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Abstract

Activity—dependent, developmental synaptic plasticity permits, in part, an an-
imal’s nervous system to be constructed in a way that depends on both the
animal’s experiences and its body’s particular morphology. The continuing ex-
pression of this plasticity into later life allows constant adaptation of the animal’s
nervous system to changes in the animal’s body as it grows and ages, also allow-
ing some recovery from major injury. We instantiate a previously—studied model
of such neuronal development on a robotic platform to establish whether “devel-
opmental robotics” can equip a robot with a nervous system tuned to the robot’s

individual morphology and that allows recovery from damage.
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1 Introduction

The ability to grow a nervous system using mechanisms that are influenced by
neuronal activity is perhaps one of the greatest discoveries of evolution. From
the moment of birth (and before in the case of spontaneous neuronal activity),
it allows ongoing developmental processes to wire up the nervous system of an
animal in a manner that is strongly affected by the animal’s environment [10].
On this view, the boundary between developmental plasticity and adult learning
is unclear. Indeed, in higher vertebrates such as mammals, developmental pro-
cesses can extend far into the post-natal period, with the cortex still undergoing
significant anatomical change.

A ubiquitous feature of these processes is activity—dependent, synaptic com-
petition. Such competition is intimately involved in the growth, elaboration and
re-arrangement of neurons’ axonal arborisations on target structures, i.e., in the
maintenance and growth of neurons’ trees of axonal branches forming synapses
with post—synaptic cells [10]. Neurons that are disadvantaged during these com-
petitive processes, by being less electrically active than other neurons, end up
with small, impoverished axonal arbors, while those that are advantaged, by be-
ing more electrically active, end up with large, complex axonal arbors. These
processes allow the nervous system to adapt in a variety of ways to variations in
environmental factors, but also to variations in an animal’s own body [9]. For
example, the early loss of a sensory system (e.g., an eye or a hand) allows a
remapping of the sensory systems on the cortex.

Robots and animals are not so different: both have to exist in the real world,
and the problems that they face, and perhaps therefore the solutions that they

should find to these problems, are similar. “Developmental robotics” therefore



seems a natural field: the equipping of a robot with a model of neuronal develop-
ment should enable, in part, the robot’s nervous system to grow and be wired up
in a way that is conditioned by its environment, the environment being broadly
construed as both the external world and the robot’s own body. If evolution has
discovered that permitting these influences in animals has adaptive value, then
perhaps it will be advantageous for a robot so to be constituted. One possible
consequence of this for truly autonomous robots is the capacity for what we might
term “self-repair”. If a robot’s sensory systems are damaged, a developmental
model may permit some level of recovery. This adaptation will be at a morpho-
logical level (changes in the structure of the robot’s nervous system), but those
changes may also be associated with some degree of behavioural recovery in tasks
whose performance depended on the lost or damaged sensory systems.
Anatomical growth and re-arrangement are characteristic of neuronal devel-
opment, and understanding the mechanisms of activity—dependent competition
is an outstanding problem is neuroscience. Despite this, in simulating the later
development of the nervous system (typically the visual system) many modellers
are content to ignore anatomical plasticity altogether, instead considering only
physiological changes in an anatomically—fixed network of connections. In ad-
dition, most modellers impose or enforce competition between neurons by using
mathematical devices that have little basis in biology. Some modellers have,
however, considered anatomical plasticity, and some have also been seeking to
illuminate the mechanisms of competition (see, for example, refs. [1,8]). We too
have been seeking to construct biologically—plausible models of developmental
processes. We currently have available a class of models of neuronal development
in which anatomical re-arrangement and synaptic competition are two faces of

the same coin: one depends critically on the other [3-6]. We have built these



models by appealing to experimental data implicating a group of molecular fac-
tors (specifically, neurotrophic factors) both in activity-dependent competition
and in anatomical re-arrangement [3-6].

In this paper, we seek to apply our biologically—inspired model of neuronal
development, previously considered only in simulation, to a robotic platform. We
wish to determine whether running a model of development on a robot enables
the robot to develop a sensory map of its sensory periphery and a motor map,
coupled to the sensory map, that permits the robot to perform a specified task.
We further wish to determine whether developmental plasticity can restore some
level of performance in the robot’s task—focused behaviour when we manipulate
(“damage”) the robot’s sensory systems.

The plan for the remainder of the paper is as follows. In section 2, we describe
the robot that we use in our studies, the task that we give it, and the world it
inhabits. Then, in section 3 we discuss and derive our biologically—inspired model
of anatomical, competitive, activity—dependent plasticity, and describe its appli-
cation to the robot we use and the task we set it. Section 4 discusses the control
mechanisms for the robot that supplement those implicit in the implementation
of its developing neuronal network. Our experimental protocols are outlined in
section 5. There follows in section 6 a presentation of our main results. Finally,

in section 7, we discuss our results and draw any conclusions.

2 The Robot, the Task and the Environment

2.1 The Robot

We use the miniature, mobile Khepera robot (K-Team, Switzerland) as the plat-
form on which to instantiate our neuronal network architecture and plasticity

algorithm, described in the next section (see figure 1). The basic Khepera robot



consists of eight infra-red (IR) sensors arranged around the periphery of the
robot, numbered according to the conventions described in the Khepera User
Manual, as illustrated in figure 2. Each sensor generates a 10-bit integer value
ranging from 0 (no stimulation) to 1023 (maximal stimulation). We scale these
values into the interval [0, 1] by dividing a sensor’s output by 1023. Sensors are
rather variable, with a pair of sensors typically having differing average response
profiles under identical conditions. This variability can dramatically affect a
robot’s performance on behavioural tasks, affecting inter-Khepera comparisons.

We use two Khepera robots in this work and find that differences in the
robots’ sensors are indeed important. In figure 3 we map the sensors’ response
profiles on each robot by measuring the responses of the sensors to a small tube
of white paper (~ 5 mm in diameter, 4 cm long) rotated around each IR sensor
at a distance of 15 mm.

The Khepera robot also possesses two independently controllable wheels that
may rotate in both directions and that are used to move the robot around its
environment.

A Khepera robot may run autonomously on its own batteries for 20 to 30
minutes while executing a program downloaded into its memory. However, we
need continuously to monitor the state of the neuronal network being developed
by the robot, and the only effective way of achieving this is to control the robot
via a serial port connection (which also supplies the power to the robot), with
the program running on a computer and saving data to hard disk. Although
this is less elegant than a wireless, independent Khepera, the autonomy of the
combined computer-Khepera system is maintained. The wires to the Khepera go
via a rotating contact (K-Team, Switzerland) so that they do not become tangled

as the robot explores its environment.



2.2 The Task

The first task we set each Khepera robot is to develop a mature sensorimotor
map, using the biologically-inspired model of competitive, activity-dependent
anatomical synaptic plasticity described later, that enables the robot to avoid
obstacles. Thus, we imagine that the robot at first possesses an immature, un-
developed (artificial) nervous system. Due to its undeveloped state, the nervous
system at first performs poorly at mediating obstacle avoidance, and certain “re-
flex” behaviours, discussed later, prevent damage to the robot. Instructed by
the patterns of activity sweeping through the nervous system, originating from
the robot’s IR sensors, the nervous system develops to a mature state. Devel-
opment takes the form of competitive, activity—dependent interactions between
afferent neurons for control of target neurons. Developmental processes lead to
the emergence of a topographic representation of the robot’s sensory periphery
(the IR sensors) on a set of sensory neurons,? and to the emergence of a motor
map reflecting an ipsilateral-contralateral IR sensor distinction. The appropriate
development of this sensorimotor map improves a robot’s performance at obsta-
cle avoidance. For calibration purposes, we compare the performance acquired
by these developmental processes to that exhibited by a standard Braitenberg
algorithm [2].

The second task each Khepera robot is required to perform is to exhibit
damage— or deprivation-induced plasticity of the mature sensorimotor mapping.
Artificially depriving an IR sensor by setting its output to zero will degrade the
obstacle avoidance performance mediated by a developed mapping. Plasticity of

the sensorimotor map in response to such deprivation may allow some compen-

2Gtrictly we should refer to these neurons as second order sensory neurons as they are one
synapse removed from the primary sensory neurons (the IR sensors), or we should refer to them
as sensory map neurons. For convenience we refer to them as sensory neurons.



sation for the absence of a sensor’s output, perhaps restoring some of the lost

performance.

2.3 The Environment

A robot’s environment is a rectangular arena the size of a sheet of A4 paper. The
walls of this arena are lined with either plain white paper or alternating black
and white striped paper, the stripes being 14 mm wide (this pattern is obtained
by using the narrower stripes displayed in the K-Team’s K213 Linear Vision Unit
User Manual when printed, one page per side, on white A4 paper). Obstacle
avoidance consists only in wall avoidance in our environments: other than the
walls, no other obstacles are present. This, along with our use of an unsupervised
learning algorithm for learning a behaviour that has a clear sense of “good” and

“bad” performance, is justified later.

3 The Model of Plasticity

In this section we first discuss and derive in general terms our model of anatomi-
cal, competitive synaptic plasticity without reference to any particular biological
system or implementation in simulation or on a robot. We then discuss the ap-
plication of the model to the development and plasticity of a sensorimotor map

in the Khepera robot.

3.1 General Description

Consider a set of pre—synaptic (afferent) neurons labelled by letters such as ¢ and
J, and a set of post—synaptic (target) neurons labelled by letters such as x and y.
These letters denote the physical locations of the neurons, and are thus vectors;

for notational convenience, we leave the vector character implicit. We denote the



number of synapses between afferent cell ¢ and target cell x by s,;. We assume
that target cells release a growth—promoting molecular factor (GPMF) (perhaps a
neurotrophic factor, although we need not be committed to this particular group
of factors) which may diffuse through the target space, and which is taken up
by afferent cells. The central assumption of our model is that the average level
of GPMF uptake determines the number of synapses in the region of uptake [4].
Denoting GPMF uptake from target cell z by afferent cell ¢ by u,;, and average

uptake by u,;, our central assumption is simply

Numerous models for the average are possible, but we restrict attention to one
particular version for reasons discussed elsewhere [4]. We take the time average

to be
t t
ailt) = [t e(t) uailt) exp (- [ at'e(t”)), (2)
—00 v
where €(t) = 1/7(t), and 7(¢) is a time-dependent parameter that sets the in-
stantaneous time-scale for the average. In previous work we have taken 7(t) = 7,
independent of time.
Differentiating Eq. (1) with respect to time, we obtain a simple first—order

differential equation for s,;:

dswi
dt

= €(t) [uai(t) — smi(1)]- (3)

This equation encodes our basic requirements: if the current, instantaneous level
of GPMF uptake exceeds the current, average level of uptake, then sprout more
synapses; if current uptake falls below average uptake, then retract synapses. The
overall rate at which this occurs is determined by the time-dependent learning

rate €(t).



A particular model for u,; is derived as follows. First, suppose that target
cells produce and release the GPMF in an activity-dependent manner [4]. If the
activity of afferent ¢ is denoted by a; € [0,1], then we take the GPMF release

from target cell = to be
2 i Swilli

Zi Sxi ’

so that there is an activity—-independent component in the release, Ty, and a

Te = T() + T]_ (4)

bounded activity—dependent component, with a maximum of 77. This particular
form is the simplest, parameter—free selection satisfying these requirements. This
released factor then diffuses through the target field, the diffusion being charac-
terised by the function Ay, so that the level at each target cell following diffusion
is given by

de =) Agyry. (5)

y

In writing down this expression we have made the simplifying assumption that
the GPMF diffusion from each target cell is independent of the level of GPMF
diffusing from other target cells. Relaxing this assumption entails solving the
diffusion equations for this system, a complication that we consider to be unwar-
ranted given the relatively coarse characterisation of the model’s dynamics. The
diffused GPMF is then taken up by afferents in a manner that we assume to be de-
termined by the number of synapses that an afferent projects into a local volume
of tissue; the activity of the afferent; the number of receptors for the GPMF that
each of an afferent’s pre—synaptic terminals expresses on its membrane, which we

denote by p;. Thus, we assume that
Ui X Sgi §(a:) Pi o (6)

We take g(a;) = a + a; as a simple model governing the activity-dependence of

GPMEF uptake by afferents, where the parameter a determines the level of resting
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uptake. We assume that the number of receptors per pre-synaptic terminal
depends on an afferent’s average activity, a;, and is inversely proportional to the
afferent’s total number of synapses, so that p; = a;/ Y, sy [4]. Finally, to fix
the constant of proportionality in Eq. (6), we assume that, in any given fixed
time interval, the amount of GPMF taken up by afferents matches that supplied
by target cells, i.e., >, uy; = dy. Thus, the uptake of GPMF is given by the

expression

Sgila + a;)p; ( 2 Syjaj>
>j szi(a + aj)p; ; Y 2.j Syj

This, together with Eq. (3), gives the final form of our model of plasticity:

dsm- (CL + ai)pi ( Z ; syjaj> ]
= €(t)S4 Agy | Ty + T =222 — 1. 8
dt ) > szj(a + aj)p; ; YA S sy ®)

The overall rate of development of a sensory or motor map is set by the func-
tion €(t) in Eq. (8). In previous work in simulation, we took € to be a constant
[3—6]. For work on the Khepera robot, we find it necessary to modify the learning
rate function. For a sufficiently large value of (constant) e that permits the rapid
development of a sensory map (within 30 to 60 minutes), we find that periods
during which the robot travels between obstacles, and thus the receptors receive
little or no input, induce deprivation-like responses in the maps. Decreasing e
so that these episodes are less significant in terms of overall development is, in
principle, acceptable, but slows down development to a rate at which it becomes
impractical to run more than a small handful of complete experiments in a day.
We are therefore driven to introduce a learning rate function that exploits periods
of IR sensor stimulation (proximity to an obstacle) by increasing the rate of plas-
ticity, but that decreases the rate of plasticity when IR sensors are unstimulated
(travelling between obstacles). Nevertheless, it is necessary that long—term de-

privation of a receptor should induce appropriate changes in the anatomy of the



network. A natural way to encode these requirements is to suppose that the level
of activity in an afferent pathway gates the level of plasticity in that pathway. A
simple form for €(¢), which must now carry a subscript to denote the afferent to

which the learning rate applies, is
€i(t) = e(a + fay), 9)
and this is the model for the learning rate that we use in Eq. (8).

3.2 Application to the Khepera Robot

We use the plasticity model to drive the development and ongoing plasticity of a
sensorimotor map implemented on the Khepera robot. Input to the sensory map
neurons in the model comes from the robot’s eight IR sensors (the “receptors”)
around its periphery. These sensory neurons synapse on motor neurons, which
in turn drive the Khepera’s two wheel motors (the “muscles”). We discuss the
application of the plasticity model to the sensory map and to the motor map

separately.
3.2.1 Sensory Map

Because the Khepera’s IR sensors are arranged in a circle, we take the sensory
neurons on which the receptors synapse also to be arranged in a circle. The effect
of this is to alter neighbourhood relations, and thus distances, between sensory
neurons, which affects the initial pattern of connectivity. The minimum number
of sensory neurons required faithfully to represent the receptors is eight, and this
is what we use. Additional sensory neurons would not confer any advantage in
terms of our current aims.

We set up the initial mapping from receptors to sensory neurons as follows.

If the topographic map were perfect, each receptor would innervate precisely one
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sensory neuron, and immediately adjacent receptors would innervate immedi-
ately adjacent sensory neurons. This defines eight different although topologi-
cally equivalent patterns of connectivity, but we define the “perfect” mapping
as the natural one: the one in which, considering the two circles of receptors
and sensory neurons to be super-imposed, a receptor innervates only the sensory
neuron in register with it. Let d denote the distance, in cell spacings (bearing
in mind the toroidal topology) between any given sensory neuron and the sen-
sory neuron that a particular receptor would innervate were topography perfect.
Then, initially, we set the number of synapses between the particular receptor

and the given sensory neuron to be proportional to

bi(1 — d/dmax) + (1 — by)n, (10)

where dpay is the maximum possible distance (dyax = 4), n € [0, 1] is a randomly
selected number for each pair of such cells, and b; € [0, 1] is a global parameter
setting the initial topographic bias in the projections [7]. If by = 0, then there
is no bias at all, so that an afferent cell innervates all target cells randomly. If
b, = 1, then the bias is greatest, with no random element in the initial pattern
of innervation: each afferent neuron projects synapses in such a way that its
topographically perfect target cell receives the greatest number of synapses, and
more distant target cells receive fewer synapses, the number falling linearly with
distance from the topographically perfect target cell.

For the obstacle avoidance task that the robot is required to perform, it is
important that, during development, the mapping from receptors to sensory neu-
rons refines and moves towards the perfect state defined above. However, because
the robot has a propensity to move forward (described later), there is a consider-

able difference between the level of stimulation received by the six front—pointing
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receptors and the two rear—pointing receptors. Because the competition between
the receptors for control of the sensory neurons depends on activity, the expected,
and under normal circumstances desirable, result is that the developed map tends
to become distorted, with the front receptors invading the territory that other-
wise would have been controlled by the rear receptors. These distortions have a
significant impact on the robot’s obstacle avoidance capacity. A straightforward
and natural way to prevent these distortions from developing is to introduce a
dorsal-ventral distinction in the “neuroanatomy” of the Khepera’s artificial ner-
vous system and remove all synapses from the dorsal (rear) receptors to ventral
(front) sensory neurons and from ventral receptors to dorsal sensory neurons. If
the number of synapses between an afferent and a target cell is zero, then Eq. (8)
does not allow their regrowth.

For the receptor-sensory neuron synapses, we use the following plasticity
model parameter settings. The parameters TgN and TPN (the superscript ‘SN’
denoting sensory neuron) are set, respectively, to 0 and 10. We set T3~ = 0
because here we are not concerned with demonstrating that our competitive plas-
ticity model can prevent afferent segregation above a critical value of T3 [4], and
TSN = 0 leads to the greatest rate of segregation, i.e., map development. The
value of TN is essentially arbitrary, as it sets the overall scale for the numbers
of synapses. The value TPN = 10 is consistent with values used in previous work
[5].> The parameter a'® (the superscript ‘IR’ denoting IR sensor), which sets
the resting uptake of GPMF by IR sensor terminals, is set to a'® = 1; previous
work has shown that it must be neither too large nor too small [4]. The diffu-

sion function characterising diffusion of the GPMF through the sensory neuron

3 Although synaptic number should naturally be a non-negative integer, for us it is actu-
ally continuous—valued. This is unimportant: we can take our synaptic number, scale it and
discretise it, as we have done in previous work [5].
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field is assumed, for simplicity, to be a Gaussian appropriately normalised on a
torus. Its characteristic width, o°Y, is set to oY = 0.75, again consistent with

N'increases or decreases the size of any

previous work. Increasing or decreasing o®
neuronal assemblies (groups of neurons with similar receptive field properties)
that might emerge during development, although no such assemblies could arise
in our current work because of our considering so few neurons. The learning rate
parameters are set as € = 0.05, o'® = 0.01 and /*® = 1.00. The value ¢'® = 0.05
is roughly optimal for our purposes: any larger and the sensory maps begin to
exhibit too much dependence on temporally recent stimulation; smaller values do
not improve the quality of the maps but merely slow down the experiments. The
relative size of o™ and S™ is set for convenience: o™ could safely be 10 times

larger, although if it were 10 times smaller, it would slow down too much the

response to long-term deprivation.
3.2.2 Motor Map

As the Khepera robot has just two wheels we consider just two motor neurons,
one for the control of each wheel. Strictly speaking, we could consider four motor
neurons, a pair of neurons controlling a wheel, one driving it forwards (agonis-
tic) and the other driving it backwards (antagonistic). However, the two motor
neurons that we use drive the wheels backwards against the wheels’ propensity
to drive the robot forwards at a fixed speed.

In order for the robot to learn a specific task such as obstacle avoidance, it
would normally be necessary to employ a supervised or re-inforcement learning
algorithm on the sensory to motor neuron mapping, as there is a clear sense
of a “required performance”. Because the biological plausibility of models of

plasticity is important to us, we would therefore be compelled to construct a
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model of re-inforcement learning that we consider to be plausible and consistent
with known biological data. However, our goal here is not the construction of
such a model. Furthermore, we would prefer, if possible, to apply the same model
of plasticity to sensory neuron—-motor neuron synapses as to IR receptor—sensory
neuron synapses. Additionally, we cannot know, for supervised learning at least,
what the motor outputs ought to be during deprivation.

The use of a competitive, activity-dependent plasticity algorithm leads to the
formation of maps, the precise structure of which is typically not predictable. To
acquire obstacle avoidance behaviour, the final structure of the sensory to motor
mapping must, however, be a prior: predictable, assuming a well-developed, to-
pographic sensory map; that is, the final map must be such that sensory neurons
project only to contralateral motor neurons. A biological model that resolves
this dilemma is the lateral geniculate nucleus, in which the developmental mech-
anisms are believed to be activity—dependent and competitive, but in which the
final innervation of each lamina by the retinae is predictable. In modelling the
development of the retinogeniculate pathway, we have previously assumed that
the initial patterns of innervation of each lamina by the retinae is such that some
laminae experience a contralateral innervation bias, while others experience an
ipsilateral innervation bias. These biases tilt the competition so that, all other
factors being equal, the initially dominating inputs to a given lamina eventually
win the competition [6].

In the current sensory—motor system, we employ the same strategy. To set
up an initial pattern of connectivity between sensory and motor neurons, we first
set, the numbers of synapses between all eight sensory neurons and both motor
neurons to be the same, fixed constant. Then, the presumptive ventral, leftward

sensory neurons (i.e., those sensory neurons that would be exclusively innervated
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by the ventral, leftward IR sensors were the sensory map topographically perfect)
have their synapses to the left (ipsilateral) motor neuron (the neuron that drives
the left wheel) multiplied by a factor (1 — b.), and their synapses to the right
(contralateral) motor neuron multiplied by a factor (1 + b.). The reverse is
done for the presumptive ventral, rightward sensory neurons. No such scaling
is performed for the dorsal sensory neurons (i.e., those innervated only by the
dorsal IR sensors), principally because the dorsal sensory neurons project very
few synapses to the motor neurons in the final, developed maps. The parameter
b. determines the contralateral bias, and we set it to a value b, = 0.2, leading to
an initial 60%—40% split in contralateral-ipsilateral innervation. A lower value
of b, = 0.1 (55%—-45%) will lead to largely predictable outcomes, although with
occasional sensory neuron mis-projections (i.e., sensory neurons innervating the
“wrong” motor neuron in the final state).

The parameters used for motor map development are similar to those used
for sensory map development. We set 79N = 0, a™N = 1, 5N = 0.05, oY = 0.01
and B°N = 1.00, all consistent with sensory map values. Unlike sensory neurons,
there is no useful notion of distance between the two motor neurons, so we do
not consider diffusion of GPMF between the two motor neurons; hence, for the
motor system, Az, = 0, the Kronecker delta. As indicated for the sensory map,
the value of TPN sets the overall scale for the number of synapses. In the sensory
system, the sensory neurons’ release of GPMF depends on Y, szia;/ Y, Sz, as
does the sensory neurons’ output to motor neurons, where a; denotes the sensory
neurons’ afferents’ outputs (i.e., IR sensor outputs). Hence, the overall scale is
unimportant in the sensory system. This could also be the case in the motor
system, making the size of TMN an irrelevant scale factor. In this case, the motor

neurons’ outputs would follow the same model as for the sensory neurons, so that
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they would be in the interval [0, 1], then these could be scaled by some constant
factor (a “gain”) to supply drive to the wheels. However, we employ a simpler
strategy. The release of GPMF from motor neurons still follows the standard
model in Eq. (4), but the direct drive to the wheels from the motor neurons is
just Y; sgia;. Thus, the size of TMN directly controls the overall scale of this
drive. We select a value of TMN = 120. A smaller value would not give sufficient
drive to the robot to reverse away from an obstacle, while a larger value would
supply too much drive and may damage the robot’s motors. The speed of each
wheel is set to

B — Z Szili, (11)

i

Sy being sensory-motor synapse number between sensory neuron ¢ and motor
neuron x, a; sensory neuron output, and B is a constant. We set B = 10, which
gives the robot a reasonable although not too fast forward speed in the absence of
any IR stimulation. The motor neurons are antagonistic to this forward motion,
slowing down and perhaps reversing the robot.

Inevitably, the use of an unsupervised plasticity algorithm on the sensory—
motor synapses will lead to maps whose performance at obstacle avoidance may
be (although, as we shall see, are not always) inferior to maps developed accord-
ing to a supervised or reward—based algorithm, or hard—wired Braitenberg-style
maps. This does not particularly concern us, because our focus here is principally
two-fold: first, to determine whether our biologically-inspired anatomical plas-
ticity algorithm can successfully be transferred from simulation to a real-world
robotic platform; second, to determine whether, following deprivation, this plas-
ticity algorithm can restore any significant degree of performance, regardless of
the algorithm’s absolute level of performance at obstacle avoidance in the unde-

prived state. This is also why our environments contain no obstacles other than
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the walls: our concern is not with obstacle avoidance per se, but with the model
underlying the development of a sensorimotor map that happens to mediate ob-

stacle avoidance.

4 Control Strategy

Having described the neuronal architecture of the Khepera, we now describe
the overall control system. With perfect sensorimotor mappings and perfect
obstacle avoidance, the neuronal network alone would suffice: the robot could be
driven by the neuronal network’s inputs and outputs only. However, because the
undeveloped maps perform poorly, other control mechanisms are required.

The basic Khepera robot lacks bumpers or other devices that could inform us
directly of a collision with an obstacle. For an autonomous system, any collision
or near—collision has to be inferred purely on the basis of IR sensor outputs.
It is possible to determine IR sensor outputs as a function of object proximity
and then invert the function to deduce object distance from a set of IR sensor
outputs. Such a function would take account, for example, of the rather variable
average response profiles of the Khepera’s IR sensors. However, it would not
take account of the moment—to—moment fluctuations in the outputs, causing the
distance estimation to fluctuate. But more important, a developing animal simply
does not have access to such a function from the outset of its development. In a
sense, the goal of development is precisely the acquisition of this function.

The raw IR sensor outputs alone, then, must be used, without any innate,
system—specific “inferential mechanisms” to determine whether a collision or
near—collision has occurred. A simple way to achieve this is to suppose, for
example, that IR sensor outputs are duplicated in a “pain pathway”, and that

once stimulation exceeds some pain threshold, a reflex withdrawal from the nox-
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ious stimulus occurs. Thus, our criterion for collision determination is simply

that
> a; >0, (12)

the a;’s being IR sensor outputs. If . is set too high, then the threshold will never
be reached; if 6. is set too low, then the robot will effectively avoid stimulation
completely. We select a value 0, = 2.0, so that, for example, two immediately
adjacent IR sensors must be maximally activated before reflex withdrawal occurs.
This value was selected after extensive tests: it allows ample and full stimulation
of the IR sensors while preventing the Khepera from actually hitting a wall and
perhaps being damaged.

During reflex withdrawal from a collision or near—collision, the robot’s neu-
ronal network output is overriden and the wheel speeds are set to those deter-
mined by a Braitenberg algorithm [2] until the IR sensors receive no stimulation
(>-; a; < 0.1). During withdrawal, the neuronal network’s synapses remain plastic
for reasons of speeding up development, although we could switch off plasticity
during these episodes. Before normal control resumes after a withdrawal event,
the robot turns randomly by +90° or 180°.

At the outset, before much development has occurred, the sensorimotor maps
are such that the robot occasionally approaches an obstacle, stops and remains
stationary without a collision threshold being reached. We therefore employ a
“boredom” rule that ensures that if such a situation arises, the robot will turn
randomly (by £90° or 180°) and wander off in a different direction. To determine
when boredom arises, we calculate a running average of the robot’s root mean

square (RMS) wheel speed according to the formula

Snew = Sold T (1 - 6&’)(Scurrent - gold); (13)
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where 5 is the robot’s average RMS wheel speed and Scyrrent i the robot’s current

RMS wheel speed, where

Scurrent = 4/ S% + S%La (14)

where s, and sg are the speeds of the left and right wheels according to Eq. (11).
When spe < 6y, the robot wanders off in a different direction. Empirically, we
find that ¢, = 0.5 and 6, = 3.0 give a reasonable boredom threshold: the robot
will remain in the same location for approximately one second before wandering
away.

Finally, to ensure uniform exploration of the entire environment, after a fixed
number of time steps have elapsed and if the robot’s IR sensors are unstimulated
(>°; a; < 0.1), the robot performs a random turn of £90° or 180°.

These three control strategies of “reflex withdrawal”, “boredom” and “ex-
ploration” are all that suffice, in addition to the neuronal network mechanisms
themselves, to ensure the robust development of a sensorimotor map that itself

can perform obstacle avoidance.

5 Experimental Protocols

We now briefly describe our protocols for performing experiments with the sys-
tem described above. A Khepera robot, controlled by a DEC alpha computer
through one of the computer’s serial ports via a rotating contact, is placed in its
environment. A program, running on the alpha, then controls the Khepera, read-
ing the robot’s IR sensors and writing speeds to its wheels, by communicating
with the Khepera’s BIOS at a baud rate of 9,600 bps. This program implements
all aspects of robot control: the neuronal network, reflex withdrawal, boredom
and exploration.

For a given selection of parameters and a particular environment (plain or
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striped walls), one complete run consists in the following steps. First the neuronal
network’s synapses are initialised as described earlier. The program then runs for
10,000 time steps, each time step corresponding to one update of the neuronal
network’s activity patterns and synaptic connectivity. At each time step, the
robot’s IR sensors are read once, and the wheel speeds are set once. After each
time step, there is a time delay of 50 ms. We find that a delay is necessary to
avoid overloading the Khepera, resulting in spurious IR sensor readings and jerky
movement. During these first 10,000 time steps, deprivation is not applied to any
IR sensor. By around 2,000 time steps, the crash rate (the number of collisions
per 1,000 time steps) has reduced and stabilised and the sensorimotor maps are
approaching maturity.

At 10,000 time steps, we record the neuronal network’s pattern of connectivity
for later re-instantiation, then we deprive one or a pair of adjacent IR sensors, by
which we mean that, for the purposes of input to the neuronal network’s sensory
neurons, the deprived IR sensors’ outputs are set to zero. When we deprive only
one sensor, we deprive receptor number 1, the ventral middle—left IR sensor. This
sensor (or its right—-hand equivalent) was selected for morphological reasons: the
arrangement of the ventral receptors is such that receptor number 1 is flanked
most closely by its neighbouring receptors and at angles that might allow this
receptor’s function to be substituted by its immediate neighbours’ functions.
When we deprive a pair of receptors, we select receptors numbers 1 and 2 or
receptors numbers 2 and 3.

In this deprived state, while continuing to permit plastic changes in the neu-
ronal network’s architecture, the program runs for a further 5,000 time steps.
Any compensation that occurs in the neuronal network’s architecture to the de-

privation is completed by about 2,000 time steps.
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After these 5,000 time steps have elapsed, the neuronal network’s architecture
is restored to the state that obtained immediately prior to the onset of depriva-
tion, at 10,000 time steps, and the time counter is also reset to 10,000. The
program then continues to run, with the same IR sensor(s) deprived, but not
permitting any plasticity in the neuronal network, i.e., the network’s synapses
are frozen. In this implastic phase, the program runs for a final 5,000 time steps.

Thus, one run consists of 20,000 time steps, each with a time delay of 50 ms,
or a little under 17 minutes. This does not include time spent in reflex withdrawal
or in the “bored” state, nor real processing time. In fact, each run takes around
50 minutes to complete.

For each selection of parameters and environment, at least five runs are per-
formed. The data from these runs — numbers of collisions every 100 time steps
— are polled, and the average and standard deviation every 100 time steps is de-
termined. The crash rates given below are determined from these averaged data
by least-squares linear fitting methods over 3,000, 5,000 or 8,000 time steps, de-
pending on the data being analysed: from time step 2,000 to 10,000 for the initial
phase of development without deprivation; from time step 12,000 to 15,000 dur-
ing the deprived but plastic phase; from time step 10,000 to 15,000 during the
deprived and frozen phase.

For calibration purposes, we run a Braitenberg—style algorithm [2] on both
our Khepera robots in each of the two environments that we consider. To ensure
a valid comparison, we use the same program described above so that all con-
ditions are identical. The only difference is that we pre-load into the neuronal
network a pattern of connectivity giving Braitenberg-style obstacle avoidance.
To ensure identical timing, the program performs all the computations, etc., that

are required to update the network’s synapses at each time step, but we simply
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Sensory Neuron Number
0123|4567
Left Motor Neuron 00161170
Right Motor Neuron | 7|11 (16| 0 | 0 |00 [0

]
]

Table 1: Synaptic connectivity between sensory neurons and motor neurons to
achieve Braitenberg—style obstacle avoidance for calibration purposes.

disable the code that actually performs the update. The connectivity to achieve
Braitenberg-style obstacle avoidance, with a base forward speed of B = 10, is as
follows. The IR sensor to sensory neuron synapses are set to achieve a perfect
pattern of topography, so that an IR sensor innervates (with s,; = 1) only its to-
pographically perfect sensory neuron and no others. This means that the sensory
neurons’ outputs exactly duplicate their inputs. The sensory neuron to motor
neuron synapses are set as in table 1, where we use an identical labelling conven-
tion for the sensory neurons as for the IR sensors. The ventral sensory neurons
innervate, with appropriate numbers of synapses, the contralateral but not the
ipsilateral motor neurons. There are no synapses from the dorsal sensory neurons
to the motor neurons. To obtain crash rates for this Braitenberg—style calibration
system, we run the program five times each over 15,000 time steps, averaging the

crash rates and performing least—squares linear fitting on the resulting data.

6 Results

We first calibrate the robots’ performances with the Braitenberg-style obstacle
avoidance algorithm [2]. In table 2 we show the crash rates (number of crashes per
1,000 time steps) of both Kheperas in both environments, where a crash is defined
as total IR stimulation exceeding 6. = 2, as discussed above. We see a marked

difference between the two robots. Khepera number 1 performs almost perfectly,
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with a crash rate of exactly zero in the plain environment and close to zero in
the striped environment. Khepera number 2, however, exhibits a large crash rate
in both environments. The crash rates for this robot in both environments do
not differ at a statistically significant level, by which we mean that the average
crash rates at each time step in both environments do not differ at the one
standard deviation (10) level. The difference in performance between these two
Kheperas is purely a function of their IR sensors. As demonstrated in figure 3,
Khepera number 1 possesses generally more acute forward—pointing IR sensors
(numbers 2 and 3) than Khepera number 2. It is the poorer performance of
these IR sensors in Khepera number 2 that mainly contributes to its much higher
crash rate. Increasing the crash threshold 6. would, of course, decrease the crash
rate for Khepera number 2, but with the associated risk that the robot could
actually make physical contact with a wall and perhaps be damaged. Conversely,
decreasing . for Khepera number 1 would increase its crash rate. While it is
entirely possible that different robots could use different crash thresholds, there
is no reason a priori to expect a robot with more acute sensors (at least initially)
to have a lower threshold than a robot with less acute sensors: to assume such an
anti-correlation would be effectively to supply the robot with a prior: knowledge
about its own sensory systems, which knowledge it must, presumably, acquire
through learning about its own sensory performance.* For this reason, we prefer
to keep 6. identical in both robots.

Having calibrated the two robots’ performances with a standard algorithm,
we now turn to a discussion of the development of the sensorimotor maps during

the first 10,000 time steps when the robots’ sensors are not deprived. A typical

Tt is possible that a robot with a crash rate that it discovers to be high (low) could raise
(lower) its crash threshold to compensate, but this is a complication that we do not consider
here.
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Plain | Striped
Khepera 1 0.0 0.1
Khepera 2 | 43.3 43.2

Table 2: Crash rates for the two Khepera robots in the plain and striped envi-
ronments running a Braitenberg—style obstacle avoidance algorithm.

example of the initial sensorimotor map (for b; = 0.5) is shown in figure 4. We
show only the ventral IR sensors (the line of six black circles at the top of the
figure, arranged in order from sensor number 0 on the left to sensor number 5
on the right) and the ventral sensory neurons (the line of six grey circles, again
arranged in numerical order). The dorsal IR sensors and sensory neurons are
not shown, as these are of little interest to us here. The two motor neurons are
represented as the two open circles at the bottom of the figure. For later clarity,
the left motor neuron (controlling the left wheel) is shown on the right of the
figure, while the right motor neuron is shown on the left. The thickness of a line
between two neurons denotes the number of synapses from one neuron to the
other, a key being shown in figure 5.

In figure 6 we show the sensorimotor map developed by Khepera number 1
in the striped environment after 10,000 time steps, for b, = 0.5. In terms of
the sensory map, we see that the initial pattern of connectivity has undergone
competitive change: the pattern of connectivity is now broadly “correct”, with
an IR sensor innervating its appropriate (in terms of the perfect map) sensory
neuron. There are additional connections of restricted horizontal range, in which
an IR sensor projects synapses to other, but topographically nearby sensory neu-
rons. The presence of these aberrant connections reflects both the correlations in
the activities between adjacent IR sensors, and the diffusion of GPMF between

sensory neurons. The motor map has also undergone competitive refinement,
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so that sensory neurons finally innervate only their contralateral motor neuron.
(Hence our reversing left and right for the motor neurons in these figures, so
that the contralateral projections from sensory neurons to motor neurons in the
developed maps do not cross and clutter the figures.) There is a small, ipsilateral
motor connection in this map that would be eliminated with further development.
For this particular robot, this sensorimotor map is quite representative for both
environments and for all values of the topographic bias parameter b; used here
(by = 0.25, by = 0.50, b = 0.75 and b; = 1.00).

The equivalent map for Khepera number 2 to that shown in figure 6 for Khep-
era number 1 is shown in figure 7. Although this map has clearly undergone
significant change and some topographic refinement, there are also some mis-
projections present. For example, IR sensor number 2 innervates only the con-
tralateral sensory neurons, and projects no synapses at all to its topographically
appropriate sensory neuron (number 2). This map is again broadly representative
for this robot in the striped environment for different values of b;. However, many
of the maps generated in the plain environment exhibit systematic distortions for
b, = 0.25, by = 0.50 and b; = 0.75, but not for b; = 1.00, for which value of b;
there is no randomness in the initial map and the topographic bias is greatest. Of
the 15 maps that we generated for b; = 0.25, b = 0.50 and b; = 0.75 for Khepera
number 2 in the plain environment (five for each value of b;), ten of them exhibit
distortions. The distortions fall into two classes, illustrated in figure 8. In the
first class, IR sensor number 0 systematically mis-projects contralaterally; in the
second class, sensory neuron number 0, now correctly receiving input from IR
sensor number 0, systematically mis-projects contralaterally. These distortions
in the plain environment are likely the result of the generally better left—side

performance of Khepera number 2’s IR sensors compared to the performance of
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its right—side IR sensors, as revealed in figure 3. In the striped environment, this
difference will tend to be less important, principally because of the weakening of
the correlations in activation between IR sensors numbers 0 and 1.

Following deprivation of one or more IR sensors at time step 10,000, the
synapses from the deprived sensors are slowly removed while those from neigh-
bouring sensors grow and invade the territory vacated by the deprived sensors.
This is revealed in figures 9 to 12. All these maps are generated with b, = 0.5 in
the striped environment; the data are qualitatively similar for other values of b;
and in the plain environment. Figures 9 to 11 show the impact on the sensorimo-
tor mappings developed by Khepera number 1 of depriving IR sensor number 1,
IR sensors numbers 1 and 2, and IR sensors numbers 2 and 3, respectively. Fig-
ure 12 shows deprivation of IR sensor number 1 for Khepera number 2. We show
both the state of the sensorimotor maps immediately prior to deprivation, at time
step 10,000, and after deprivation, at time step 15,000. Following deprivation,
we see that deprived IR sensors retract all their synapses to the sensory neurons
and that neighbouring IR sensors compensate by increasing their synapses on the
sensory neurons that have lost input from deprived sensors.

Having discussed qualitatively the development and plasticity of sensorimotor
maps by our two Khepera robots, we can now discuss quantitatively the robots’
performance at obstacle avoidance during the three states that our robots ex-
perience: undeprived and plastic; deprived and plastic; deprived and implastic.
In figures 13 and 14 we plot, for b, = 0.25 in the striped environment, averaged
crash rates for Kheperas numbers 1 and 2, respectively, in all three phases, where
we deprive IR sensor number 1 in each robot. The error bars denote one stan-
dard deviation at each time step. Least-squares fitting the undeprived average

performance in the time step range 2,000-10,000 to a straight line, the crash rate
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of Khepera number 1 is 10.2 while that of Khepera number 2 is 13.6. Following
deprivation but retaining plasticity, the crash rates are 11.1 and 33.2 (fitted over
time steps 12,000-15,000), respectively; without plasticity the crash rates are 18.6
and 59.6 (fitted over time steps 10,000-15,000).

We see that, during the undeprived phase, the crash rates for both robots
decrease until they reach a roughly constant rate, although the crash rates never
reach zero. The development of the sensorimotor maps is largely complete by
around 2,000 time steps, and it is during this initial period that the crash rates
decrease and finally stabilise. (The initial phase of zero crashes for Khepera
number 1 is caused by the robot approaching objects and stopping before a crash
occurs; the “boredom” rule then takes over and moves the robot away.) The
crash rate of 10.2 for (undeprived) Khepera number 1 is, as expected, larger than
the nearly zero crash rate for the same robot in the same environment calibrated
on the Braitenberg—style algorithm. However, for Khepera number 2, the crash
rate of 13.6 is lower than the crash rate of 43.2 for the Braitenberg algorithm.
Furthermore, over the first 10,000 time steps, the Braitenberg algorithm’s per-
formance and that of the (averaged) learned map differ significantly after about
2,000 time steps at the lo level. (Indeed, the difference is so large at 10,000
time steps that the significance exceeds the 100 level.) Although the two robots’
crash rates during the undeprived phase are similar, the performances differ sig-
nificantly after about 2,500 time steps, with Khepera number 1 doing better than
Khepera number 2. Thus, although Khepera number 1 does not perform as well
as its Braitenberg capacity, it is still performing pretty well relative to the other
robot.

Following deprivation of IR sensor number 1, the crash rates for both robots

increase. Khepera robot number 1’s crash rate in the implastic phase is nearly
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double the robot’s undeprived performance, but plasticity allows adaptation to
the deprivation, reducing the crash rate to nearly its initial value. However,
although the plastic system does better than the implastic system in terms of the
absolute level of crash rates, the two systems’ performances do not differ at the
1o level over the 5,000 time steps during which deprivation is applied. It may be
possible that such a difference will emerge by running the experiments for much
longer, but any significant recovery from deprivation should be fairly rapid (at
least as fast as it takes to develop the original, pre-deprivation sensorimotor map)
for it to be of any adaptive advantage, and to be of selective potential during
evolution. In contrast, while Khepera robot number 2’s deprived performance
is much worse that the other robot’s, the crash rate following recovery from
deprivation does differ significantly, after a short time, from the implastic system’s
performance. Furthermore, although deprived, the plastic system’s performance
is still better that the undeprived Braitenberg algorithm.

Tables 3 and 4 summarise our data on crash rates in both robots in both
environments, and for all values of b; used. There are several observations. First,
for Khepera number 1, although the robot always performs better at obstacle
avoidance following deprivation with plasticity than without plasticity, the dif-
ference never becomes statistically significant. Although there is noise in the
data, we can discern a very general trend in these data, in that smaller values
of b; tend to produce larger crash rates than larger values. This is particularly
noticeable by comparing data for b, = 0.25 to data for all other values. This
is to be expected, as topographic sensory map formation will be more reliable
with larger values of b;. Second, for Khepera number 2, the striped environ-
ment is always associated with a statistically significant recovery of performance

following deprivation. Furthermore, post-recovery performance is always better

28



Plain Striped

b; || Runs | -D | D=P | DP || Runs | =D | D—-P | DP
0.25 || 5 93| 15.1 105 8 10.2 | 18.6 | 11.1
0.50 || 5 6.9 86| 5415 9.6 | 13.6 | 9.0
0.75 || 5 4.7 741 55 |5 6.5 13.8| 6.9
1.00 || 5 84| 104 | 6.7 |5 6.9 11.4| 9.7

Table 3: Crash rates for Khepera robot number 1 in the two environments. The
first column indicates the value of b;, the topographic bias, used in establishing the
initial connections; the third and seventh show the crash rates for both environ-
ments during the non-deprived phase of learning (“—D”); the fourth and eighth
the crash rates following deprivation but with plasticity switched off (“D—P”); the
fifth and ninth the crash rates following deprivation but with continued plasticity
(“DP”). The second and sixth columns indicate the number of runs considered,
a “4” next to the number indicating a statistically significant difference (at the
1o level) between the D—P and the DP data after some number of time steps.
All in cases, IR sensor number 1 is deprived at time step 10,000.

than undeprived-Braitenberg performance. Third, for b, = 1.00 in the plain
environment, we again observe a significant improvement in post—deprivation
performance compared to an implastic system for Khepera number 2. For this
value of b, = 1.00, this robot’s performance is better in this environment than
for any other value of b;. For other values of by, as discussed above, distortions
in the sensorimotor maps develop. These distortions lead to large variances in
the data that tend to temper the statistical significance of any post—deprivation
performance, although for b; = 0.5 the significance remains.

A significant response to single-receptor deprivation can be robustly observed
in Khepera robot number 2, but no significant improvement can be seen in simi-
lar manipulations of Khepera robot number 1. With these data alone, therefore,
it could be argued that Khepera number 2’s capacity significantly to recover is

purely a reflection of its rather poor, general level of performance, compared

to robot number 1. Alternatively, the view could be taken that, because the
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Plain Striped
b; || Runs | =D | D—P | DP || Runs | =D | D=P | DP
0.25 || 5 20.0 | 65.0 4461 5 % |13.6| 59.6 | 33.2

050 (|5 =« |152] 689|383 5 =|14.7| 62.1 | 37.1
0.75 || 5 19.5 | 62.5 | 474 || 10 % | 13.7| 67.0 | 32.1
1.00 |5 % | 11.5| 66.5|31.2 | 5 =|158 | 59.3 | 36.3

Table 4: Crash rates for Khepera robot number 2. The format of this table is
identical to that for table 3.

sensorimotor maps formed by Khepera robot number 1 are so good and its two
front—pointing IR sensors are somewhat more acute than those of robot number
2, single-receptor deprivation would not be expected to have a significant impact
on its performance anyway. To distinguish between these two competing views,
we also perform double—receptor deprivation in Khepera robot number 1. All pro-
tocols are identical to previous experiments, except that we deprive an adjacent
pair of IR sensors in Khepera number 1, IR sensors numbers 1 and 2, or numbers
2 and 3. The data are summarised in table 5. Simultaneously depriving receptors
1 and 2 leads to results similar to those discussed above for this robot, with no
statistical significance.> However, depriving receptors 2 and 3, which eliminates
input from both forward-pointing receptors, does produce a significant response.
The deprived, implastic system crash rate is dramatically enhanced, and although
there is recovery with plasticity, post—recovery performance does not approach
pre—deprivation performance, as it has in all other forms of deprivation consid-
ered here for this robot. Nevertheless, the post-recovery level of performance is
impressive: even with its front two IR sensors inactive, this robot’s performance

is close to that of Khepera number 2 without any deprivation at all. In figure 15,

5The data in the striped environment are on the margins of 1o statistical significance. In
an attempt to reduce noise, we quadrupled the number of runs usually considered.
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Plain Striped

Pair | Runs | =D | D=P | DP || Runs | =D | D—P | DP
1-2 || 10 76| 14.1| 6.7 | 20 6.9 13.0| 9.2
2-3 5 x| 74| 219|134 5 x| 63| 33.5|16.0

Table 5: Crash rates for Khepera Robot Number 1. Instead of depriving just
one receptor (receptor number 1), as in tables 3 and 4, we deprive a pair of
immediately adjacent receptors, the numbers of which are given in column 1.
The format of this table is otherwise identical to that for table 3. All data in this
table are generated with b; = 0.50.

we show the averaged performance of Khepera number 1 when doubly deprived

(receptors 2 and 3) in the striped environment.

7 Discussion

In this paper, we have applied our previously—constructed model of anatomical,
activity—dependent, developmental synaptic plasticity to a real-world problem,
that of developing a sensorimotor map in the Khepera robot. We have found, bar-
ring environmental influences in one of our robots in certain parameter regimes,
that sensory map topography emerges robustly, with one robot developing rather
precise topographic representations of its sensory periphery and the other less
precise but nonetheless clearly topographically-refined sensory maps. By appeal-
ing to a tilting of competitive dynamics in favour of certain classes of inputs
(the presumptive contralateral sensory neuron inputs), as seems to occur dur-
ing the development of at least the lateral geniculate nucleus in real nervous
systems, we have found that a motor map, whose functional integrity depends
critically on the topographically-refined sensory map, also develops robustly. The
combined sensorimotor map mediates the avoidance of obstacles (walls) in the

robots’ environments. One of our robots (Khepera number 2), employing self-

31



grown sensorimotor maps, performs significantly better than a standard Brait-
enberg algorithm at obstacle avoidance, with crash rates 2 to 4 times lower than
Braitenberg performance. The other robot (Khepera number 1), with somewhat
more acute forward—pointing IR sensors, using self-grown maps, performs better
than its twin, but worse than its almost perfect Braitenberg performance. It is
difficult to perform a meaningful statistical comparison of Khepera number 1’s
self-grown map performance with its Braitenberg performance, simply because
the variance in its Braitenberg performance is virtually zero. However, given
that the average crash rate for this robot using its own sensorimotor map can
be as low as 4.7 (about 3 times smaller than the other robot’s), our overall im-
pression is that Khepera number 1’s performance is, in fact, pretty good. We
have also shown that deprivation of IR sensors affects dramatically the robots’
performance, increasing the crash rate between 2-fold and 5-fold, depending on
the robot, the environment, and the topographic bias parameter, ;. Khepera
number 2 shows robust, statistically significant degrees of recovery from single—
receptor deprivation, caused by deprivation-induced anatomical re-arrangements
in its nervous system. The improvement occurs because the re-arranged ner-
vous system essentially interpolates the deprived IR sensor’s output from the
outputs of this sensor’s two nearest neighbours. Khepera number 1 also shows
improvement in performance following single-receptor deprivation, but not at a
statistically-significant level. However, double-receptor deprivation can induce
a statistically—significant recovery of performance, with this robot’s performance
even with its front two receptors deprived being as good as the other robot’s
performance without any deprivation at all.

Our results show some dependence on the type of world inhabited by the

robots, whether plain or striped. Although Khepera number 1’s undeprived crash
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rates in both environments are comparable, when deprived its performance in
the plain environment is better than in the striped environment. This is more
marked during double—deprivation than during single-deprivation. The differ-
ence between the two environments is a simple consequence of the spacing of
the stripes in the striped world (14 mm) and the average inter—ventral-receptor
spacing (~13 mm for both our robots). Thus, in the striped world, when a ven-
tral IR sensor is “seeing” mainly a white stripe, its immediate neighbours are
“seeing” mainly black stripes. During single-deprivation, therefore, when the
deprived IR sensor is near a white stripe, its neighbouring IR sensors are near
black stripes, reducing IR sensor outputs through these channels, and so reduc-
ing the re-arranged nervous system’s effectiveness in interpolating the deprived
sensor’s output from its neighbours’ outputs. However, when the singly—deprived
system’s deprived sensor is near a black stripe, no such problem arises, because
its neighbours are near white stripes. During double—deprivation, one of the two
immediate, active neighbours of the two deprived IR sensors is always “seeing”
a black stripe when the robot is near a wall, therefore always interferring with
the nervous system’s attempts at interpolation. For Khepera robot number 2,
environmental influences are even greater, inducing systematic distortions in the
sensorimotor maps for b; # 1 in the plain environment. The result is overall bet-
ter performance in the striped environment rather than the plain environment
for by # 1.

The difference in performance between the two robots, even with a hard—
wired Braitenberg algorithm, is very dramatic. During Braitenberg calibration,
Khepera number 1 crashed a total of 8 times in 150,000 time steps, all crashes
being in the striped world, whereas Khepera number 2 crashed nearly 6,500 times

under identical conditions. We are unable to assess whether Khepera number 1’s

33



performance is untypically good, or whether Khepera number 2’s performance is
untypically bad, or whether, indeed, they both fall within one standard deviation
of the Khepera population’s mean level of performance. Whatever the answer, the
lesson for robotics is clear: acceptable performance of a given task using a given
control solution in one robot, even when that robot’s performance is averaged
over many runs, does not guarantee the general utility of that control solution.
Why does Khepera robot 2 with a self-grown sensorimotor map perform
much better than a hard-wired Braitenberg algorithm, even when deprived of
input from one IR sensor or when using a distorted map? One explanation for
the importance of developmental mechanisms depending on competitive synaptic
growth and re-arrangement is that they permit a nervous system to tune itself
to the body in which it finds itself and to the environment in which the body
resides [9,10]. Furthermore, if these “developmental” plasticity mechanisms in
fact extend throughout an animal’s typical life span, then they allow the ner-
vous system to adapt to changes in the animal’s body that occur throughout
life. These changes can be the natural wear-and-tear of everyday life, the ex-
plosive growth of the body that occurs during puberty, the slow decline of old
age, or changes induced by major insults and injury. Our model of anatomical,
competitive synaptic plasticity attempts to capture, albeit coarsely, some of the
biological principles underlying these mechanisms. A natural answer to our ques-
tion, therefore, is that our model tunes the developing nervous system of Khepera
number 2 to its particular morphological idiosyncrasies in a way in which a hard—
wired Braitenberg map obviously does not. As the two front—pointing IR sensors
(numbers 2 and 3) on this robot are rather myopic compared to the others, their
average level of activity will be lower than normal. Hence, activity-dependent

competition will ensure that these sensors are synaptically under-represented in
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the sensory neuron layer, with compensation by neighbouring IR receptors. It
is this compensation that ultimately provides greater drive to the robot’s wheels
by permitting adjacent IR sensors to enhance neuronal responses that would
otherwise be rather weak.

In overall conclusion, we have shown that a biologically-inspired model of
neuronal development can be successfully transferred from computer simulation
to robotic instantiation, allowing a robot to “grow” a nervous system adapted
to its own body. We have also shown that the same model permits significant
recovery from sensory perturbations such as IR sensor deprivation. This capacity
for “self-repair” of a “self-grown” nervous system could be useful to robots in
dangerous environments in which human intervention is impractical or impossi-
ble. More broadly, although we have considered only a simple Khepera robot
inhabiting a simple world performing a simple task while running a very coarse
and incomplete model of neuronal development, we hope that we have shown

that “developmental robotics” is a worthwhile avenue of enquiry.
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Figure Captions

Figure 1: The K-Team’s miniature, mobile Khepera robot.

Figure 2: Numbering of the Khepera’s eight IR sensors on a schematic represen-

tation of the robot, using the conventions of the K-Team’s Khepera User Manual.

Figure 3: The IR sensors’ response profiles for both Khepera robots used here.
The inner circle schematically represents a robot’s periphery, with each of the
small blobs denoting an IR sensor. Seven responses, indicated by the lines, are
measured for each IR sensor at angles varying between —30° and +30°, inclusive,
in steps of 10°, with the direction of the sensor taken as 0°. The length of a line
represents the size of the response. The small arcs around each IR sensor denote

maximum possible response.

Figure 4: A typical example, for b; = 0.5, of the initial pattern of connectivity
between the ventral IR sensors (black circles), the presumptive ventral sensory
neurons (grey circles) and the two motor neurons (white circles). The thickness
of a line indicates the number of synapses; a key is given in figure 5. For later
clarity, the motor neuron that controls the left wheel is shown on the right and
the motor neuron that controls right wheel is shown on the left. Synaptic num-

bers are rounded up or down so that they change in steps of 0.25.
Figure 5: The key for figures such as figure 4, giving the mapping between line

thickness and number of synapses. For clarity only integral line thicknesses are

shown, although we actually use line thicknesses that increase in steps of 0.25.
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Figure 6: A sensorimotor map developed by Khepera number 1 in the striped

environment, for b; = 0.5, after 10,000 time steps.

Figure 7: A sensorimotor map developed by Khepera number 2 in the striped

environment, for b; = 0.5, after 10,000 time steps.

Figure 8: Typical examples of the two types of distorted sensorimotor maps de-

veloped by Khepera number 2 in the plain environment for values of b; # 1.

Figure 9: An example of the change in the sensorimotor map induced by depriv-

ing IR sensor number 1 in Khepera number 1.

Figure 10: An example of the change in the sensorimotor map induced by simul-

taneously depriving IR sensors numbers 1 and 2 in Khepera number 1.

Figure 11: An example of the change in the sensorimotor map induced by simul-

taneously depriving IR sensors numbers 2 and 3 in Khepera number 1.

Figure 12: An example of the change in the sensorimotor map induced by de-

priving IR sensor number 1 in Khepera number 2.

Figure 13: Number of crashes against time step for Khepera number 1, for
b; = 0.25 in the striped environment. For time steps 0-10,000, the robot de-
velops a sensorimotor map without deprivation of any IR sensors (green data).

Following deprivation of receptor number 1, the robot’s performance at obstacle
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avoidance both with plasticity (blue data) and without plasticity (red data) is

assessed over time steps 10,001-15,000. Error bars denote one standard deviation.

Figure 14: Number of crashes against time step for Khepera number 2, for
by = 0.25 in the striped environment. The format of this figure is otherwise

identical to that of figure 13.

Figure 15: Number of crashes against time step for Khepera number 1, for b; =
0.50 in the striped environment, with IR sensors numbers 2 and 3 simultaneously
deprived after time step 10,000. The format of this figure is otherwise identical

to that of figure 13.
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Figure 6.
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Figure 9.
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Figure 10.
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