem-solving techniques (Section 5.2),
– work on flexible reasoning about coordination (Section 5.3).

Each of theses will now be dealt with in turn.

5.1. Techniques for coordinating multiple agents

Coordination has been widely studied by MAS researchers because it is a key form of
interaction in many systems. Because of this fundamental role, a number of

Table 5. Number of cases in which various agents belong to the winner group.

CT reward = 10

Grid size A1 A2 As A4 A5

5 · 5 1 1

10 · 10 1 1 1

15 · 15 1 1 1 1

20 · 20

25 · 25

30 · 30 1 1 1 1

35 · 35 1 1 1

40 · 40 1 1 1 1 1

45 · 45

50 · 50 1 1 1 1
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techniques exist for coordinating agents’ interactions. These include appealing to a
higher authority agent in an organizational structure [6, 19, 32], instituting social
laws that avoid harmful interactions [4, 37], using contracting protocols or bids
exchanged in a market place to allocate tasks [25, 32, 35, 38], iteratively exchanging
tentative plans until all constraints are satisfied [14], negotiating to find agreements
[26, 35, 36] and so on. In most multiagent systems these coordination mechanisms
are hard-wired at design time (and enacted at run-time) as the only means of
coordinating actions. Nevertheless, their relevance with our work is that they (and
many others not mentioned here) are representative of the set of CMs that agents are
likely to have at their disposal in our decision making process. However, in order to
incorporate them into our model the meta-data about cost and likelihood of success
of the various mechanisms needs to be established (see [16]) for a preliminary at-
tempt in this direction for several of the most common mechanisms).

5.2. The dynamic selection of problem-solving techniques

Comparatively little work addresses run-time selection of particular coordination
protocols. However, work that deals with the dynamic selection of problem-solving
techniques is somewhat related. This work is concerned with adjusting at run-time,
the computational resources made available against the quality of the service
provided. This might also involve the dynamic selection of algorithms to optimize
the overall system’s performance. To this end, several solutions, under different
assumptions, have led to the development of a variety of techniques such as design-
to-time algorithms [21], algorithm portfolio design [22] and anytime algorithms
[40]. Although the similarities consist of selecting at run-time the algorithm with
the best performance, the main distinction is that we specifically focus on those
aspects involved in reasoning about a coordination decision. In spite of the fact
that it would be possible to map each CM as a different algorithm, our concern is
more with exploring the necessary elements to make such decisions effectively and
on the effects of such considerations. Moreover, we do not believe that optimal
performance is possible when dealing with the complexities and uncertainties of
coordination problems (even in idealized scenarios such as our own). Thus, our
research is more concerned with the flexibility involved in reasoning about coordi-
nating agents, which is the line of research we will discuss in the subsequent para-
graphs.

5.3. Flexible reasoning about coordination

Flexible reasoning in this context means agents make more decisions about their
coordination activities at run-time so that their choices can better reflect their pre-
vailing circumstances. Thus, our work can be seen as dealing mainly with flexible
deliberation. However, flexibility in multiagent systems with respect to coordination
can have a broader scope than this [30]. Specifically, it can cover two aspects:
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– flexibility in particular protocols (such as multiagent planning or market-like
protocols) and

– flexibility in reasoning between alternative coordination mechanisms.

Regarding the first point of flexibility in particular protocols, Durfee and colleagues
have been concerned with dynamically deciding on coordination parameters in the
context of multiagent planning [14, 15]. Specifically, they have studied two different
problems: (i) deciding the level of detail to reason about in multiagent planning [7, 8]
and (ii) selecting at run-time the plans with high expected quality [33]. The key issue
when dealing with levels of abstraction is that agents derive summary information
from plans and decide the right level they should reveal and communicate about. In
their work, agents use different levels of representation detail and each agent can
work at different levels with different other agents. In short, agents dynamically
choose what to represent (what to coordinate over) using planning as the mecha-
nism. To this end, their contribution is more in dynamic reasoning over one
mechanism (planning) rather than reasoning over a set of such mechanisms. Nev-
ertheless, the concepts taken into consideration in the summary information at the
most abstract level (the preconditions and effects of the application of a plan) are
very important in attaining flexibility in coordination. Thus, this research attacks
complementary concerns to our research. Turning to the work on evaluating the
quality of plans. Pappachan and Durfee [33] associate a variety of measures to plans
when taking decisions about the coordination of joint activities. To be more specific,
they propose a heuristic to select the plan to execute based on performance metrics of
the plan’s quality. This takes three components into account: the plan reward (the
reward gained after the plans execution), the plan cost (the total cost of all the
actions performed) and plan reliability (the likelihood of successfully completing the
plan). Because in some situations one component might be more important or
desirable than others, several strategies are evaluated by assigning different weights
to each criteria. There are clearly several similar aspects to our work: the necessity of
taking decisions at run-time, a metric to measure the quality of the outcome and
criteria to tradeo. the alternatives. However, once again, the reasoning is performed
over only one coordination strategy.
We now turn to the second point of flexibility in reasoning about alternative

coordination mechanisms. One of the first attempts to discriminate coordinating
techniques was the work of Ramamritham and co-workers in the area of distributed
scheduling problems [34]. Specifically, they proposed a mechanism that would
deliberate about the selection of various task assignment algorithms. In particular,
they assign tasks to nodes by taking into account timing and resource requirements
(for example, they would prefer to assign a task to a node with enough resources to
deal with it, rather than to one with no resources at all). The objective of the
scheduling is to maximize the number of completed tasks before their deadline
(compared to the number of invoked tasks). During the scheduling process, nodes
receive tasks and decide whether they can complete the task with their own re-
sources. Then if they cannot, all nodes cooperate to locate the node which can
guarantee the completion of the task. The authors propose and evaluate four
algorithms for selecting the nodes: random, focused addressing, bidding and flexible.
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The most interesting of these is the flexible algorithm which consists of deciding
whether to use the bidding, the focused addressing or both of them in an opportu-
nistic manner. This is relevant to our work because this algorithms reasons in a
flexible manner about when to select a particular protocol (random, focused
addressing and bidding) given the particular circumstances in which the decision is
taken. Their main result is that the flexible algorithm outperforms the others in most
cases. This, in turn, provides some insight into the potential benefits of run-time
selection of algorithms by considering the system’s circumstances and by taking
decisions at the time the choice is made. However, the main drawback of their
solution is that agents are assumed to be inherently cooperative and to constantly
communicate accurate information. Thus, although the decision making might be
performed with imprecise information (for example, the focused algorithms might
not select the best node), there is always an alternative way to correct a wrong
selection. Additionally, only a very small number of metrics affect the decision-
making process (just the node surplus) and general parameters of the system that can
be tuned. In short, the underlying approach is similar to our research in that the
factors involved in the decision-making process can be out of date and uncertain,
though in their research all nodes work together to obtain highly consistent infor-
mation about the factors that are taken into consideration in the reasoning model.
In terms of introducing flexibility in general, Jennings observed that all coordi-

nation mechanisms can ultimately be reduced to (joint) commitments and their asso-
ciated (social) conventions [27]. In demonstrating the feasibility of this hypothesis, he
showed that most of the possible interactions and flexibility needed to deal with
changing environments can be dealt with by considering commitments and con-
ventions. This analysis is important in two senses. Firstly, it supports our claim in the
sense that if all coordination mechanisms can be reduced to commitments and
conventions, then it is possible to make a unified evaluation of them. That is, it is
possible for all mechanisms to be analysed, measured and evaluated under similar
terms. Secondly, however, the problem with his work is that the system designer is
responsible for determining which conventions are present in the system, which kinds
of interactions particular conventions might be used for, and when to use them.
However, as we have argued in this paper, this is not really suitable for dynamic and
uncertain environments.
In a similar vein, the Generalized Partial Global Planning framework (GPGP) [10,

11, 31] designed and evaluated a family of algorithms that allows a group of agents
to coordinate their interactions through a set of coordination algorithms. In par-
ticular, it focuses on two key factors: (i) the representation and reasoning about the
features of the task environment (TEAMS) and (ii) the development of coordination
mechanisms that can respond to those task environment structures. In this frame-
work, the global problem consists of discovering interactions that are constrained by
the activities of the other agents. Hence, GPGP can be seen as an optimization
framework in which the agent’s local optimization solutions are combined (because
of task relationships) into a global problem constrained by quality, time or resource
considerations. Specifically, a coordination mechanism in GPGP consists of a pro-
tocol that detects and activates actions (communication, information gathering or
proposal of commitments) in response to inter-agent task activities. The most
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important of these activities are the ones that facilitate the scheduling process (i.e.
those that generate commitments). These commitments are at the core of the
problem solving process because they solve the task constraints related to time and
resources (agents commit to tasks by specifying the time by which the task will be
satisfied and the quality with which the action will be done). To this end, GPGP uses
TEAMS both to represent the task structure and the aspects taken into consider-
ation when solving the global constraint problem. Thus, the set of protocols in
GPGP are one-shot mechanisms that discover where commitments are needed (or
can be broken) when the agents’ task structures are revised (because the coordination
mechanisms indicate the time at which the structures are revised). Hence, the
coordination mechanisms are triggered to generate or update those commitments
that represent the central feature of solving a coordination problem. And, as can be
seen, the representation of the tasks are fundamental to the coordination mecha-
nisms for dealing with coordinating activities. In our research, the agent’s take
decisions about when to use a particular CM based on the particular circumstances
when the decision is taken. In contrast, in GPGP the coordination mechanisms are
activated in predefined situations which might occur during execution (no more than
one coordination mechanism can be activated in a given situation which is why
GPGP does not provide a reasoning mechanism to discriminate between them). In
summary, GPGP sees the coordination mechanisms as exclusive protocols whose
execution generates alternative outcomes, and, consequently, different benefits to the
scheduling. Whereas in our case, the CMs may produce the same outcome and then
the problem is how to decide which one is more appropriate.
Thus far, two aspects have been identified as permitting flexibility in the coordi-

nation of problem solving. On the one hand, there is the necessity of introducing
various ‘mechanisms’ to solve the coordination problem, and, on the other, the
incorporation of a mechanism to reason over the selection of such mechanisms. As
previously discussed, some research has investigated the former (the GPGP frame-
work and Jennings’s conventions) and some the latter (Ramamritham’s research).
However, there is one piece of work that studies both aspects and this is [1]. The aim
of Barber et al.’s work is to dynamically select the most appropriate coordination
mechanism in a given situation. To this end, they present a software engineering
framework that enables agents to vary their coordination mechanisms according to
the prevailing circumstances. They identify criteria for determining when a particular
mechanism is appropriate. The coordination mechanisms analysed are: negotiation,
voting, arbitration and self-modification. They identify the following characteristics:
(a) constraints associated with the mechanism,16 (b) cost of communication and
execution and (c) quality of solution. Agents associate a weight to each of these
characteristics and calculate the cost of each mechanism by adding the cost of all the
above mentioned features. Here, the drawback is that calculating the weights for the
features in not straightforward. In particular, it is difficult to assess whether or not a
given weight will improve overall performance. Also they do not demonstrate
whether agents do indeed perform any better by having this capability. Furthermore,
the agents do not reason in terms of the other agents in the environment and
therefore the decisions about when to select a mechanism are somewhat arbitrary.
Finally, even though the authors have analysed each strategy, we consider that more
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work is needed to provide a more systematic decision procedure for actually trading
off these criteria.
The last line of research to discuss is that of Boutilier [3]. He presents a decision

making framework, based on multiagent Markov decision processes (MMDP), that
reasons about the state of a coordination mechanism. He proposes the use of
coordination mechanisms as protocols and introduces the concept of states of
coordination to incorporate them in the MMDP. This protocol is represented as a
finite state machine which models the coordination mechanism with states and with
possible coordination interactions (decision rules). The decision rules allow agents to
constrain their selection of actions. The key insight in this proposal is to allow agents
to reason not only in terms of optimal joint actions, but with the state space of
coordination in such a way that agents decide the possible next action based upon
their particular state of coordination. However, agents with this framework do not
reason in terms of their local states, rather, they observe and take decisions based on
the global state that they are always assumed to have access to. Thus, this work is
concerned with optimal reasoning with respect to a given coordination mechanism,
rather than actually reasoning about which mechanism to employ in a particular
situation.

6. Conclusions and future work

This paper argued that autonomous agents need to be given the flexibility to
dynamically select the mechanism they use for coordinating their actions during
cooperative problem solving. We believe this is especially important when the
environment in which the decision making takes place is dynamic, open, and het-
erogeneous. In such situations, making decisions about coordination is difficult
because it is impossible to enumerate in advance the wide variety of contexts
in which coordination is likely to be needed. To this end, we developed a decision
making framework that enables agents to tailor their coordination decisions to
the prevailing context. Specifically, this covers deciding when to coordinate
(and when not to do it), which coordination mechanism to use and with which
agents to cooperate. This framework enables agents to make informed choices about
their coordination actions because we abstractly characterize coordination mecha-
nisms in terms of their cost and their expected benefits. Thus, in our framework, this
decision is clearly separated from the enactment of the mechanism which is how the
task is actually achieved and how the actions of the various agents are actually
coordinated. Moreover, we showed that in our grid world scenario the agents are
more successful by having the ability to dynamically select the coordination
mechanism.
Although the specifics of the decision procedures are clearly related to our par-

ticular grid world scenario, we believe that the basic processes and structures we
have developed are suitable for reasoning about coordination mechanisms in more
general domains. For example, several of the agent’s decisions relate to the prox-
imity of potential collaborators. This conception of distance in the grid can easily

EXCELENTE-TOLEDO AND JENNINGS80



and naturally be mapped into a range of analogous concepts that have more general
application. The first of these is the notion of trust in social relationships (as
represented for example, by the degree of connectivity in social network theory [5]).
Thus, cases in which agents are more certain of receiving help, because there is
a high degree of trust between them, are similar to the cases in our scenario where
potential collaborators are close to hand. In such situations, our results indicate
that agents are more likely to attempt coordination using mechanisms that have
relatively low times to setup. On the other hand, when collaboration is more difficult
to establish, because there is a low degree of trust (equivalent to the agent being
far away), the agents are more likely to opt for mechanisms that are more likely
to succeed. The second relates to the dynamism in the environment. In more
static environments, there is a greater chance of more accurately predicting the
behaviour of the various agents present in the system. This corresponds to the case
of the agent being near the centre of the grid as this situation involves much less
uncertainty. In more dynamic environments, on the other hand, predicting the
behaviour of others is more difficult and so corresponds to decision making around
the edges of the grid.
Our work also demonstrated that a successful agent is one that takes the right

decision about the benefits it will accrue for the time invested in the coordination
mechanism vs. what the agent would gain by achieving its individual tasks. The
importance of this result is that it corroborates our belief that in some environments
an agent that can dynamically select its CM according to its circumstances is able to
take more profitable coordination decisions. However, we do not claim that our
agents always select the best CM. For example, when agents are at the edges of the
grid, they assume it will take a long time for the AiCoops to arrive to the CT cell and
consequently they select the CM that has the highest probability of success regardless
of the high cost of setting up. This is true even though this is not always the case in
practice. To us then, an agent that makes a good decision needs to balance the
coordination mechanism setup cost and its likelihood of success with the information
predicted. However, in the experimentation reported here good performance is
measured simply by the total reward obtained at the end and not by how well this
tradeoff was performed. Thus, a potential conclusion from this could be that the
constituent factors of the framework need to be refined to more precisely model the
environment. However, the process of modelling has the drawback that unless we
deal with static environments (which is not the case), this task can imply a great
effort and cost [13]. Thus, our research position is that our effort must be directed to,
on the one hand, having a reasonable model of those aspects on which agents base
their coordinating decisions and, on the other hand, exploring the ‘‘right’’ level of
approximation in modelling in order to ensure the agent can coordinate effectively in
practice [13]. We believe, our framework is a mature point of departure for this
further study because it provides a good approximation about how the key factors
that need to be taken into consideration should be combined. Nevertheless, more
work is needed to refine the modelling problem and to systematically evaluate the
alternatives. The other main area of future work involves systematically classifying
coordination mechanisms according to our meta-data criteria. This is necessary in
order to put our framework into practical applications.
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Notes

1. This work was done while the first author was a PhD student in the Group Intelligence, Agents,

Multimedia Group at the University of Southampton.

2. If several agents arrive at a CT square at the same time, one of them is arbitrarily deemed to be in

charge and, if an agent finds more than one CT in a given cell, it randomly selects one of them for

further analysis.

3. Other attributes could undoubtedly be added to this list (such as quality of coordination, robustness,

overhead limitations, communication cost and so on), but here we focus on those that we believe are

necessary (if not sufficient) for our purposes.

4. In this protocol, the problems of dividing the problem into subtasks (task decomposition) and how the

results from the various subtasks are merged into an overall solution (task synthesis) are not con-

sidered a part of the coordination activity. However, in coordination mechanisms such as multiagent

planning, task decomposition might be part of the requirements phase.

5. Though this may not be a globally optimal criterion for deciding which CM to use, it makes sense

from a self-interested agent’s point of view.

6. Note that in order to estimate ave surplus it is assumed that the m is determined in advance or is part

of the agent’s knowledge. However, this assumption may not always be valid for cases in which the

number of cooperative agents depends on the particulars of the coordination’s objective. In such cases,

the agents will need to predict this number based on previous experiences or some how estimate this

information (e.g., the straightforward solution is that agents maintain an average of the number of

helpers each time they accomplish coordination; more complex solutions might involve building a

model for each agent each time there is an interaction).

7. Note that the AiS use the actual values of the concepts discussed, whereas the AiC’s task is to make a

good approximation of these components through equation ave bid.

8. To set the value of this variable, a utility rate (the agents’ total reward divided by the horizon) was

calculated for the experiment where the duration was varied from 10,000 to 100,000 time units. The

statistical measures of the utility rate in this case had a standard deviation of 2.10E-02 and a variance

of 8.11E-04. This allows us to conclude that the duration of the experiment in this range does not have

a significant effect on the rate of utility since regardless of the horizon, the utility rate is maintained.

Therefore we opted for the lower level since this meant the experiments could be conducted more

quickly.

9. All experimental variables are calculated by averaging the totals obtained by 10 simulation runs and

by all agents in the system. Thus, for example, TCT achieved is the average number of CT tasks

achieved by the five (in our case) agents in the system.

10. Being precise, agents in this situation selected the five CMs in the following grid positions:
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11. For example, Table 4 shows the result of this cluster analysis. Here, three groups were generated

(labelled 1, 2 and 3) and the respective p values were 1.000, 0.8728 and 0.9959.

12. Note that CM3(30, 0.8) was not associated to any agent. This is because we decided to maintain a

constant number of agents in the environment (for reasons of comparison) rather than change the

experimental settings. CM3 was omitted because it lies in the middle of the range. However, the same

experimentation as described here was performed with each of the CMs missing. Although the number

of cases rejected were different in each case, the general trend and conclusions remained unchanged

[16].

13. Notice that the agents’ reward obtained is influenced by the probability of success of the CM which

represents the final reward the agents obtain as a percentage of the CT reward. Thus, it can be seen

that the number of CTs accomplished gives an indication of the agent’s overall performance, but it

does not necessarily follow that agents will be more productive if they accomplish more CTs.

14. Recall that the cases in which H0 is accepted are those environments in which there is no significant

effect of the reasoning about coordination on the AU obtained by any agent.

15. Since the post analysis generates groups with inferior and superior thresholds, it is possible to have

agents belonging to more than one group (i.e. some AU values might belong to two groups). The

results presented here take into account all the members of the winner group regardless of whether

some of their AU values are closer to the superior limit of the subsequent group.

16. This involves the particular mechanism’s requirements, whether communication is fundamental,

whether some specific roles need to be played, whether any authority hierarchy is necessary and so on.
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