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Abstract. In this paper, we present an application of grid computing to
solve an important industrial problem: that of optimising the band gap
of photonic crystals, which are an important technology in future gen-
eration telecomms and sensing. The computational power grid enabled
months of experimentation to be performed in a weekend. Of particu-
lar interest was the necessity to run jobs on both Linux and Windows
resources.

1 Introduction

Applications such a sharp angle waveguides, wave division multiplexing, single
mode lasers and sensors have motivated research into photonic crystals; which
are nanostructured devices that filter light at particular frequencies. Photonic
crystals are modeled by finding periodic solutions to Maxwell’s equations [1],
[2], [3]. A typical finite element analysis will comprise: mesh generation for the
domain, selection of suitable basis functions and the solution of a generalised
eigenvalue problem

A(k)c = A\Be. (1)

The eigenvalue problem is solved for a large sample of quasi momentum vectors
k in the Brillouin zone, because the spectrum of the original problem in R? is
the union of the spectrum of (1) over k& € B [3]. The band gaps are the resolvent
set of the original problem.

The absolute size of the band gap is not a meaningful measurement because
there is no fundamental length scale in electromagnetics [4] and so we find the
configuration of the rods that gives the largest gap-midgap ratio. This optimi-
sation and the important role played by a computational grid is the aim of this
paper.

The University of Southampton has invested in grid-enabled computational
facilities. We used a Beowulf cluster [5] running Linux and an experimental
Condor system [6] that uses Windows. One important factor was that our chosen
meshing program Geompack [7]is only available for Windows, thus requiring a
heterogeneous mix of operating systems in our grid.



2 Optimising Photonic Crystal Structures
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Fig. 1. Figure showing how the objective function for maximising the PC gap-midgap
ratio is constructed.

A photonic crystal is a periodic configuration of air-filled rods in a substrate
(for example Gallium Arsenide). The physical properties of a Photonic Crystal
(PC) depend critically on the configuration of air rods in a substrate. A useful PC
would be one such that the gap-midgap ratio [4] is very large. The objective in
the optimisation is to maximize the gap-midgap ratio; the independent variables
are the rod co-ordinates and the rod radii. The details of the computation are
shown in Figure 1. Our approach is more direct than [8], [9], who only consider
the TM mode and used a gradient method.

To investigate various PC geometries we performed a design of experiment
which consisted of constructing several thousand random configurations of a
number of rods in a unit cell. Two different unit cells were used: a square unit
cell and a rhombic unit cell. We only report on the latter in this paper. The
rhombic unit cell was varied from 1 to 10 rods, although only the radius was
altered when a single rod was used as the position for a single rod is meaningless
when the unit cell is tiled.

For the rhombic unit cell 100 meshes per rod radius and number of rods was
generated for varying filling fractions of approximately 30% to 78%. The number
of rods varied from 2 to 10. In total 1400 random meshes were created.

The meshes were generated on a computer with a Windows operating sys-
tem then transferred to the Beowulf cluster to solve the generalized eigenvalue
problem(a compiled MATLAB program).

The best 10 structures from each unit cell, which gave the largest gap-midgap
ratio were optimised using the robust (but slow) Nelder Mead method [10] on
the Condor system. The Nelder Mead algorithm was chosen for the optimisation



because it only requires function evaluations and not derivatives which is ideal for
our problem because the objective function has no calculable derivative. There
are a number of constraints imposed on the variables mainly to ensure that it is
possible to fabricate the proposed structure.

Each iteration is computationally intensive as it requires not only meshing the
photonic crystal geometry but also solving the generalized eigenvalue problem.
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Fig. 2. Figure on the top left shows a tiled rhombic unit cell with a filling fraction of
0.753. On the top right is the density of states diagram for the unit cell. The band gap
to mid-gap ratio is 0.118. On the bottom left is the optimised tiled unit cell with a
filling fraction of 0.838. On the bottom right is the density of states for the optimised
unit cell with a band gap to mid-gap ratio of 0.182.

The results in this section were computed with an in house FEM code. The
most improved mesh increased its gap-midgap ratio by 264.3% after optimisa-
tion. A density states graph is a concise method of visualising the results and is
shown in Figure 2.

3 Computer Costs

In total 8940 meshes were created. Each generalized eigenvalue problem took
approximately 6 minutes to run which equates to 37 days to compute the eigen-
values of each mesh if only one computer was used. When using the Beowulf
cluster the workload was split up such that each processor would compute the
eigenvalues for 100 meshes. However, the nodes used were dual processors so 200
meshes could be run on each node. As a result 45 separate jobs were submitted
to our cluster using the EASY scheduler each taking approximately 10 hours to
run. If the cluster was not being used at all all the jobs could have been run
simultaneously in roughly 10 hours. However, the rate at which all the jobs are
computed is dependent on how busy the cluster is. In our case, despite a heav-
ily used cluster, it only took a few days to calculate the generalized eigenvalue
problem from all the meshes.



From the design of experiment 20 of the best PC geometries were optimised.
The optimisation process was run for 12 hours for each structure. This equates
to 10 days of computation on a single computer. Each of the 20 optimisation
jobs were submitted to the Condor pool. With 20 free nodes, all the optimisation
could be performed in only 12 hours. Once again, due to how busy the cluster
was, a couple of days were required to complete all the jobs.

4 Conclusion

The randomisation proved effective in providing candidates for further analysis.
Moreover, it confirmed the (known) good behaviour of the triangular lattice [4].
The Nelder Mead algorithm was successful in improving the good candidates.

The main contribution of the grid facilities was the reduction of about two
months intense computation to a weekend. The scheduler on the Beowulf system
was straightforward to use, but Condor had a shaper learning curve and less
predictable completion times.

We have demonstrated the use of heterogeneous grid-enabled resources for an
important industrial design process and in the future we hope that a widespread
grid will enable the use of resources via brokering or pay-per-use and permit
this sort of design to be a routine part of the process of developing new photonic
devices.[4]
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