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Abstract

In standard Hebb models of developmental synaptic plasticity, synaptic normal-
isation must be introduced in order to constrain synaptic growth and ensure
the presence of activity-dependent, competitive dynamics. In such models, mul-
tiplicative normalisation cannot segregate afferents whose patterns of electrical
activity are positively correlated, while subtractive normalisation can. It is now
widely believed that multiplicative normalisation cannot segregate positively cor-
related afferents in any Hebb model. However, we recently provided a counter-
example to this belief by demonstrating that our own neurotrophic model of
synaptic plasticity, which can segregate positively correlated afferents, can be re-
formulated as a non-linear Hebb model with competition implemented through
multiplicative normalisation. We now perform an analysis of a general class of
Hebb models under general forms of synaptic normalisation. In particular, we
extract conditions on the forms of these rules that guarantee that such models
possess a fixed point structure permitting the segregation of all but perfectly
correlated afferents. We find that the failure of multiplicative normalisation to
segregate positively correlated afferents in a standard Hebb model is quite atyp-

ical.



1 Introduction

Activity-dependent competition between afferent cells, leading to the segrega-
tion of afferents’ arbors on their target structures, is a ubiquitous feature of the
developing vertebrate nervous system (Purves & Lichtman, 1985). In order to
construct a mathematical model of neuronal development that includes such com-
petitive dynamics, it is well known that a standard Hebb growth rule by itself
is insufficient. This is because such a rule typically leads to the unconstrained
growth of all afferents on all of their target cells. In order to implement com-
petition, developmental models frequently employ post-synaptic normalisation,
a procedure by which it is assumed that post-synaptic or target cells constrain
their total afferent input to remain at or below some limit. Thus, one afferent’s
gain is at the other afferents’ loss and competition is achieved at the same time
as constraining growth.

The classic form of synaptic normalisation is multiplicative normalisation
(von der Malsburg, 1973). Under multiplicative normalisation, a standard Hebb
growth rule is modified to include a decay term proportional to the strength (or
efficacy or weight) of the afferent input, the constant of proportionality being
chosen so that there is no overall synaptic growth at each target cell. However, it
is well known that while multiplicative normalisation in a standard Hebb model
does segregate afferents whose patterns of electrical activity are anti-correlated,
it does not segregate positively correlated afferents (but see von der Malsburg
& Willshaw, 1981). It is likely, however, that a model of neuronal development
should be able to segregate positively correlated afferents. For example, the de-
velopment of ocular dominance columns (Hubel & Wiesel, 1962) in kittens occurs

in the presence of correlated vision in both eyes. More generally, from a theo-



retical viewpoint, it is desirable that self-organising topographic feature maps
(Kohonen, 1995) should be able to develop appropriate structures even when the
input patterns are positively correlated.

This deficiency of multiplicative normalisation led to the introduction of sub-
tractive normalisation (Goodhill & Barrow, 1994; Miller & MacKay, 1994). Un-
der subtractive normalisation, the standard Hebb growth rule is instead modified
so that a decay term independent of the particular afferent input is introduced,
the decay term again being chosen so that the total synaptic input to a target
cell remains fixed. Unlike multiplicative normalisation, subtractive normalisa-
tion does segregate positively correlated afferents. From a biological perspective,
however, subtractive normalisation is difficult to motivate, because if synaptic
decay processes underlie normalisation, then it is rather improbable that these
processes should be independent of the local concentrations of any of the sub-
stances that together contribute to synaptic strength. In contrast, while multi-
plicative normalisation may have its own problems, at least the decay processes
are concentration-dependent. Thus, we are impaled on the horns of a dilemma,
one horn corresponding to a normalisation rule that does segregate positively cor-
related afferents but that is biologically implausible, the other horn corresponding
to a normalisation rule that does not segregate positively correlated afferents but
that is not biologically implausible. Some models that can segregate positively
correlated afferents resolve this dilemma by employing significant modifications
of the standard Hebb rule (Bienenstock et al., 1982; Harris et al., 1997).

In our own attempt to overcome these problems, we developed an alternative
developmental model inspired by biological data implicating a class of molecular
factors, the neurotrophic factors, in activity-dependent synaptic competition (for

review, see McAllister et al., 1999). This model does segregate positively cor-



related afferents (Elliott & Shadbolt, 1998). Recently, we have shown that the
model can be reformulated as a non-linear Hebb growth rule with competition
implemented through multiplicative synaptic normalisation (Elliott & Shadbolt,
2002). This result explicitly contradicts the now wide-spread belief that mul-
tiplicative normalisation cannot segregate positively correlated afferents in any
Hebb model. Synaptic normalisation was not imposed in our original model (El-
liott & Shadbolt, 1998), but rather emerges dynamically (Elliott & Shadbolt,
2002). This emergence hinges on the fact that the model’s dynamics decouple
into two subspaces, with the competitive dynamics residing in a subspace in which
the total synaptic input to target cells (a synaptic scale parameter) plays no role.
We argued, moreover, that any model whose competitive dynamics exhibit such
scale independence can be recast as a general Hebb growth rule coupled with
some form of synaptic normalisation, and that, therefore, synaptic normalisation
appears to be an acceptable, abstract mechanism for implementing competitive
dynamics in a Hebb model.

We presented our results as an existence proof of a model utilising multi-
plicative normalisation that can segregate all but perfectly correlated afferents
(Elliott & Shadbolt, 2002). We did not perform a more general analysis, seeking
to explicate the reasons for our model’s capacity to segregate positively corre-
lated afferents under multiplicative normalisation. To this end, we now perform
an analysis of a general class of Hebb growth rules coupled with general forms of
synaptic normalisation. In particular, we derive a set of conditions on the forms
of these rules that guarantee that these models possess a fixed point structure
permitting the segregation of all but perfectly correlated afferents. Surprisingly,
we find that these conditions are rather easily satisfied. Indeed, the conditions

are so easily satisfied that the failure of multiplicative normalisation to segregate



positively correlated afferents under a standard Hebb rule is seen to be quite

unusual and atypical.

2 Analysis of Models

We consider the dynamics of synaptic competition on a pointwise basis, at single
target cells with no coupling between target cells. We may therefore restrict to a
consideration of just one target cell. We consider n afferent cells innervating this
target cell. Let letters such as ¢ and j label afferent cells, so that, for example,
i =1,...,n. Let the number of synapses (or synaptic efficacy or synaptic weight)
between afferent cell ¢ and the target cell be denoted by v;, and let the electrical
activity of this afferent cell be denoted by a;; we take a; > 0 Vi. Let the vectors v
and a be given by v = (vy,...,v,)T and a = (ay,...,a,)T, where T denotes the
transpose. Let the variable ¢ denote time, and let a dot over a variable denote
differentiation with respect to time, so that, for example, v; = dv;/dt.

We consider a general class of synaptic growth rules of the form
f)i = W(Ui,ai) H(a-v), (1)

where a- v denotes the dot product between a and v, a-v =), a; v;. We assume
that the functions 7 and II are both non-negative, i.e., 7(z,y) > 0 Vz,y and
II(z) > 0 Vz. The term 7(v;, a;) represents a function of a purely pre-synaptic
element, while the term II(a - v) represents a function of a purely post-synaptic
element. We have made the simplifying but standard assumption that the post-
synaptic response of the target cell is some function of a - v, the afferent input
weighted by the number of synapses (or synaptic efficacy). The form of the
synaptic growth rule in Eq. (1) is just that of a product between a pre-synaptic

term and a post-synaptic term, and thus is Hebbian in character.



It is well known that such synaptic growth rules typically result in uncon-
strained synaptic growth, with each v; growing unboundedly, and that synaptic
normalisation must be introduced to constrain the growth and to ensure the
presence of competitive dynamics in the models. We consider a general imple-

mentation of synaptic normalisation. In particular, we require that

Z flvi) =1, (2)
i

where f is some invertible function. Typically, modellers take f(z) =z or f(z) =
z?, but we shall consider more general cases. The growth rule in Eq. (1) is then
modified so as to ensure that the dynamics respect Eq. (2). We achieve this by

replacing Eq. (1) by
0; = (v, a;) (a-v) — g(v;) A, (3)
where g is some function and the time-dependent quantity A is selected so that
G 00 =7 =0 ()
where a prime always denotes differentiation with respect to the argument of the

associated function. Thus,
X [ (vy)m(v), a5)
X f'(v;)g(vy)
and our final equation for the evolution of the v; is given by
X [ (vy)m(v), a;)
2 f'(v3)g(v))

We assume that the functions f and g are both non-negative, i.e., f(z) > 0,

A=1T(a-v) (5)

(6)

v; =1(a-v) |m(vi, a;) — g(v;)

g(xz) > 0 Vz. Because f is invertible, f’ is of constant sign, so the denominator
in Eq. (6) cannot vanish.
Finally, we make the assumption that the pre-synaptic function 7 (v;, a;) is

separable as a function of its two arguments. In particular, we assume that

(v, a;) = plai)o(vi). (7)
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Such an assumption simplifies our analysis and guarantees that 7(0,a;) = 0
provided that ¢(0) = 0, as will later be seen to be required. As we assume that
the function 7 is non-negative, we assume that this is achieved by both p and o
being non-negative, i.e., p(z) > 0, o(z) > 0 Vz.

We analyse Eq. (6) in order to find conditions on the functions II, p, o, f and
g such that solutions exist in which all but one of the v; are zero. Such solutions
correspond to final, segregated states in which all other afferent input has been
competitively eliminated in an activity-dependent manner. We insist that these
solutions correspond to strictly stable fixed points of Eq. (6) for all but perfectly
correlated afferent activity patterns. We also examine the possible existence of
unsegregated final states in which two or more afferents innervate the target cell
equally. When such states are fixed points of the dynamics, we find that the strict
stability of the segregated states forces all such unsegregated fixed points to be
unstable. Our analysis thus consists in a fixed point analysis around these segre-
gated and unsegregated states, determining conditions on the functions II, p, o,
f and g such that these states embody the required, activity-dependent, compet-
itive dynamics. We address the question of the possible existence of oscillatory
solutions in Section 3.

We proceed, for concreteness, in steps of increasing generality. First we con-
sider the minimal multiplicative model in which all five functions I, p, o, f and g
are the identity function, i.e., II(x) = z, etc. We then consider the more general
multiplicative model in which f and g are the identity function but II, p and o are
unknown. Finally we consider the fully general model is which all five functions

are unknown.



2.1 Minimal Multiplicative Model

For the minimal model, we take II, p, o, f and g all to be the identity function,

i.e., they leave their arguments unchanged. Eq. (6) then becomes
0;=wv; (a-v)[a; — (a-v)] (8)

with Y, v; = 1. We average this equation over the ensemble of afferent activity

patterns. Defining the symmetric matrix C with components
Cij = (aia;) (9)

where the angle brackets () denote ensemble averaging, and dropping, for nota-

tional convenience, these brackets around the v;, we then have
7.)1' = U; [(CV)Z —-Vv: CV] . (10)

Consider the point u = (0,...,0,1,0,...,0)T, where only the i*" element of
u, u;, is unity, i.e., u; = d;;, the Kronecker delta. Expand about this segregated
point by writing v = u + v, where n- v = 0, with n = (1,...,1)". For j # 1,

after linearising, we obtain
5?')]' = 51)]' (ijZ —_ Cu), (11)

with the equation for §v; following from dv; = — 37,4, 6v;. The points u, 7 =
1,...,n, are therefore all fixed points, and are stable provided that Cy; > Cj;
Vi,j # 1. These points are strictly stable if Cj;; > Cj; Vi,j # ¢, and for our
results to be applicable to the full, non-linear case, we require that the strict
inequality holds. This condition is simply the statement that each entry on the
diagonal of C is the largest in the corresponding column (and also row, since C

is symmetric).



If the condition Cy; > C}; Vi, j # i cannot be met for reasonable and natural
patterns of afferent activity, then the minimal multiplicative model is incapable of
exhibiting the required competitive dynamics, because it would lack the required
fixed point structure. What are the characteristic features of those ensembles
that do satisfy this condition? Let letters such as o and  label members of the
ensemble, so that, for example, a® is the o' activity pattern in an ensemble of

m patterns. The correlation matrix C is then given by

= Dt (12)

and the condition Cj; > Cj; Vi, j # ¢ becomes

1
m

Do (af)? > D afal Vi, j #i. (13)
a=1

a=1

Let the vector A; = (a},...,a™)T be the vector formed from all the values of

afferent ¢’s activity over the whole ensemble. We then require that

What is the form of the set of vectors A;, + =1,...,n, that guarantees that this
condition is satisfied? If |A;| = |A,| and A; # A; Vi, # j, then this condition is
always satisfied. In particular, if all afferents are treated in an unbiased manner,
so that the ensemble of activity patterns that they experience is invariant under
a uniform translation in the space of afferents, then the various vectors A; will
all be related through simple permutations of their components, so that, for
t # j, Aj = Rj;A; for some permutation matrix R;;. Translation invariance
of the ensemble of afferent activity patterns is an assumption widely made in
the modelling literature, and is therefore a reasonable one. Such ensembles are
generated, for example, by constructing a basic pattern of activity and applying

it by centering it on each afferent in turn. For simplicity, in what follows we shall
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assume that an ensemble of afferent activity patterns is generated from only one
such basic pattern, although because ensemble averaging is a linear function over
the ensemble, any results that apply to one such basic pattern will also apply to
any number of basic patterns.

We now consider the possible existence of an unsegregated state in which [ > 1
afferents innervate the target cell equally in the final state. For unbiased activity
patterns, unsegregated but unbalanced final states of innervation cannot exist
and are therefore not considered. Without loss of generality, we may consider the

state

1

=>(1,....1,0,....0)F 15

u l(? Pt B ) b) ( )
l n—l

ie., u; = %, 1 <l and u; =0, ¢ > [. Expand about this state as usual, writing

v = u+ 0v with n - v = 0. For this state to be a fixed point, C must satisfy
(Cu);=u-Cu i<lI. (16)

Defining C to be the upper ! x [ submatrix of C, and n; to be the I-dimensional
vector with all components unity, this equation simply states that if u is a fixed
point of the dynamics, then n; must be an eigenvector of C with eigenvalue
%nl - Cn,;. Because é«ij > 0 Vi, 7, this eigenvalue is positive and is, in fact, the
largest eigenvalue of the matrix C. Provided that Eq. (16) is satisfied, we then
obtain for [ < n

l(Cov); —26v-Cu] i<l

0v; = (17)

dv; [(Cu); — u - Cu] i >1

and for l =n

5v = LCov (18)
n

as the linearised equations for the evolution of dv about u.

11



Consider first the case | < n. For ¢ > [, the matrix determining the linear
evolution is diagonal with no coupling in the lower left (n — ) x [ block of the
matrix to the other v;’s, 7+ <[, so n — [ eigenvalues can be read off immediately.
The remaining [ eigenvalues are just the eigenvalues of the upper [ x [ submatrix
of the full matrix, which we denote by C. Using Eq. (16) to simplify the terms

in dv;, 1 <[, in the expression dv - Cu, we have that

éij = % [élj —2u- Cll] . (19)

Thus, n; is an eigenvector of C with negative eigenvalue —(%)znl . Cny if it is
an eigenvector of C. Moreover, if C;; > Cji Vi,j # 1, as required by the strict
stability of segregated fixed points, then we also have Cyi > CA‘ji Vi, j # 1. Given
these conditions, it is easy to prove that C has a positive eigenvalue. As C is
symmetric, its eigenvalues can be characterised variationally, and, in particular,
the largest eigenvalue not associated with the eigenvector n; is the maximum of
w-Cw/w-w over the set of non-zero vectors w orthogonal to n;. Consider a vector
w with i*! component 41 and j*® component —1, with all other components zero.
Clearly n;-w = 0 and we have that w - éw/w-w = %(C’m +C'jj — 2C'ij). Provided
that Cj; > é’ji Vi, j # 1, as required by the strict stability of the segregated fixed
points, then w - Cw/w -w > 0, and so C has a positive eigenvalue. Thus, if
the point u is a fixed point, then it is an unstable fixed point provided that the
segregated fixed points are strictly stable. These arguments are clearly valid for
any submatrix C, not just the upper submatrices.

For the | = n case, C has a positive eigenvalue associated with the eigenvector
n. However, n-Jv = 0, so the sign of this eigenvalue is irrelevant to the stability

analysis. The matrix C is, in fact, positive semi-definite, for if e is an eigenvector
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with eigenvalue A, then
2 T 1 & al|2
Mel=e'Ce=—>"le-a**>0,
m a=1

so all eigenvalues are non-negative.! To establish the existence of at least one
further, strictly positive eigenvalue, the same variational argument as above shows
that C has a positive eigenvalue associated with an eigenvector orthogonal to n.
Indeed, if n — 1 eigenvalues of C were identically zero, then C would be a rank 1
matrix with C o< nn™, and such a matrix can only be formed by taking a®  n,
Va, i.e., all afferents’ activities are perfectly correlated. Thus, if the unsegregated
state with [ = n is a fixed point, then it is an unstable fixed point.

For which values of | are the states defined by Eq. (15) guaranteed to be
fixed points? Provided that afferents are treated in an unbiased manner, so that
Cii = Cj; Vi # j, i.e., |A;| = |A;| Vi # j, then the [ = 2 and the | = n states are

guaranteed to be fixed points. For [ = 2, this is because any submatrix C will

(5 4) &

and thus (1,1)T is always an eigenvector, satisfying the condition for the [ = 2

always be of the form

state to be a fixed point. For [ = n, n is always an eigenvector of C if

S|

m
3t -

> af Via, (21)
j=1

i.e., if the mean of any pattern’s activity over all afferents equals the mean of
any afferent’s activity over all patterns. Such a condition is always satisfied for

the unbiased patterns discussed above, so the [ = n state is always a fixed point.

1 An identical argument shows that C is positive semi-definite. However, the

matrix C manifestly is not, as it possesses the negative eigenvalue —(%)2nl .Cn,.
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The 2 < | < n states, however, are in general not fixed points, except for very
particular choices for the patterns of afferent activity.

In summary, the minimal multiplicative model is guaranteed to possess seg-
regated fixed points, and these are guaranteed to be strictly stable provided that
Cii > Cj; Vi, j # i. This condition is satisfied by ensembles that treat all the affer-
ents in an unbiased manner. The minimal multiplicative model may also possess
many unsegregated fixed points (potentially 2" — n — 1 of them), but the strict
stability of the segregated fixed points guarantees that any such unsegregated

fixed points are unstable.

2.2 General “Linear” Multiplicative Model

We now turn to a consideration of a wider class of multiplicative models, in which
the functions II, p and o are unknown, but in which f and g are still the identity
functions, so that the linear sum ), v; = 1 is maintained via the subtraction of a
term v; A from the unconstrained growth rule. This is why we refer to this class of
models as general “linear” multiplicative models. Our aim is to derive conditions
on the functions II, p and o that guarantee that this class of models will exhibit
the required fixed point structure. Our basic equation is then just
0; =(a-v) |7(vi,a;) — v; Z?T(?)j, aj)| (22)
J
where Y-, v; = 1 and, as usual, 7(v;, a;) = p(a;)o(v;)-
Consider, as before, the point u with components u; = ¢;;, i.e., a segregated
state in which all afferents but afferent ¢ have been eliminated. Expand about
this point as before by writing v = u + dv, where n- v = 0. For u to be a fixed

point of the equations after ensemble averaging, we must have that

0(0) {I(a:)p(a;)) =0 Vj #i. (23)

14



As the term in angle brackets is not guaranteed to be zero, we are forced to
require that

o(0) =0. (24)

This is the reason for our assuming separability of the function 7(v;, a;). With

o(0) = 0, after linearising we obtain, for j # 1,

005 = 0v;11(a;) [0(0)p(az) — o(1)p(ai)], (25)

and the equation for ¢v; can be obtained by using dv; = — 32, 00;. For the
stability of this point, we require the ensemble average of the right-hand-side

(RHS) to be non-positive. Thus, if

o' (0) < o(1) (26)

and
(I(ai)p(az)) < (M(ai)p(ai)) Vi # 1, (27)

then this segregated fixed point is guaranteed to be stable. A strict inequality
in Eq.(27) will ensure strictly stable segregated fixed points and is required for
the applicability of our results to the full, non-linear case. Defining the matrix

D with components D;; given by

Dy; = (I(ai)p(a;)), (28)

we must find conditions on the functions II and p such that D;; > D;; Vi, 5 #
1. Notice that the matrix D is not, in general, symmetric. For the unbiased
ensembles of afferent activity discussed above, we show in the Appendix that if IT
and p are either both monotonic increasing or both monotonic decreasing, then

this condition is satisfied.
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We now consider the states corresponding to the unsegregated states defined

by Eq. (15). For these states to be fixed points, we require that
1.

<H(a -u) [p(ai) - 7;,0(%)] > =0 i<l (29)
With p a constant function, this condition is satisfied for any [, but we exclude this
possibility because the pre-synaptic response function should depend on afferent
activity. For II(z) and p(z) both the identity function, the condition reduces
to that for the minimal multiplicative model discussed above. Unless | = n,
however, in general this condition is never satisfied for general functions II and p
except for very particular patterns of afferent activity. In particular, suppose that
the ensemble consists exclusively of a set of non-singleton subensembles in which
a-u is constant over a given subensemble. Then, for Eq. (29) to be satisfied, we
require that, within each subensemble, (p(a;)) = (p(a;)) Vi,j # %, and ¢,j < [.
This requirement is met provided that that all pairs of afferents for i < [ are
treated identically within the subensemble. For | = mn and unbiased activity
patterns, it should be noted that these conditions are guaranteed to be satisfied,
so that, for unbiased patterns, the [ = n state is always a fixed point. For [ < n,
a class of patterns that satisfies Eq. (29) is one generated from a basic pattern of
afferent activity together with all its component permutations.

Define ;1 = a-u, let (), denote an average over the subensemble with a-u = p,
and let }°, denote the sum over all such subensembles. Writing {(p(a;)), = p,, a
constant for i < I, we have that 7 ¥-%_, p(a;) = p, when a is in the subensemble
with a-u = p. Then, expanding about these points as usual by writing v = u+dv
where n-Jv = 0, after some algebra and repeated use of Zé-zl ovj = = 3041 0V,

for 7 <l we obtain
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. 1
ov; = 0(2)

- 0( ) . (1) Py .21(% 14) u6v;
0 3 [ (7) a0 o @

and for ¢ > [ we have

s = 60 L1 [0 O){pla) — bo ()2 (31)

as the linearised equations for the evolution of jv; after ensemble averaging. n—1
of the eigenvalues of the matrix determining the linearised dynamics can be read
off immediately, and the remaining [ eigenvalues are given by the eigenvalues of

the matrix E with components Eij given by

. 1 1 _ .
Ej=0 (Z) ZH'(M(p(ai)aj)“ + 0;; [a' <7> —lo (7)] ZH(M) Pus 45 <L
u
(32)
The matrix E is not, in general, symmetric. However, as with C, it is easy to see

that n; is an eigenvector of E, and has eigenvalue

. 1 _ 1 1 _
M(E) =0 (7> 1Y Tl (n)pu + [0' (7) —lo (7)] Y M(p) A (33)
H H
When | = n, n is an eigenvector of E, but n - dv = 0, so the sign of Al(E)
is irrelevant to the stability analysis. However, we can prove the existence of
another eigenvalue not associated with n; that is positive, so that we do not need

to consider the two cases | = n and [ < n separately. Unlike C, we cannot

characterise E’s other eigenvalues variationally. However, Tr E — \; (E) gives the
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sum of the other eigenvalues, and if this sum is positive, then at least one positive

eigenvalue of B not associated with n; must exist. We have that

TE=o(;) S é@(aom +1lo'(3) =10 (7)] S e (34

=1

and so

B M) = o (1) S0 Y Covlp(a. o
v a=nfr () -t ()] Twa, @9

n

where Cov(p(a;),a;), = ([p(a;) — pullai — p]),. The second term on the RHS is

o (0)20(D) 110 ®

If p is monotonic increasing (decreasing), then p(a;) and a;, ¢ = 1,...,1, positively

positive if

(negatively) co-vary. Thus, the first term on the RHS is positive if II'p’ > 0, the
same condition that guarantees that the segregated fixed points are strictly stable.
Clearly, these arguments go through for any non-singleton subset of afferents, not
just the subset ¢ = 1,...,l. Hence, for IT and p either both monotonic increasing
or both monotonic decreasing, and Eq. (36) satisfied, E has a positive eigenvalue
not associated with n;, and so any unsegregated fixed point states are all unstable.

For the general “linear” multiplicative model to exhibit the correct dynam-
ics, corresponding to the presence of strictly stable, segregated fixed points and
any unsegregated fixed points being unstable, we thus have derived a number of
conditions on the functions II, p and o based on the assumption that all afferents
are treated in an unbiased manner. To examine the stability of the unsegregated
states, a stronger assumption was necessary. Without this stronger assumption,

the unsegregated states are not, in fact, fixed points, except when [ = n, in which

18



case the stronger assumption reduces to the unbiased assumption. For the segre-
gated points to be fixed points, we require that ¢(0) = 0. In order to guarantee
the strict stability of the segregated fixed points, we require that IT'p’ > 0, i.e., II
and p must both be monotonic increasing or monotonic decreasing; and we must
also have that o/(0) < o(1). For any unsegregated fixed point to be unstable, in
addition to needing II'p’ > 0, we must also have that o’ (%) >0 (%) for any
positive integer n since we can have any number of afferents.

We can recast the various conditions on the function ¢ in a more intuitive man-
ner. The sequence {% | n € Nt} possesses an accumulation point at zero. We can
therefore regard Eq. (36) as an equation in a continuous variable in the neighbour-
hood of zero. We then have the simple differential equation o’(x)/o(z) > 1/x,
or o(z) > Az, where A is some positive constant. Eq. (36) therefore says that
the function o must grow at least as fast as linearly in its argument. Assuming
that o is monotonic increasing and extending o(z) > Ax over the whole interval
[0, 1], this condition then also implies that ¢'(0) < (1), which is necessary for
the stability of the segregated fixed points. We should stress that we must be
careful in the application of the condition o(z) > Az. For example, it is ille-
gitimate to argue that the constant function o(z) = A satisfies this condition
on the interval [0, 1] and therefore should lead to acceptable dynamics. For, if o
is a non-zero constant, then ¢’ = 0, and Eq. (36) is violated for all positive n,
and the requirement that o(0) = 0 is also violated. The correct interpretation of
o(x) > Az is, rather, that o grows at least as fast as linearly in its argument.

In summary, we can list the three derived conditions, and their origins, on

the functions II, p and o:

1. o(0) = 0 (segregated states are fixed points);
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2. o(z) > Az (instability of unsegregated fixed points);
3. I'(z)p'(x) > 0 Vx (stability of segregated points).

These conditions guarantee that the general “linear” multiplicative model pos-

sesses the correct fixed point structure.

2.3 Fully General Model

Finally, we consider the fully general model in Eq. (6),

Zj f’(“j)”(”ja aj)
i f'(wi)g(v) |

0; =(a-v) |7(v;, a;) — g(v;) (37)

with Y=, f(v;) = 1, where f is some invertible function, and, as usual, 7(v;, a;) =
p(a;)o(a;). Although messier, the analysis of the fully general model is very
similar to that of the general “linear” multiplicative model. We therefore do not
labour the analysis, but rather state the key results. We continue to assume
that the ensemble of afferent activity patterns treats all afferents in an unbiased
manner.

Consider the segregated state u, u; = d;;. We require that f(1)+(n—1)f(0) =
1. This must hold for any positive integer value for n, so we must have that
f(0) =0and f(1) = 1. This segregated state is a fixed point of the full dynamics
if

Expanding about this point as usual, we obtain

5, = bv,11(a) | o' (0)play) — o (1)
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as the linearised evolution equation for dv;, 7 # 4. As for the general “linear”
multiplicative model, this point is therefore guaranteed strictly stable if IT and p
are monotonic (either both increasing or both decreasing). However, the previous

condition ¢'(0) < ¢(1) becomes

(41)

Now consider the unsegregated states u defined by u; = v, i <[, and u; = 0,
i > 1, where [f(y) = 1, so that v = f‘l(%), this being the reason for assuming
invertibility of f. As before, these states are fixed points if all afferents are treated
in an unbiased manner and if the ensemble decomposes into subensembles in

which a - u is constant. After some algebra, we obtain, for ¢ <

00 = o(y) Y I'(n){p(ai)a), - ov

9 | %
- S 3 (- %>5
i W%“W;[Gm—H<p(aj>>u]5vj, (42)
where
G = o(1)f0)g'0) = F (Mg (V) + f(1)a' (1)g(), (43)
H = g(v)f'(0)d'(0), w4

and for 7 > [ we have

oui = 00 Y1) | 0)ple0) ~ 50)7 ), (45)

as the linearised evolution equations for dv;. As before, these points are unstable

if IT'p" > 0. But, the condition in Eq. (36) for the general “linear” multiplicative
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model becomes
! !
0D G (46)
a(y) ~ 9(7)
with v = f7*(7), 1 < I < n. There can be any number of afferents, so this

condition must hold for any positive n. As the sequence {f'(2) | n € N}
possesses an accumulation point at f~'(0) = 0, we can, as before, regard this as
an equation in a continuous variable in the neighbourhood of this point, and hence
we have o'(z)/o(x) > ¢'(z)/g(z), or o(z) > Ag(x), where A is some positive
constant. Thus, o must grow at least as fast as g, modulo an overall constant.
As in the earlier discussion of Eq. (36) for the general “linear” multiplicative
model, we must be careful in the application of o(z) > Ag(x). It is illegitimate,
for example, to extremise the RHS of the inequality on the interval [0,1] and
set o to the constant function whose value is this extremum, for Eq. (46) would
then be violated, as would the requirement that o(0) = 0. Again, the correct
interpretation is that o grows at least as fast as the function g.

In contrast to the specific case g(x) = x considered for the general “linear”
multiplicative model, if ¢ and g are both monotonic increasing and we extend
o(z) > Ag(z) over the whole interval [0, 1], then this does not imply, in general,
that Eq. (41) is automatically satisfied. However, when both ¢ and g are of
the same functional form (e.g., both simple powers of their arguments, or both
exponential functions of their arguments), then o(z) > Ag(x) does imply that
Eq. (41) is satisfied.

In summary, assuming unbiased afferent activity patterns, the conditions on
the functions II, p, o and ¢ that guarantee that the fully general model exhibits

the required fixed point dynamics are simply
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2. o(x) > Ag(z);
3. I'(z)p'(x) > 0.

There are no conditions on f, save that it is invertible, and that it satisfies

f(0)=0and f(1) =1.
2.4 Particular Models and Special Subclasses

We can employ our results from the above analyses to understand some of the
particular models typically employed in the literature, and to examine some spe-

cial subclasses of models in which elegant simplifications occur.
2.4.1 Standard Hebb Models

A standard Hebb model is almost always stated with a pre-synaptic function of
the very restricted form 7 (v;,a;) = a;, ie., o(z) = 1 and p(z) = z. Of course,
o(xz) = 1 violates the requirement that ¢(0) = 0, which guarantees that segre-
gated states correspond to fixed points. Indeed, it is well know that the standard
form of a Hebb model does not exhibit a fixed point structure. Nevertheless, the
overall dynamics can still be understood by examining the linearised equations
on the assumption that ad hoc devices such as freezing synapses at the minimum
or maximum desired values will give fixed point-like behaviour, and thus our
other criteria are applicable. Under multiplicative normalisation (von der Mals-
burg, 1973), g(x) = z. In this case, the condition in Eq. (46) is violated. Under
subtractive normalisation (Goodhill & Barrow, 1994; Miller & MacKay, 1994),
however, g(z) = 1. In this case, the condition in Eq. (46) is respected. Hence, we
would expect multiplicative normalisation to fail, in general, to segregate affer-
ents in a standard Hebb model. In fact, it is well known that while multiplicative

normalisation can segregate anti-correlated afferents in a standard Hebb model,
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it cannot segregate positively correlated afferents. Our criteria apply if a model
possesses a fixed point structure corresponding to the segregation of all but per-
fectly correlated afferents. As multiplicative normalisation in a standard Hebb
model cannot segregate all but perfectly correlated afferents, our criteria correctly
confirm its failure. In contrast, our criteria establish that subtractive normali-
sation in a standard Hebb model should be able to segregate all but positively
correlated afferents, and this is indeed the case. Notice that these results are

independent of the form of the function f, and, in particular, whether we enforce

Sivi=1lor Y v2=1.
2.4.2 Non-standard Hebb Models

If the pair of functions (o(z), g(z)) define both the pre-synaptic response as a
function of the number of synapses and the form of the term that enforces synaptic
normalisation, then a standard Hebb model under multiplicative normalisation
can be written as the (1,z) model. The failure of the (1,z) model in general
to segregate afferents led to subtractive normalisation, which is the (1,1) model.
One of our criteria for the capacity of a model to segregate all but perfectly
correlated afferents is that o(z) > Ag(z), interpreted as meaning that o(z) must
grow at least as fast as g(z). Thus, rather than moving from the (1,z) model
to the (1,1) model, we can instead move to the (x,z) model. Provided that
the other criteria are satisfied, the (z,z) model will segregate all but perfectly
correlated afferents. Moreover, it satisfies the fixed point requirements o(0) = 0,
g(0) = 0, unlike the (1,1) model.

We have shown that our neurotrophic model of synaptic plasticity (Elliott &
Shadbolt, 1998) can be reformulated as a non-linear Hebb model under multi-

plicative normalisation (Elliott & Shadbolt, 2002), where the non-linearity resides
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in the post-synaptic function II. This model is precisely an (z,z) model. The
neurotrophic model exhibits two distinct parameter regimes, one in which seg-
regation of all but perfectly correlated afferents does occur, and one in which
segregation never occurs. These two regimes were shown to correspond, respec-
tively, to II' > 0 and IT' < 0 (p’ > 0 in both regimes). Hence, the criteria derived
earlier give a more general understanding of our neurotrophic model by showing
that the two distinct behaviours are not specific to the model but are, instead,
universally valid: when the post-synaptic function II is not monotonic increasing
but p is monotonic increasing, the capacity for segregation breaks down.

For n = 2 afferents, the minimal multiplicative model, which is simplest (z, x)
model, is identical to Swindale’s model for the development of ocular dominance
columns (Swindale, 1980). Let subscripted letter such as z and y denote different
target cells, and let target cells be coupled through the lateral interaction function
Agy. Then the afferent input to target cell z is ¢; = a - v, and the full post-

synaptic response can be written as

I, = Z Agycy. (47)
y

Defining v, = %(1 + vy;) for either of the two afferents 7, and assuming that both

afferents are treated in an unbiased manner so that C;; = Css, we then obtain
. 1 2
Ve = 5(011 — 012)(1 — Uz) Z Azy’l)y, (48)
y

which, up to an overall multiplicative factor, is precisely Swindale’s model. Thus,
Swindale’s model is formally identical to the minimal multiplicative model with

n = 2 aflerents.
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2.4.3 The (2% z) Model with a <1

We have just discussed the (1, z) model, which is the standard Hebb model, and
the (z,z) model, a non-standard Hebb model, both models employing multiplica-
tive normalisation. The latter model possesses fixed points corresponding to the
segregation all but perfectly correlated afferents, while the former can segregate
only anti-correlated afferents. If we consider an “intermediate” model of the form
(z*,z), 0 < a <1, then as a approaches unity, we might expect this model to be
able to segregate increasingly strongly correlated afferents. We now obtain a mea-
sure of the maximum strength of the correlations that this intermediate model
can segregate. We assume that the model is minimal in all other respects, i.e.,
I, p and f are all the identity functions. This model, after ensemble averaging,
is then just

v; = o(v;)(Cv); —v; v Co, (49)

where o = (o(v1),...,0(v,))T, with o(z) = 2%, and C;; = (a;a;) as usual.

Although for a # 0, o(z) = z® does satisfy o(0) = 0, for a < 1, 0'(0)
is undefined, and hence the segregated states cannot be analysed simply. In our
analyses above, we have found that the unsegregated states are always unstable if
the segregated states are strictly stable. Because we cannot examine the stability
of the segregated states, we now instead impose the existence of a completely
unsegregated fixed point state (i.e., | = n) and determine when its stability
reverses. Although the presence of a stable unsegregated state does not guarantee
the presence of unstable segregated states, it does give an indication of when the
dynamics of the model undergo qualitative change.

For simplicity, we consider just n = 2 afferents and expand about the unseg-

regated state by writing v; = % + dv;. Because dv; = —dvy, we have only one
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independent equation, which, after linearisation, is
2% 5’()1 = 5’()1 [CL(CH + 012) — 2012] y (50)

where we have made the usual assumption that both afferents are treated in an

unbiased manner, or C'; = Cy. The dynamics of the model change when

Co_ _a
011_2—(1'

(51)

Consider, for concreteness, the four binary activity vectors (0,0), (0,1)T, (1,0)T
and (1,1)T occurring with probabilities p/2, (1 — p)/2, (1 — p)/2 and p/2, re-
spectively. The parameter p € [0, 1] is just the probability that the two afferents’

activities are equal. Then the correlation matrix is simply

C=%<;11)>, (52)

so that C15/Cy; = p. Thus, for p > a/(2 — a), the unsegregated state is strictly
stable, while for p < a/(2 — a), the unsegregated state is unstable. For the
particular case a = 0, p > 0 guarantees stability, while for a = 1, p < 1 guarantees

instability. For intermediate values of a, intermediate values of p are obtained.

1

5- Hence, for a > 2 the

In particular, for ¢ = %, the critical value of p is %
unsegregated fixed point starts to become unstable for values of p corresponding
to positively correlated patterns of afferent activity, and so it may become possible

to segregate such afferents.
2.4.4 Special Subclasses

The form of the general model in Eq. (6) is rather cumbersome, particularly the

term
35 f(vj)m(vs, a5)
> f(vi)g(vy)

(53)
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on the RHS. There are some subclasses in which this term simplifies, the simplest
being the selection f(z) = x and g(z) = z, this corresponding to the general “lin-
ear” multiplicative model discussed in detail earlier. In this case, the denominator
collapses to unity, and we are left only with 3=, 7(v;, a;).

If f(x) is homogeneous of degree a + 1, then by Euler’s theorem, zf'(z) =
(a + 1)f(x). Thus, if g(z) = z, then the denominator again collapses, as it
becomes °;(a + 1) f(x;) = a + 1, by definition. Of course, for a function of one
variable, the only homogeneous function of degree a + 1 is f(z) = z*"! (and
multiples thereof). In this case, Eq. (6) reduces to

0, =1(a-v) |7(vi,a;) — v, vaﬂ(vj,aj) . (54)

The general “linear” multiplicative model is the particular case a = 0.

3 Discussion

We have performed an analysis of a general class of Hebb growth rules under a
general form of synaptic normalisation, characterised by Eq. (6), and extracted
a set of conditions that guarantee that any particular model will exhibit the
required fixed point structure characterising activity-dependent, competitive dy-
namics. That is, the conditions ensure the presence of strictly stable fixed points
corresponding to segregated states in which all afferents but one have been elim-
inated, and when fixed points corresponding to unsegregated states in which two
or more afferents innervate their target with equal strengths exist, these fixed
points are unstable. These conditions, by construction, are independent of the
size of afferent correlations, and are therefore valid for all but perfectly correlated
afferents.

Other than the particular functional form of the rule in Eq. (6), our ma-
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jor assumption in deriving these conditions was that all afferents are treated in
an unbiased manner. Such an assumption corresponds to the requirement that
the ensemble of afferent activity patterns is translation invariant in the space
of afferents, and is widely assumed in the modelling literature. Unbiased activ-
ity patterns correspond, for example, to normal patterns of vision during ocular
dominance column development, in which afferents from either eye have a roughly
equal chance of winning the competitive process. In contrast, biasing the pat-
terns of activity towards one or more afferents would affect the fixed points and
correspond to abnormal developmental processes such as ocular dominance col-
umn development under monocular deprivation, in which the closed eye has little
chance of winning the competition. For biased inputs, it is to be expected that all
segregated fixed points remain stable, but that the flow towards the segregated
state in which the favoured input remains is more rapid than the flow towards the
other segregated fixed points. If two or more inputs are equally favoured, then
the same analysis as above would apply to competition between this subset of
afferents. As we are interested here in normal developmental processes, we have
restricted our analysis to unbiased afferent activity patterns.

We have implicitly assumed that the segregated and unsegregated fixed points
entirely characterise the dynamics of the models analysed above. Such an as-
sumption would be justified if the dynamics defined by Eq. (6) are curl-free,
demonstrating the existence of a Lyapunov function and thus proving conver-
gence to a stable state (Wiskott & Sejnowski, 1998). However, in general these
dynamics are not curl-free, thus admitting of the possibility of limit cycles or
oscillatory solutions. In general, it would be difficult to rule out such behaviour.
However, numerical solutions of Eq. (6) for a range of possible models including

the minimal multiplicative model show that these solutions are dominated by the
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fixed points analysed above and that convergence to the segregated fixed points
always occurs (unpublished observations). While such observations are not con-
clusive, they do suggest that, for this class of models, oscillatory solutions are
not present, or at least not generally observed.

We have analysed competitive dynamics on a pointwise basis only, at single
target cells. Introducing multiple target cells coupled through lateral interactions
generally renders such analyses very difficult if not intractable. Within the con-
text of our earlier neurotrophic model (Elliott & Shadbolt, 1998), some analysis
of coupled multiple target cells has been performed (unpublished observations).
Introducing a lateral interaction function reduces the maximum size of afferent
correlations below which afferent segregation is possible. This is a continuous pro-
cess, so that this maximum size reduces continuously as a function of the lateral
interaction strength. We expect similar results within the context of a general
Hebb rule and a general form of synaptic normalisation. For only weak lateral
interactions, we would expect to be able to continue to segregate strongly corre-
lated afferents, although the maximum correlation value below which segregation
is possible will be reduced a little below unity. As lateral interaction strength
is increased, it should cease to be possible to segregate positively correlated af-
ferents, with the segregation of only anti-correlated afferents being possible. For
stronger lateral interactions still, afferent segregation should break down entirely.

For pointwise dynamics, provided that o(0) = 0 and ¢(0) = 0, ensuring that
segregated states are fixed points, and provided that o(x) grows at least as fast
as g(z), then the required competitive dynamics are guaranteed to be present in
a model if IT'(z)p'(z) > 0 Vz, i.e., if both IT and p are either monotonic increasing
or monotonic decreasing. While the local dynamics of models may differ, their

global dynamics, by construction, are identical. In the presence of multiple target
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cells and interactions between them, the global dynamics of a model determine
the final structure of the resulting neuronal map, while the local dynamics de-
termine how the model reaches that state. We may therefore regard all models
in which II and p are both monotonic increasing or both monotonic decreasing
as equivalent and interchangeable, from a mathematical point of view. From a
biological point of view, while the local dynamics of a model are important and
can be used to resolve models by comparing their predictions against experiment,
nevertheless, if, for example, two target cells possess differing but monotonic in-
creasing post-synaptic response functions, then their responses are essentially
equivalent, differing only in local detail. It is this equivalence that ensures that
the global dynamics are identical. Mathematically, we are therefore justified in
restricting attention to a consideration of the simplest and most natural form of
monotonic IT and p, and these are arguably the forms II(z) = z and p(z) = =,
the identity function in both cases.

This equivalence between models having monotonic increasing or monotonic
decreasing Il and p raises issues about the evolvability and importance of activity-
dependent, competitive dynamics in neuronal systems. Under the assumption
that such neuronal dynamics have selective value and indeed have been a target
for selection during evolution, it is natural to ask whether these dynamics are
easy or difficult to evolve. From the analysis above, the resulting conditions that
guarantee the presence of the required fixed point structure for all but perfectly
correlated afferents are, in fact, rather easily satisfied. Thus, it would appear that
evolution could satisfy these requirements without difficulty and that activity-
dependent, neuronal competition should therefore be easily evolvable. But this
argument is double-edged. For the relative ease with which these requirements

may be satisfied raises the possibility that evolution satisfied them accidentally,
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and that activity-dependent, competitive neuronal dynamics have, or, at least,
had no adaptive advantage. Certainly, the importance of the neuroanatomical
structures to which neuronal competition characteristically gives rise has been
questioned (Purves et al., 1992), and we may broaden this questioning, in light
of the ease with which our criteria may be satisfied, to ask whether activity-
dependent, neuronal competition is itself important to the functioning of the
vertebrate nervous system. Indeed, recent experimental data challenge the very
existence of activity-dependent competition during developmental processes in
some systems that hitherto have been regarded as archetypal examples of such
dynamics (Crowley & Katz, 1999, 2000). Nevertheless, given the apparent ubig-
uity of activity-dependent, neuronal competition, it is tempting to dismiss this
line of reasoning, but its very ubiquity may, rather, be an indication of the in-
evitability of the emergence of competition. Despite this, it remains a possibility
that, even if activity-dependent, neuronal competition is an accidental discovery,
it has subsequently been put to good use.

For multiplicative normalisation, for which g(x) = z, our criteria imply that,
provided IT'p" > 0, it suffices to take o(z) = % a > 1, in order to guarantee that
presence of the required fixed point structure for all but perfectly correlated af-
ferents. Thus, the failure of multiplicative normalisation in a standard Hebb rule
in which o(z) = 1 is actually quite atypical. It thus seems odd that the possibil-
ity of expanding the standard Hebb rule to include a more general pre-synaptic
term has evaded attention. We believe that the reason for this pivots centrally
on interpretation. Most modellers have hitherto considered synaptic plasticity
in an anatomically fixed network of variable-strength synapses. In contrast, our
models have sought explicitly to address anatomical plasticity: the formation of

new synapses and the removal of existing ones (Elliott & Shadbolt, 1998). In our
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models, the variable v; denotes the (scaled) number of synapses between afferent
i and its target, but in anatomically-fixed models it denotes synaptic efficacy (or
strength or weight). In anatomically-fixed models, application of the Hebb rule
gives the standard, well-known form, v; = ¢;II. In our models, however, we can
regard the Hebb rule as a change per synapse, and therefore the total change
in the number of synapses is given by the standard Hebb rule multiplied by the
total number of synapses supported by an afferent: ¥; = a;v;II. Thus, under an
anatomical interpretation, we automatically have o(z) = =z, not o(z) = 1. In-
deed, this argument suggests that of all the possible forms for o(z) in the models
considered above, the most natural choice, for a model of anatomical plasticity, is
the linear form o(z) = z. Given the linear form, the most natural choice for the
normalising function ¢(z) is then also the linear form g(z) = z, corresponding to
multiplicative normalisation.

As noted earlier, Swindale’s model of ocular dominance column formation
(Swindale, 1980) is formally identical to the minimal multiplicative model with
n = 2 afferents. Although Swindale introduced the term 1 —v2 in an ad hoc fash-
ion, the equivalence shows that it can be derived formally and owes its origin to
the underlying multiplicative normalisation. Oja’s principal component analyser
(Oja, 1982) is also very similar to the minimal multiplicative model, the only
difference being that in the latter, a factor of v; multiplies both the growth and
the decay terms on the RHS, while in Oja’s model, it is found only on the decay
term. The models discussed here could be described as winner-take-all models at
the afferent cell level. The conditions for winner-take-all dynamics at the target
cell level have also been studied (e.g., Grossberg, 1987, 1988; Yuille, 1989).

In summary, we have performed an analysis of a general class of Hebb models

under a general form of synaptic normalisation and extracted conditions that
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ensure that the models possess a fixed point structure allowing the segregation of
all but perfectly correlated afferents. The resulting criteria are surprisingly easily
satisfied, requiring that the pre- and post-synaptic functions p and II are either
both monotonic increasing or both monotonic decreasing, and that the function
o grows at least as fast as the function g. Competitive dynamics are therefore

easily achieved in an infinite class of essentially equivalent models.

Appendix: Derivation of Conditions on II and p

In Section 2.2 we defined the matrix D with components D;; = (II(a;)p(a;))
and, in order to guarantee the presence of strictly stable segregated fixed points,
required that D satisfies D;; > D;; Vi,j # i. For ensembles of afferent activity
that treat the afferents in an unbiased manner, we now derive conditions on the
functions II and p that guarantee that these strict inequalities are satisfied.

For ensemble element o, o = 1,...,m, define II? = II(a?) and p¢ = p(af)
and the corresponding m-dimensional vectors IT; = (II},...,II™)" and p, =
(pr,...,0™)T are vectors of functions of the activity of afferent i over the whole
ensemble. Define, as before, A; = (a},...,a)T. The requirement that D;; > D;;

79

Vi, 7 # i then becomes
IL - (p; — pj) >0 Vi, j #i. (55)

For ensembles that treat the afferents in an unbiased manner, the vectors A; and
A are related, as observed earlier, through a simple permutation of elements, so
that A; = RA,, where R is some permutation matrix, its characteristic feature
being that on any row or column, there is precisely one entry of unity and zero

elsewhere. Similarly II; = RIL; and p; = Rp,. Thus, dropping the index ¢, and
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defining
Er=I-p-1II-Rp, (56)

we require conditions on IT and p that guarantee that ég > 0 VR # L.

We may assume, without loss of generality, that the components of A, a2,
a = 1,...,m, are ordered so that a! > a2 > ... > a™. For suppose that A
represents an unordered vector, with IT and p having components II(a®) and
p(@®), respectively. Let A represent an ordered vector, with the vectors IT and
p defined as before. Let the matrix R; be the permutation operator that orders

the components of A, so that A = R;A. Then
IMI-p—II-Rp = II-R{R,p—II-R'RRp (57)
= II-p—1II-Ryp, (58)
since RITRl =Tand Ry = RlTRRl is some other permutation operator. Thus,

we may assume that the components of A are ordered without loss of generality

provided that we can establish that &g > 0 for all permutation matrices R # I.

Define the new variables p® = I1® — II®*, r@ = p® — p2Ftl o =1,...,m — 1,
and p™ = Y7 11® and r™ = Y7 p® The vectors p = (p',...,p™)" and
r = (rt,...,r™)7 are related to the vectors IT and p through a matrix T by

p = TII and r = Tp, where T can be easily written down and has the inverse

m—1 m—2 m-3 ... 2 1 1
-1 m—-—2 m-—3 2 1 1
-1 -2 m—3 2 1 1
o1 1 -2 -3 2 1 1
T ~m : : : : : : (59)
-1 -2 -3 2 1 1
1 -2 =3 ... —(m-2) 1 1
-1 -2 -3 ... —(m-2) —(m-1) 1

Writing ER = ER (I1, p) instead in terms of these new variables, Egp = ER (P, 1),
we can obtain the functional form of £g = ER(p,r) from ER (I, p). Because
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&R is a product in the I1*’s and p®’s, it will similarly be a product in the p®’s

and r®’s. Hence, we can write
ER =P ST, (60)

where the elements of S, S,3, are simply given by

o _ Per
P opeor®

(61)

and these partial derivatives can be obtained from all the partial derivatives
82€R /OI1*0p” by repeated application of the chain rule for partial differentiation
using O11%/0p® = 0p®/OrP = (T™")4p.

For the permutation matrix R, let the o™ row have an entry of unity in the

s™ column and zero in all other columns. For R to be a permutation matrix, the

set {s1,..., Sy} must be a permutation of the set {1,...,m}. Then we have that
Ep = 3o — ). (2
a=1

It is easy to see that OER /Op™ = 0 and OER /Or™ = 0, because >, (p* —p**) =0
and Y, (I1* — II**) = 0. Hence, éR(p,r) is independent of p™ and 7™, and
SO0 Sam = 0 = S0 Va. After some algebra, we can obtain the other partial

derivatives in Eq. (61), to obtain, for « < m and 8 < m,

PR vinfa, -3 36 (63)
= min — s
op*ors & 2O

It is straightforward to see that >>%_, P dvs, < min{c, B} by considering the
two cases a < 8 and a > [ separately. Hence 82€R/ op®or? > 0 Vo, B.

Pulling all this together, we may finally write R in the form

m—1m—1 a B
ER = Zl ﬁzl (Ha - H‘H'l) min{a, B} — 21 21 s, (pﬁ - pﬁﬂ) , (64)
o= = u=1v=
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where the term in square brackets on the RHS is non-negative. £R is therefore
guaranteed positive if ([T —TT1%+1) (p% — p+1) > 0, Vo < m, VB < m. Thus, either
both IT® —I1°*! and p? — pP*! are always positive, or both II* —II**! and p# — pf*!
are always negative. But the sequence a',...,a™ was assumed, without loss of
generality, to be ordered, and therefore monotone. Hence, R is guaranteed
positive if the functions II and p are either both monotonic increasing or both
monotonic decreasing. Of course, I or p a constant function forces Eg = 0, but
we exclude this possibility by considering only non-constant II and p.

A second, rather more direct geometric proof that &g > 0 can be seen. If
the functions Il and p are both monotonic increasing, and assuming without loss
of generality that a' > a? > ... > a™, then the vectors IT and p both lie in the
m-dimensional infinite wedge defined by z! > 22 > ... > 2™ > 0, where the z*
are co-ordinates in m-dimensional Euclidean space. This wedge is constructed by
taking the positive hyperquadrant defined by the hyperplanes z* = 0, Vo, and
removing the regions corresponding to z¢ < ', a = 1,...,m — 1. Thus, the

atl ‘o =1,...,m — 1, contain the new faces of this region.

hyperplanes z® = x
Any permutation matrix R can be decomposed into a product of fundamental
permutation matrices, these latter matrices simply exchanging only adjacent pairs
of components. Thus, consider the matrix R*, a =1,...,m — 1, that exchanges
only the o' and (o + 1)™® components of a vector. R® acting on the vector

atl containing one of the

p thus serves to reflect p in the hyperplane z¢ = x
faces of the wedge. Such an operation moves p out of the wedge by the same
angle, relative to the hyperplane z® = x**!, that p is within the wedge. Hence,
IT- p > IT- R*p. Repeated applications of further R*’s continue to reflect p in

these hyperplanes, either keeping it outside the wedge by the same angle relative

to some hyperplane z® = z%*!, for some o < m, that p is within the wedge, or
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returning it within the wedge necessarily back to p. Hence, IT- p > IT- Rp for
any R # I, fundamental or otherwise. A similar argument applies if [T and p are
both monotonic decreasing.

In addition to monotonicity of II and p guaranteeing that &g is positive,
setting II(z) = p(z) Vz also achieves this. In this case, II and p may be non-
monotonic. However, the analysis of E requires that II and p are monotonic even

if IT = p.
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