Distributed stochastic analysis using remote service providers

Presentation
Matthew Addis, IT Innovation, University of Southampton

Demonstration
Albertus K Kusumo Adi, ESTEC

2nd ESA Space System Design, Verification & AIT Workshop 15-16 April 2003
In 1997 PROMENVIR demonstrated distributed meta computing over the Internet.
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

Distributed stochastic analysis using PROMENVIR was very promising …

• Off-set car-crash Simulation
 – Stochastic uncertainties of typical dimensions and constraints
 – 128 PAM-Crash simulations 8000 CPU Hours in 3 days
 – Calculated distribution of deformations and stresses, accelerations and energy

• Significant advantage for the design engineer
 – Optimisation of the design in reasonable engineering time
 – Reduction of the design cycles, reduction of cost
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

... but distributed stochastic analysis wasn’t exactly easy to arrange or execute

- Manual coordination via e-mail, fax and telephone
 - Agreement for use of remote facilities
 - Scheduling of machines
 - Lowering of security barriers
- Remote access to hardware wasn’t enough
 - No information on software installations, versions or licenses
- One site controlled all the others as slaves
 - Not suitable for discovery, access and use of third-party resources on a licensed commercial basis
- Conclusion: develop new technology to support required business processes
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

Business process of remote application execution

- For each compute task
 - Find resources
 - Estimate costs
 - Negotiate terms
 - Agree access
 - License application
 - Transfer data
 - Execute task
 - Retrieve results
 - Audit what happened
 - Settle bills and disputes
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

DISTAL
DIStributed Software Access for Large-Scale Engineering Applications
Esprit 26386 (1999-2001)

- MannesmanSachs
 - Sharing of compute resources across the company LAN and WAN

- CASA
 - Provide access to in-house resources for subcontractors

- ESIL
 - Remote compute resources at times of peak load

- Technical Partners
 - IT Innovation, ATOS, MSC, Baltimore

- Software and hardware on-demand over the Internet
- Corporate, collaborative, and third-party scenarios
- Investigate business models

© IT Innovation
2nd SSDVAILT workshop 15-16 April 2003, ESTEC
DISTAL was very promising…

- **End-to-end business process**
 - Respect for ownership of resources and data
 - Flexible and automated interactions
 - Trusted Third Party and PKI
 - Supports a range of business models

- **Not only suitable for engineering applications**
DISTAL business processes are implemented using agent communication model

- request
 - (proposals)
 - not-understood
 - refuse (reason)
 - agree
 - failure (reason)
 - propose (proposals)
 - counter-propose (counter-proposals)
 - inform (received)
 - reject (proposals)
 - accept (proposals)
 - counter-propose (counter-proposals)
 inform (done)
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

DISTAL technology stack is very similar to Web Services

Web Services
- BPEL etc.
- UDDI
- WSDL
- SOAP
- XML
- TCP/IP, HTTP, etc

DISTAL
- DISTAL protocols
- DISTAL Yellow Pages
- DISTAL agent interface
- DISTAL messaging
- XML
- TCP/IP, HTTP, etc
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

…but DISTAL didn’t prove the business case

- Business case couldn’t be proven for software and hardware on demand
 - Too many technical challenges
 - Too early for end users
 - DISTAL ‘only’ mediates a business process
 - Discovery → Agreement → Execution → Settlement
 - Community need to defines the business model
 - Pay-as-you-go, fixed-cost, leasing
 - DISTAL facilitates process and witnesses agreements

- Software not ready for industrial scale testing
 - Proof-of-concept R&D project
 - Prototype standard software

- Conclusion: quantify business models based on industrial testing and software customisation
DISTAL Take-Up is completing the circle

- Quantitative business models
 - Based on Industrial testing by ESTEC and AOES
- Business plans for suppliers and users
- Business impact report
- Improving the DISTAL software for use in industrial scenarios
 - IT Innovation
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

DISTAL demonstration

DISTAL Broker (AOES)

FTP SERVER (AOES)

RESOURCE (AOES)

FIREWALL

CLIENT (ESTEC)

MODEL SCATTER

RESULT

RESOURCE (ESTEC)

FIREWALL

© IT Innovation

2nd SSDVAIT workshop 15-16 April 2003, ESTEC
Demo application

Cross sections:
\[H = H_0 + \Delta H \]

Material:
\[E = E_0 + \Delta E \]

- **ST-ORM stochastic analysis**
 - 50 shots
 - 4 random variables

- **MSC.Nastran model**
 - 50 degrees of freedom
Business case for stochastic analysis at ESTEC

- **In-house use of stochastic analysis (ST-ORM) usage is limited**
 - Limited number of (expensive) application licenses and machines means it simply takes too long
 - Set-up and maintenance costs
 - Contention for resources (people, software, hardware)

- **More stochastic analyses will be done if time can be reduced**
 - EITHER … new investment in additional hardware
 - Hardware and software have to be able to handle the peak-load of largest job possible, but most of the jobs require much less power
 - OR … Use DISTAL for large jobs and meta-computing
 - Keep the current hardware for small and medium size jobs.
 - Additional cost for using external services and resources
Service provision by AtosOrigin

- Creating strategic alliances and development partnerships with all software providers
 - Applications, Meta-applications, Security, DISTAL
- Negotiating special license agreements for first two years of DISTAL service provision
 - Targeting key accounts & their suppliers (aerospace and automotive industry)
- Forming Application Service Provider consortium
 - IT Innovation, Baltimore Technologies, Oracle and IBM
 - Application software providers (MSC.Nastran, CFDRC, …)
 - H/W providers (HPC portals, University computing centres)
 - H/W and S/W providers of targeted key accounts
- Commercialisation under standard licensing terms & conditions subject to market acceptance
DISTAL Take-Up - Trials to promote take-up of the agent-based ASP software DISTAL for software on demand

Back to the DISTAL demonstration

DISTAL Broker (AOES)

RESOURCE (AOES)

FTP SERVER (AOES)

RESULT

MODELS SCATTER

CLIENT (ESTEC)

RESOURCE (ESTEC)

FIREWALL

FIREWALL

© IT Innovation

2nd SSDVAIT workshop 15-16 April 2003, ESTEC
Current status

- DISTAL customisation has enabled distributed stochastic analysis using industrial tools and applications
- Large scale industrial testing is underway
 - DISTAL only marginally increases analysis time for a large number of shots when compared to using the same resources in-house
 - High reliability is possible, but the extra software, hardware and network components do result in occasional failed shots. This can be managed as part of stochastic analysis
- Licensing and service provision models are being developed in conjunction with all necessary players
Acknowledgements and Further information

- **Acknowledgements**
 - ESTEC (Per Flodstrom, Claes Arronson)
 - AOES (Alan Kinder, Greg Byshenk)
 - IT Innovation (Ken Meacham, Mike Jones)

- **Further Information**
 Matthew Addis
 - DISTAL software and architecture
 - mja@it-innovation.soton.ac.uk
 - http://www.it-innovation.soton.ac.uk

 Martin Mai
 - Aerospace and automotive services
 - Martin.Mai@atosorigin.com
 - http://www.distal@62.58.73.21/