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Abstract

Synaptic normalisation is used to enforce competitive dynamics is many models
of developmental synaptic plasticity. In linear and semi-linear Hebbian models,
multiplicative synaptic normalisation fails to segregate afferents whose activity
patterns are positively correlated. To achieve this, the biologically problematic
device of subtractive synaptic normalisation must be used instead. Our own
model of competition for neurotrophic support, which can segregate positively
correlated afferents, was developed in part in an attempt to overcome these prob-
lems by removing the need for synaptic normalisation altogether. However, we
now show that the dynamics of our model decompose into two decoupled sub-
spaces, with competitive dynamics being implemented in one of them through a
non-linear Hebb rule and multiplicative synaptic normalisation. This normalisa-
tion is “emergent” rather than imposed. We argue that these observations permit
biologically plausible forms of synaptic normalisation to be viewed as abstract
and general descriptions of the underlying biology in certain, scaleless models of

synaptic plasticity.



1 Introduction

Activity-dependent competition between afferent neurons for control of target
neurons is a ubiquitous feature of mammalian neuronal development (Purves,
1994). These competitive interactions are thought to lead, for example, to the
development of ocular dominance columns (ODCs) — inter-digitated domains
of control by the left and right eyes — in the primary visual cortex of higher
mammals such as Old World monkeys and cats (Hubel & Wiesel, 1962; LeVay
et al., 1978, 1980). Understanding the mechanisms underlying competition in
the nervous system is of central importance to developmental neuroscience, both
experimentally and theoretically.

Theoretically, several approaches to competition have been developed (for re-
views, see Swindale, 1996; van Ooyen, 2001), including the Bienenstock-Cooper-
Munro model (Bienenstock et al., 1982), neurotrophic models (e.g., Harris et al.,
1997; Elliott & Shadbolt, 1998a,b), covariance models (Sejnowski, 1977; Linsker,
1986a,b,c), and various other approaches (e.g., Swindale, 1980; Fraser & Perkel,
1989; Montague et al., 1991; Tanaka, 1991). But perhaps the most popular mod-
els are based on linear or semi-linear Hebbian rules coupled with various forms
of synaptic normalisation as a means of enforcing competitive dynamics (von der
Malsburg, 1973; Miller et al., 1989; Goodhill, 1993). Although multiplicative
synaptic normalisation (von der Malsburg, 1973) is not biologically implausible,
it does not lead to afferent segregation in the presence of positive correlations in
the activity patterns between afferent cells. To segregate afferents in the presence
of positive correlations, subtractive synaptic normalisation must be used instead
(Goodhill & Barrow, 1994; Miller & MacKay, 1994).

Whether or not models actually need to be able to segregate positively-



correlated afferents in order to be biologically relevant is currently a moot ques-
tion. ODCs in Old World monkeys develop prior to birth and are adult-like at
birth (Horton & Hocking, 1996). Recent data has also questioned whether, as
previously assumed, ODCs develop in the ferret after eye-opening (Crowley &
Katz, 1999, 2000). In the cat, however, despite data revealing non-Hebbian de-
velopmental processes (Crair et al., 1998), it is still tenable to assume that ODCs
develop after eye-opening, and therefore in the presence of positively correlated
inter-ocular images. Thus, models of at least cat ODC development must be able
to segregate positively correlated afferents in a plausible manner.

In previous work, we have criticised the use of synaptic normalisation on two
grounds. First, we argued (Elliott & Shadbolt, 1998a,b, 1999; Elliott et al.,
2001) that synaptic normalisation simply describes rather than seeks to explain
the nature of competition in the nervous system. Second, we have argued (El-
liott & Shadbolt, 1998a,b, 1999; Elliott et al., 2001) that subtractive synaptic
normalisation is biologically implausible, for reasons explained later. Inspired
by experimental results implicating neurotrophic factors in activity-dependent
synaptic competition (reviewed in McAllister et al., 1999), and in an attempt
to overcome the difficulties of synaptic normalisation, we have built a mathe-
matical model based on activity-dependent competition for neurotrophic factors
involving anatomical plasticity, and later extended the model to include simul-
taneous physiological plasticity (Elliott & Shadbolt, 1998a,b, 1999; Elliott et al.,
2001). Critically, our neurotrophic model segregates positively correlated affer-
ents, as required for application to the development of ODCs (Elliott & Shadbolt,
1998b).

In this paper, we present the results of further analysis of our neurotrophic

model. We have found that the model’s dynamics decouple into two essentially



independent subspaces, with the competitive dynamics residing exclusively in one
subspace. In this latter subspace, we show that a non-linear Hebb (or Hebb-like)
rule governs synaptic growth. To our surprise, and contradicting widely-held
beliefs about the capacity of multiplicative synaptic normalisation to segregate
positively correlated afferents, we find that competition is implemented through
multiplicative synaptic normalisation. This normalisation, however, is not im-
posed, but, in a sense that we shall explain, is “emergent”. We then argue that
the key feature of our model that allows this Hebb-like, synaptic normalisation
description is that the dynamics in the competitive subspace are independent
of an overall synaptic scale (i.e., the absolute number of synapses). We suggest
that many such models may satisfy this property, thus perhaps sanctioning the
use of synaptic normalisation as an acceptable, abstract characterisation of the

underlying competitive process.

2 Reformulations of the Model

In this section we first write down our basic model of anatomical, competitive de-
velopmental synaptic plasticity based on competition for neurotrophic support,
and then state a number of key results that, in the non-linear Hebb formula-
tion, will be seen to be rather more transparent. We then introduce a change of
variables, from which an energy function reformulation of the model will reveal
two basically decoupled sets of dynamics: one competitive set leading to afferent
segregation; and one non-competitive set determining an overall synaptic scale.
Finally, we derive the non-linear Hebb rule formulation, using the decoupled dy-
namics of the energy function formulation to extract an “emergent” normalisation

process.



2.1 The Basic Model

Let afferent cells be labelled by letters such as ¢ and j, and target cells be labelled
by letters such as z and y. Let the number of synapses between afferent cell i
and target cell = be s,;, and let the activity of afferent cell 7 be a; € [0,1]. Then
the basic equation governing the time-evolution of s,; is given by

Sy (a+ a;) > SyiQj
T s —ZZAJJ T—}—TM)—I]; 1
dt > szj(a + aj) y( 0 > Sy (1)

see Elliott & Shadbolt (1998a) for a detailed derivation and justification. The
quantities Ty and 7 represent, respectively, an activity-independent and maxi-
mum activity-dependent release of NTFs by target cells; a represents a resting
uptake term of NTFs by afferents; and € is an overall “learning rate”. The func-
tion A4, embodies lateral interactions between target cells  and y. In previous
work, we have considered A,y to arise only through the diffusion of NTF's between
target cells, so that A,, > 0 Vz,y (Elliott & Shadbolt, 1998a,b, 1999). However,
we can also consider Ay, to arise from both excitatory (A, > 0) and inhibitory
(Agy < 0) lateral synaptic interactions between target cells, either enhancing or
reducing the release of NTFs by target cells. In this case, we can ignore NTF
receptor dynamics, which in previous work we have also considered (Elliott &
Shadbolt, 1998a). For convenience, and without much loss of generality, we will
assume that 35, Ay, =1 Vz.

The quantity ¢ = Tp/(aTy) is a critical parameter in our model. Previous
work has shown that, for A;, = d,, (the Kronecker delta), when ¢ < 1 afferent
segregation occurs (that is, all but one of s;; go to zero at each target cell x),
while for ¢ > 1, afferent segregation breaks down (Elliott & Shadbolt, 1998a).
For ¢ < 1, segregation occurs for all but perfectly correlated afferent activity

patterns (Elliott & Shadbolt, 1998a). In the presence of a general A,,, the



critical value of ¢ is reduced below unity and also becomes a function of afferent
correlations, so that too-extensive (positive) lateral interactions or too strong
(but not perfect) afferent activity correlations can lead to a breakdown of afferent
segregation (unpublished observations). The parameter a also plays a direct role
in segregation. As a — 00, the rate of segregation tends to zero. In the limit,
the ratio of the number of synapses supported by any pair of afferents on a given

target cell remains fixed (Elliott & Shadbolt, 1998a).

2.2 Energy function formulation

Introducing the new variables s} = 3, s;; and v,; = $g/st, so that 3, v, = 1,

Eq. (1) can be rewritten as

dvg; >i(ai — a;)vg;
T — T, i / 2 Aw j j 2
R A
and
ds; N
o T = €Ty Y Agylac+ aj)vy;. (3)

yJ

We now average over the ensemble of afferent activity patterns. To achieve this we
assume, for tractability, that for n distinct afferents, i = 1,...,n, there are just
n distinct activity patterns, with pattern number ¢ being defined by a; = 1 and
aj = p Vj # i, with p € [0,1]. Defining u as the average activity of an afferent,
so that nu = 1+ (n — 1)p, and introducing the parameter r = (1 — p)/(a + p),

we obtain after some algebra

dv 1+ 76 1+ 70
T Ty —1 Y _ 1-— ——L %" Ay (vy; — v
s g eThvg; |a(c )<;1+7‘UW- n) + ( p);prwwj%: y(Vyj — vzj) |
(4)
and
dst
%+es‘;:eﬂ(ac+u), (5)



where, in these two equations, we have dropped for notational convenience the ()
brackets on the variables v,; and s;, these brackets denoting ensemble-averaging.
Restricting to n = 2 afferents for increased tractability and writing v, = 2v,; — 1

for any one of the two afferents 7, we then obtain

+dv 1-—
= = €T A,
2 dt ¢Thr’ (2+7)2— 7‘21)2 Z vV (6)
ds’
z  _ o
dt € [Tl (ac + lu) Sw] ’ (7)
where
Ay = (a4 p)Asy — (A + 1)y (8)

From Eqgs. (6) and (7) we easily obtain a Lyapunov or energy function E, such

that dE/dt < 0 always, where

E = FEs + Eg, 9)

with

1 412

Bs =53 [Ti(ac+ ) = s] (10)

and

1 ~
c=-3 > v Agyvy. (11)
zy

In fact, this form for E generalises rigorously to n > 2 afferents, as we shall
demonstrate elsewhere.

The stable solutions of Egs. (6) and (7), and thus the solutions of the unaver-
aged Eq. (1) when ¢ is sufficiently small that the s,; change slowly compared to
the afferent activities a;, correspond to the minima of £. E cleanly decomposes
into two pieces that may be minimised independently. Es merely sets the overall
scale for s} and is minimised directly by setting s} = T3 (ac+ u) V. The dynam-

ics embodied in this minimisation [and therefore the solutions of Egs. (5) or (7)]



are therefore trivial and uninteresting. Minimisation of E¢, on the other hand,
with v, € [—1,1] corresponding to a target cell “spin” variable denoting control
by one afferent (negative v,) or the other (positive v,), encapsulates the compet-
itive dynamics of the model. The eigenvalues of the matrix A entirely determine
the character of these dynamics, and F¢ is, of course, exactly the Hamiltonian

of a spin glass (with v, € {—1,+1}).
2.3 Non-linear Hebb rule formulation

We now return to n afferents in the unaveraged system defined by Egs. (2) and (3),
and restrict to a consideration of one target cell only, so that we examine compe-
tition on a pointwise basis. We then may set A;, = 6, and drop the x subscript
on the s and v,; (and s,;) variables. Our results, however, easily generalise to
multiple target cells with a general Ag,.

The energy function analysis above reveals that the n independent degrees
of freedom in the n s; variables decompose into n — 1 degrees of freedom in
the n scaleless v; variables (3;v; = 1, by construction) that entirely capture
the competitive dynamics of the model, and one degree of freedom in the st
variable that entirely captures the scaling dynamics of the model. As argued
above, these latter scaling dynamics are quite trivial and uninteresting and we
may discard them without any important loss of generality, restricting attention
to the (n — 1)-dimensional competitive subspace only. Hence, our basic equation
is just
% = Vi <M> > _(a; — a;)v; (12)

a+jv5a5 ) 5
with >, v; = 1, where we have absorbed a factor of ¢ 7} into a redefinition of time.
In this subspace, we have a synaptic growth rule, Eq. (12), which automatically

normalises the v; such that > ,v; = 1 always. We stress, however, that this



normalisation is the result of the definition of the v; variables (v; = s;/s™) and
the fact that these variables are key in capturing the competitive dynamics, with
the scaling dynamics decoupling.

Nevertheless, from a purely mathematical point of view, we may ask what
is the form of the growth rule underlying Eq. (12), and how is the “emergent”

normalisation > ; v; = 1 maintained? Defining

I 2t 2vit (13)
a+ Ej Ujaj

which is a purely post-synaptic, although non-linear term, and
T = A4V, (14)

which is a pre-synaptic term, we may rewrite Eq. (12) as

% = ’/TZ'H - ’Ul(z ’/Tj)H. (15)
J

The first term on the right-hand-side (RHS) is a non-linear Hebb growth rule,
where, for the moment, we define a Hebb growth rule as any synaptic growth
rule that is expressible as the product of a pre-synaptic term and a purely post-
synaptic term. Were this the only term on the RHS of Eq. (15), it would induce
the unconstrained synaptic growth characteristic of Hebb rules. How, then, is
this unconstrained growth forced to remain in the (n — 1)-dimensional subspace
in which >, v; = 1?7 Were we to impose this through multiplicative synaptic
normalisation, we would modify the Hebb rule by subtracting from the uncon-
strained growth term a term proportional to v; and such that this additional term
forces 3°; dv;/dt = 0. In our case, this term would be v;(3; 7;)II, which is exactly
the second term on the RHS of Eq. (15).

Eq. (15), therefore, represents a non-linear Hebb rule, with a non-linear post-

synaptic term II, together with multiplicative synaptic normalisation. Yet, this

10



model segregates afferents for all but perfectly correlated afferent activity patterns
(when A,y = d,y), explicitly contradicting the widely-held view that, in order to
segregate positively correlated afferents, multiplicative normalisation fails and
subtractive normalisation must be used (Goodhill & Barrow, 1994; Miller &
MacKay, 1994). Furthermore, it contradicts, or at least dramatically reduces the
significance of claims that non-linear Hebbian dynamics are reducible to linear
Hebbian dynamics (Miller, 1990), for linear dynamics will not segregate positively
correlated afferents under multiplicative normalisation (Goodhill & Barrow, 1994;
Miller & MacKay, 1994). We discuss these issues more fully later.

The form of IT allows us to see more readily the model’s behaviour in certain
limits. When ¢ = 1, we have that IT = 1. In this case, Eq. (15) is purely pre-
synaptic and so we would expect, as in fact observed (Elliott & Shadbolt, 1998a),
chaotic oscillations in the v; as they grow or decay independently of each other
(except through >;v; = 1). In the limit ¢ — oo with ac held fixed (because
ac = Ty/Ty, Ty and T being parameters independent of a), II — 0. Hence, as
a grows the v; evolve more slowly, so that segregation slows down, and, in the
limit, the v; are constant in time.

When ¢ < 1, IT < 1 and is a monotone increasing function of 37, v;a; on
[0,00) (although the actual range of this sum is just [0,1]), while for ¢ > 1,
II > 1 and is a monotone decreasing function of >°;v;a;. II should therefore
not in general be regarded as a post-synaptic firing rate, but rather as a post-
synaptic “plasticity rate”, which, of course, depends on the summed post-synaptic
response, »;vja;. While we have defined a Hebb rule as any synaptic growth
rule that is expressible as the product of a pre-synaptic and a post-synaptic
term, many Hebb rules are often stated in more restricted forms involving only

correlations between pre-synaptic and post-synaptic activity. For ¢ < 1, because

11



IT is a monotone increasing function of 3>, v;a;, our Hebb rule definition for our
model is equivalent to the more restricted definition. Hence, for ¢ < 1, Eq. (15)
is Hebbian in both senses, and because our model segregates afferents only for
¢ < 1, this justifies our use of our more general definition of a Hebbian model.
However, for ¢ > 1, Il is monotone decreasing. Therefore, the growth rule in
Eq. (15), although Hebbian by our definition, is not Hebbian according to the
more restricted definition. Indeed, for ¢ > 1, Eq. (15) would often be regarded
as an anti-Hebbian rule, rewarding anti-correlations between pre-synaptic and
post-synaptic activity. We thus see the dynamical importance of the point ¢ = 1:
it corresponds to the transition in the model between a (classical) Hebbian rule

and a (classical) anti-Hebbian rule.

3 Discussion

We have extended our earlier analysis of our neurotrophic model of anatomical,
competitive synaptic plasticity, which can segregate afferents in the presence of
positively correlated afferent activity patterns, and shown that a change of vari-
ables reveals two essentially decoupled sets of dynamics. One set determines an
overall synaptic scale, and can be discarded without any important loss of gener-
ality. The other set completely determines the competitive dynamics underlying
the model, independent of the synaptic scale. These competitive dynamics can be
viewed in two contrasting ways, either as the dynamics of a spin glass, which we
have not pursued at any length here, or they can be formulated precisely as a non-
linear Hebbian model with synaptic normalisation implemented multiplicatively
(cf. Wiskott & Sejnowski, 1998). In contrast to many other models of synaptic
competition, this normalisation is not imposed, but rather is “emergent”, in the

sense that the interesting, competitive interactions of the model restrict them-
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selves dynamically to a lower dimensional subspace in which a set of variables
can be found that fully capture these dynamics and that satisfy a normalisation
constraint. Critically, even though synaptic normalisation is implemented multi-
plicatively in this lower dimensional subspace, our model can segregate positively
correlated afferents. Indeed, in the absence of lateral interactions between target
cells (so that A, = d5y), the model can segregate all but perfectly correlated
afferents.

The fact that a non-linear Hebb rule and multiplicative synaptic normalisa-
tion can segregate even strongly positively correlated afferents is intriguing. It is
well-known that multiplicative normalisation together with a linear Hebb rule, or
a linear Hebb rule coupled with non-linearities such as a winner-take-all mech-
anism, cannot segregate positively correlated afferents (von der Malsburg, 1973;
Goodhill & Barrow, 1994; Miller & MacKay, 1994) and that subtractive rather
than multiplicative normalisation must be used (Miller et al., 1989; Goodhill,
1993). The fact that certain non-linear Hebbian models are reducible to linear
Hebbian models (Miller, 1990) has led to the widespread belief that, in general, no
Hebbian model, whether linear or non-linear, can segregate positively correlated
afferents under multiplicative normalisation. Our results constitute an explicit
and constructive counter-example to these beliefs.

We have frequently criticised synaptic normalisation for being a mathematical
device that simply imposes rather than seeks to illuminate synaptic competition
(Elliott & Shadbolt, 1998a,b, 1999; Elliott et al., 2001). Even if we accept that
synaptic normalisation underlies competition in the nervous system, and accept-
ing that normalisation could arise from decay or homeostatic mechanisms con-
trolling synaptic efficacy (Turrigiano et al., 1998), it appears to us implausible to

assume, as required by subtractive normalisation, that these mechanisms should
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regulate synaptic efficacy in a fashion that is independent of the concentrations
of any of the pre-synaptic or post-synaptic components that, together, determine
synaptic efficacy. If a model of synaptic plasticity requires an arguably implau-
sible form of synaptic normalisation to segregate positively correlated afferents,
then perhaps that model should be regarded as implausible.

Prior to our results above, such a conclusion would have been unpalatable,
as it would have left a vacuum in the space of conventional competitive, synap-
tic normalisation-based Hebbian models that can segregate positively correlated
afferents. A few other models will segregate positively correlated afferents (e.g.,
Bienenstock et al., 1982; Harris et al., 1997), but these do not enforce hard con-
straints via synaptic normalisation on summed synaptic efficacy. Our present
model, in its non-linear Hebb reformulation, fills this vacuum by being an ex-
plicit, constructive example of a simple Hebbian model that uses multiplicative
normalisation to achieve competitive dynamics. This model is almost certainly
not unique: presumably an infinite number of non-linear Hebbian models exist
that are capable of segregating positively correlated afferents using various forms
of synaptic normalisation that do not require biologically problematic assump-
tions. Our model should therefore be construed, from a mathematical point of
view, as merely an existence proof of one such model.

How do we reconcile our previous criticisms of synaptic normalisation (of
any form) as a mathematical device, and our presentation of our neurotrophic
model as a competing alternative, with the results above, showing an underlying
multiplicative synaptic normalisation in the competitive dynamics of our model?
There are two related aspects to our reply.

First, the synaptic normalisation that we have found was in no way imposed

from the outset. After changing variables so as to eliminate an overall synap-
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tic scale, we found that the competitive dynamics reside entirely in the scaleless
variables (the v,;), which by definition satisfy a normalisation equation, and,
moreover, the dynamics of the scaleless variables are basically independent of the
dynamics of the scaling variables (the s}); at least, the coupling is completely
trivial and uninteresting and can be ignored without any important loss of gen-
erality. In this sense, then, we have referred to this normalisation as “emergent”.

Second, mathematically, it will almost always be possible to perform a change
of variables and thereby introduce a set of scaleless variables that satisfy a nor-
malisation equation. The only case in which this may not be possible is when the
transformation would introduce possibly singular variables, but we shall ignore
this possibility. Whether or not the scaling and scaleless dynamics decouple, it
will also always be possible to ask whether the scaleless dynamics can be math-
ematically separated into a general growth term (a Hebb or Hebb-like term, for
example) and a term that maintains the normalisation equation (the normali-
sation term that sets the derivative of the summed scaleless variables to zero).
If the competitive dynamics reside entirely in the scaleless variables, and if the
scaleless and scaling variables do not interact in any important fashion, then
any such model will possess an underlying synaptic growth rule with competi-
tion implemented by some form of synaptic normalisation. Given that neurons
exhibit such properties as homeostasis and gain control, which can be thought of
as mechanisms to eliminate dependence on, or to adjust to, synaptic scale, it is
possible that many models of synaptic plasticity can so be reformulated.

On this view, in those classes of model of synaptic plasticity in which the un-
derlying competitive dynamics are scale-independent, “emergent” synaptic nor-
malisation is seen to be inevitable, fully capturing, mathematically-speaking, the

competitive dynamics. Thus, when rooted in a biologically-plausible model of
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synaptic plasticity, synaptic normalisation, provided that its emergent form is
not implausible, would appear to be an acceptable, abstract and general descrip-
tion of the underlying biology. Can we reverse this statement and argue, there-
fore, that we may impose competitive dynamics on any given synaptic growth
rule by enforcing a hard normalisation constraint? The answer is probably in
the affirmative, provided that such a model is regarded as tentative, awaiting a
derivation from an underlying model whose scaleless dynamics correspond to the
given synaptic growth rule. Of course, if it is found that the synaptic growth
rule requires an implausible form of synaptic normalisation to achieve afferent
segregation in the presence of positive correlations, as we believe that linear and
semi-linear Hebb rules do, then that particular synaptic growth rule should be

discarded.
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