
ARTISTE, D6.1
#905-0004654 Rev. A

August, 2002

 2002-08-13
D6.1 Distributed Query Layer and

Metadata Report

Project acronym ARTISTE
Contract number IST 11.978
Deliverable number D6.1
Deliverable title Distributed Query Layer and Metadata Report
Workpackage WP6 Distributed Query and Metadata Layer
Task T6.1, T6.2, T6.3
Date of delivery Contractual PM24 Actual 2002-08-13
Code name D905-0004654.a Version 2.0 draft final
Nature Report
Dissemination level IST Programme
Authors (Partner) UoS IT Innovation
Contact Person Alison Stevenson Tel: +44 23 8076 0834

 Fax: +44 23 8076 0833
IT Innovation Centre mailto:as@it-innovation.soton.ac.uk
2 Venture Road http://www.it-innovation.soton.ac.uk
Chilworth Science Park, Southampton
S016 7NP, United Kingdom

Abstract This report discusses the design and implementation of the distributed query
layer of the ARTISTE content-based image retrieval and cataloguing system.
The discussion encompasses the techniques used and common standards utilised
to enable transparent translation of local metadata schema to common standards
and the provision of an open interface for cross-collection search and retrieval
that advances open standards for remote access to digital libraries.

This document, and information herein, are the exclusive property of the partners of the ARTISTE consortium: NCR Systems
Engineering Copenhagen (Denmark), University of Southampton (England), Interactive Labs S.r.l. (Giunti Publishing Group)

(Italy), Centre de Recherche et de Restauration des Musées de France (France), Victoria and Albert Museum (England), The
National Gallery (England), Soprintendenza per i Beni Artistici e Storici de Firenze, Prato e Pistoria (Italy)

 Copyright (C) 2002

Document Changes

Rev. Date Section Comment

A 2002-08-13 All Initial Issue

Reviewers of Current Revision

Rev. Name, Organization Role

ARTISTE PMT Project Management Team A

Warren Sterling Project Board Chair

Conventions Used in This Document
The following notational conventions are used in this document:

• Variable and Styles names are shown in Arial 9 pt: Variable1

• Code is shown in Courier New 10 pt: While True Do

• Commands are shown in Courier New 11 pt: Delete

Trademarks
All trademarks and service marks mentioned in this document are marks of their
respective owners and are as such acknowledged by the ARTISTE Consortium.

Control Information
Page 65 is the last page of this document.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 ii

Executive Summary

This document is the D6.1 deliverable – Distributed Query Layer and Metadata Report –
for the ARTISTE project. ARTISTE is European Commission supported project that has
developed integrated content and metadata-based image retrieval across several major art
galleries in Europe. Collaborating galleries include the Louvre in Paris, the Victoria and
Albert Museum in London, the Uffizi Gallery in Florence and the National Gallery in
London.

Museums and galleries often have several digital collections ranging from public access
images to specialised scientific images used for conservation purposes. Cross-collection
access is recognised as important, for example to compare the treatments and conditions
of Europe’s paintings, which form a core part of our cultural heritage. However direct
access from one gallery to another is currently uncommon for textual data and almost
unheard of in terms of image-based search and retrieval. Thus access to a wealth of digital
image information is limited.

In part this is because of a lack of relevant metadata to describe the images, in part
because that metadata which does exist does not conform to a common schema, and in
part exploitation of digital collections is limited because of a lack of appropriate and
convenient access methods.

Over the last two and a half years, ARTISTE has developed an image search and retrieval
system that integrates distributed, heterogeneous image collections, providing a single
interface to the art and its metadata. In doing so ARTISTE has addressed issues of
interoperability at the metadata level, at the access protocol level and at the linguistic
level.

This report describes
• the innovative use of emerging technical standards such as XML, RDF, along

with common metadata standards such as Dublin Core, to enable users to
seamlessly execute cross-collection metadata searches while maintaining the
diverse legacy database schemas of those collections

• the further use of such standards to enable multilingual access to the metadata
which is itself multilingual

• the use of image processing algorithms in combination with XML and RDF
standards to allow users to catalogue art objects and dynamically generate
metadata describing the images

• the support for and extension of standard information retrieval protocols such as
the Open Archive Initiative Metadata Harvesting Protocol and the z39.50 digital
library standard to create an open interface for cross-collection search and
retrieval

The intended audience for this report includes museum and gallery owners who are
interested in providing or extending services for remote access, developers of collection
management and image search and retrieval systems.

 ARTISTE - Deliverable D6.1 iii 905-0004654 Rev. A 2002-08-13

Contents

1. Introduction ... 1
1.1 ARTISTE Project Overview .. 1
1.2 ARTISTE System Overview.. 1
1.3 Report Structure ... 4

2. Metadata... 5
2.1 Metadata Storage.. 5
2.2 RDF Mapping... 5

2.2.1 ARTISTE Core Schema... 5
2.2.2 Dublin Core Schema.. 9

2.3 Multilingual Metadata .. 11
2.4 Thesauri.. 13

2.4.1 Simple Controlled Vocabularies .. 13
2.4.2 Controlled Vocabularies using Codes.. 13
2.4.3 Multilingual Controlled Vocabularies ... 14
2.4.4 Issues and Solutions... 17

3. Dynamic Generation of Metadata.. 18
3.1 Automatic Classification .. 18
3.2 Integration through RDF .. 19

3.2.1 ARTISTE General Metadata Schema.. 19
3.2.2 ARTISTE General Metadata Thesaurus .. 20

3.3 Metadata Validation ... 22

4. Open Archive Initiative... 23
4.1 Open Archive Initiative Metadata Harvesting Protocol 23
4.2 Implementation of Support for OAI-PMH... 23

4.2.1 Repository.. 23
4.2.2 Resources ... 23
4.2.3 Item…………… .. 24
4.2.4 Record…….. 24
4.2.5 Sets……... 25
4.2.6 HTTP Embedding of OAI-PMH requests.. 25
4.2.7 Response Format ... 25

4.3 OAI Clients .. 27

5. Distributed Query Layer .. 31

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 iv

5.1 Z39.50 .. 31
5.2 ZING SRW... 34

5.2.1 SRW Features which Differ from Z39.50.. 34
5.2.2 Limitations of SRW... 35

5.3 ARTISTE SRW Server .. 36
5.3.1 Request Parameters.. 36
5.3.2 Response Parameters ... 39
5.3.3 Diagnostics .. 40
5.3.4 Common ARTISTE Query Language ... 41

5.4 Summary of SRW support for ARTISTE functionality 43
5.5 ARTISTE SRW Client ... 44

6. Impact on Standards ... 48

7. Conclusion.. 49

8. References .. 50

 ARTISTE - Deliverable D6.1 v 905-0004654 Rev. A 2002-08-13

1. Introduction

1.1 ARTISTE Project Overview
The ARTISTE project [i], partly funded by the EU under the fifth R&D framework, has
developed a system for the automatic indexing and cross-collection search and retrieval of
high-resolution art images.

Four major European galleries are involved in the project: the Uffizi in Florence, the
National Gallery and the Victoria and Albert Museum in London, and the Centre de
Recherche et de Restauration des Musées de France (C2RMF) which is the Louvre related
restoration centre. The ARTISTE system currently holds over 160,000 images from four
separate collections owned by these partners.

The galleries have joined forces with NCR, a leading player in database and Data
Warehouse technology; Interactive Labs, the new media design and development facility
of Italy's leading art publishing group, Giunti; IT Innovation, a specialist in building
innovative IT systems; and the Department of Electronics and Computer Science at the
University of Southampton.

Two and a half years after the project began, and with over twenty person-years of effort
by the partners, the ARTISTE project is now reaching its conclusion. An article that
provides a summary of the project results has recently been published in Cultivate
Interactive [ii].

The work started in ARTISTE is being continued in SCULPTEUR [iii] which is again
funded by the European Commission. SCULPTEUR will develop both the technology
and the expertise to create, manage and present cultural archives of 3D models and
associated multimedia objects.

1.2 ARTISTE System Overview
ARTISTE uses a multi-tier architecture as shown in Figure 1-1.

The architecture consists of software layers separated by a series of APIs (Application
Programming Interfaces) that enable loose coupling to be achieved between these main
architectural components.

The use of documented and published APIs is necessary in order to establish a common
development framework that allow components to be developed by different
organisations.

 ARTISTE - Deliverable D6.1 1 905-0004654 Rev. A 2002-08-13

The use of open standards such as OAI and SRW for certain interfaces provides the basis
of interoperability with other software systems, for example digital libraries, that haven’t
been specifically developed to work with ARTISTE.

OAI

Web Browser

SRW

3rd Party Client 3rd Party Metadata
Harvester

Java

 Object Relational Database

Structured Query Language (SQL)

Web Server

http

ARTISTE Server

Images and
Metadata

Image Processing

Figure 1-1 ARTISTE logical architecture

Artiste
Clients

Search and
retrieval
server

Image and
metadata
collection

Images of the art objects in a museum or gallery collection are held in an Object
Relational Database Management System (ORDBMS) from NCR called Teradata Object
Relational (TOR). Images are stored as Binary Large Objects (BLOBS).

Textual metadata is also stored in the database alongside the images. Storing the images
and metadata in the database allows the scalability and robustness of the database
management system to be utilised. This is important in light of the size of the image
collections involved in the project. For example, one of the collections held in ARTISTE
has over 100,000 images, each of which has over 50 different metadata attributes.

ARTISTE uses a wide variety of image processing algorithms as the basis of content-
based retrieval. In ARTISTE, each algorithm is applied to the images in the collection to
generate a set of image content descriptors called ‘feature vectors’. A feature vector can
be considered as a way of indexing an image to describe an aspect such as colour
distribution or texture. The feature vectors are then integrated and stored with the textual
metadata for each image in the database. Creating all the feature vectors in advance for a
collection of images greatly improves search time since they do not need to be created
every time a content-based search is performed.

A user wishing to perform a content-based search will submit a query image. This image
may contain a particular object that they wish to locate in a collection. Alternatively it
may contain a particular range of colours, e.g. a certain pigment, The user may be
interested finding images with similar colours in the image collection. When a content-
based search needs to be made, the required algorithm is run on the query image to create
a query feature vector.

The query feature vector is then compared with all the corresponding feature vectors for
the images in the collection. The comparison of feature vectors results in a measure of
distance between the query image and each image in the collection. The images in the
collection are then returned to the user as a series of thumbnails in order of increasing

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 2

distance. In some cases, the algorithms can be combined into composite queries and a
normalised distance measure for each algorithm is used to determine the overall match of
a result image to the query. The image processing algorithms are executed in the
database by wrapping them as User Defined Modules (UDM) that can be called directly
from SQL queries.

The ARTISTE server uses SQL queries to access the textual metadata, feature vectors,
images and image processing algorithms in the object relational database. The server is
responsible for translating queries from the client applications into SQL that is
appropriate for the local metadata and image schema. The ARTISTE server is also able
to communicate with other ARTISTE servers so that the query can be executed across
multiple, distributed collections. The server is implemented as an Enterprise Java
application.

A user can access the ARTISTE server using several different protocols:

• Web based access can be made from a standard browser a ARTISTE supports a
simple, wizard driven user interface that makes it easy to create, execute and
browse the results of complex metadata and content-based queries.

• Metadata can be extracted from the ARTISTE server through support for the OAI
Metadata Harvesting protocol. This only allows the textual metadata on the
images to be retrieved.

• Third party software applications can execute metadata and content-based
searches through the SRW interface. These applications could be third-party
browsers, eLearning applications, other digital library systems, and other
ARTISTE servers.

Common RDF
Metadata

Distributed Query Layer

Web Server

Client

ARTISTE Business Logic

Site A

Distributed Query Layer

ARTISTE Business Logic

Site B

SRW

Client

TOR Algorithms
UDM

TOR

Web Server

Images
Algorithms

UDM

Images

ORDBMS

Artiste Server

Web Browser

Figure 1-2 ARTISTE physical architecture

The use of a multi-tier architecture allows physical distribution of the system components
so that cross-collection searching can be performed when the image collections are
physically located at each of the gallery sites. This is achieved by having a local image
database and ARTISTE server at each site that owns an image collection.

The distributed architecture gives the galleries control over their own collections and the
support for legacy database schemas keeps to a minimum the effort required by galleries

 ARTISTE - Deliverable D6.1 3 905-0004654 Rev. A 2002-08-13

make those collections open to retrieval, navigation and interoperability with other
collections.

The ARTISTE servers communicate with each other through a ‘distributed query layer’
that uses the SRW (Search and Retrieve Web service) protocol as shown in Figure 1-2.
The distributed query and metadata layer provides a single interface to the art, its
metadata, and facilities to enable queries to be directed towards multiple distributed
databases. SRW provides a framework for search and retrieval but isn’t in itself sufficient
to provide interoperability. A common metadata schema is required to define the
semantics of the queries made between servers and the data that is returned in response.
This common schema is structured using RDF and is mapped to the local metadata
schemas of the individual collections.

1.3 Report Structure
The remainder of this report is divided into the following sections.

Section 2 describes in more detail the use of emerging technical standards such as XML
and RDF to achieve the transparent translation of local metadata schema to common
standards. This section also describes how the use of RDF and RDFS enables ARTISTE
to offer multilingual access both to metadata element and to the thesauri which control the
values associated with those elements

Section 3 describes dynamic generation of metadata to classify images and the
integration of this metadata into the RDF.

Section 4 describes the implementation of support for the Open Archive Initiative
Metadata Harvesting Protocol.

Section 5 describes the implementation of the Search and Retrieval Web Service that
forms that basis of the ARTISTE Distributed Query Layer. Particular attention is paid to
the extensions that were required to be made to current protocol in order to enable both
metadata and image content based queries to be executed.

Section 6 presents a brief discussion of the impact on standards made by the ARTISTE
project.

Section 7 summarises the findings of this report into a set of conclusions

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 4

2. Metadata

2.1 Metadata Storage
As illustrated above in Figure 1-2 each site has a complete instance of the ARTISTE
system with its own images and metadata.

Metadata relating to the art objects in a collection is held in an object relational database
from NCR (TOR: Teradata Object Relational). More information about the ARTISTE
system architecture is available in D8.3 System Integration [iv]. The metadata is a
combination of pre-existing data loaded from gallery legacy systems and data generated
directly by the ARTISTE system.

The support for legacy database schemas keeps to a minimum the effort required by
galleries to make those collections open to retrieval, navigation and interoperability with
other collections.

2.2 RDF Mapping
There is no requirement for the pre-existing metadata from the various collections to
conform to a single schema. Whereas previous European research projects on Art such as
Aquarelle [v] used a standard metadata format to integrate collections, the ARTISTE
system maintains the individual database schemas of the galleries. Thus the field ‘Ecole’
in the C2RMF database will still be called ‘Ecole’ in the ARTISTE database. ARTISTE
enables metadata queries to be executed across the multiple, diverse collections by using
Resource Description Format (RDF) [vi] to define the syntax and semantics for standard
metadata terms.

Each of the different database schemas employed by the galleries is encoded as an RDF
schema, using RDF syntax and the basic semantic expressions of the RDF Vocabulary
Description Language 1.0 [vii] more commonly known as RDFS. Each of the four
galleries participating in the ARTISTE project use different database schemas to structure
their storage of metadata relating to their collections. Each of these database schemas has
been encoded using RDF. The four resulting Collection schemas also make reference to
the RDF Resources (Classes, Properties and SubClasses) defined in the ARTISTE Core
RDF schema, and to the Dublin Core.

2.2.1 ARTISTE Core Schema

The ARTISTE Core schema uses RDF and RDFS to define a query ontology which
defines and describes the objects, methods and operators required to build a query based

 ARTISTE - Deliverable D6.1 5 905-0004654 Rev. A 2002-08-13

on either image content, textual metadata or a combination of the two. This vastly
simplifies specification of complex searches.

A base term for all aspects that can be queried is a Query Item. This can be an image,
properties of an image (such as colour or shape), or attributes associated with an image
(conventional metadata such as textual and numeric items). This structure, illustrated in
Figure 2-1, is defined in the ARTISTE Core schema and reflected in the EJB architecture
of the application.

Figure 2-1 Artiste Query Item hierarchy

ARTISTE Core further defines a Query Operator as an abstract operation that can be
performed on query items. Figure 2-2 shows the current query operators. These include
exact operators (such as equals, less than etc.) and fuzzy operators (such as similar to).

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 6

 D6.1 7 905-0004654 Rev. A 2002-08-13

 Figure 2-2 Artiste Query Operator hierarchy

Again these are defined in the ARTISTE Core RDF and reflected in the architecture of
the java application. An extract showing the declaration of the Query Operator is shown
in Figure 2-3

<rdfs:Class rdf:ID="QueryOperator">
<rdfs:label xml:lang="en">QueryOperator</rdfs:label>
<rdfs:comment>An operator that can be specified in an ARTISTE
query.</rdfs:comment>
</rdfs:Class>
<rdfs:Class rdf:ID="PartOf">
<rdfs:subClassOf rdf:resource="#QueryOperator"/><rdfs:label
xml:lang="en">PartOf</rdfs:label>
<rdfs:comment>The concept of being part of another
object.</rdfs:comment>
</rdfs:Class>

Figure 2-3 Extract from Artiste Core RDF schema defining a QueryOperator Resource

All operators must be instantiated to form rules – each rule describes a legal ARTISTE
query expression and specifies which query items can be used with each query operator.
Each query operator is assumed to take two operands: a subject and an object. Properties
are also defined which govern the particular query items that a particular operator can
take.

Figure 2-4 shows a diagrammatic representation of the “SimilarSubImage" query
expression rule. This rule defines “SimilarSubImage" as an operation involving two
Images and the PartOf operator.

Figure 2-4 SimilarSubImage Query Rule

Figure 2-5 contains the RDF which describes this rule.

 ARTISTE - Deliverable

<ac:QueryExpressionRule rdf:ID="SimilarSubImage">
<ac:QueryOperator>#PartOf</ac:QueryOperator>
<ac:AllowedSubject>#Image</ac:AllowedSubject>
<ac:AllowedObject>#Image</ac:AllowedObject>
<rdfs:label xml:lang="en">Similar SubImage</rdfs:label>
<rdfs:comment>The concept of an image being similar to part of
another image.</rdfs:comment>
</ac:QueryExpressionRule>

Figure 2-5 Extract from ARTISTE Core RDF Schema defininng a QueryExpressionRule
for SimilarSubImages

Rules governing non-fuzzy operators such as DateEquals or TextContains, can be defined
simply as illustrated in Figure 2-5. However rules that contain fuzzy operators, such as
PartOf must be further qualified by relating to an analyser.

As described in the System Overview (Section 1.2) ARTISTE defines an algorithm as
being a software module that operates on an image to generate or compare image feature
vectors. An analyser is an algorithm together with the relevant metadata which describes
how the algorithm interacts with the rest of the system. Analysers may be used in
conjunction with fuzzy operators (e.g. similar to) or may be used to generate conventional
metadata terms.

The analysers which calculate the feature vectors must be applied to query expression
rules for them to be used by the system. This is achieved by using the ARTISTE Core
defined RDFS property AnalyserAppliesTo to map the analysers to the query expression
rules to which they apply. For example it may be used to say that the MultiScalarColour
Histogram analyser is used to find similar sub images as illustrated in Figure 2-6 and
encoded in RDF in Figure 2-7.

Figure 2-6

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 8

<ac:Analyser rdf:ID=“MultiScalarColourHistogram">

<rdfs:label xml:lang="en">en:MultiScalarColourHistogram</rdfs:label>

<rdfs:comment>Multi Scalar Colour Content</rdfs:comment>

<ac:AnalyserAppliesTo>http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTECore.rdf#SimilarSubImage</ac:AnalyserAppliesTo>

</ac:Analyser>

Figure 2-7

The full ARTISTE Core schema, which has been validated according to the RDF Model
and Syntax Specification[vi] using the W3C RDF Validation Service [Error! Bookmark
not defined.], is available expressed as XML in Appendix A. The schema is also available
on the Web at http://artiste.it-innovation.soton.ac.uk/rdf/ArtisteCore.rdf

The Collection schemas use the common syntax of RDF and the vocabulary defined and
described in ARTISTE Core to encode the legacy database schemas employed by the
various galleries and museum in a machine-readable format.

The Collection schemas also include labels and comments.

Furthermore, where appropriate the Collection schemas use the RDFS utility property
‘isDefinedBy’ (a subproperty of rdfs:seeAlso) to map the legacy database tables and
fields to common metadata standards such as that defined by the Dublin Core Metadata
Initiative. This use of the rdfs:isDefinedBy property is in line with the W3C
recommendation that the property be used to indicate the resource defining the subject
resource.

2.2.2 Dublin Core Schema

The Dublin Core Metadata Initiative (DCMI) have defined a metadata element set
consisting of 15 elements [viii].

Each Dublin Core element is defined by the DCMI using a set of ten attributes from the
ISO/IEC 11179 standard for the description of data elements. While there is no official
DCMI RDF/RDFS encoding of the element set, the DCMI have published a RDF Schema
declaration [ix]. However this schema does not include all the information required by the
ARTISTE system, for example the DCMI published schema contains no multilingual
information. ARTISTE has therefore produced an RDF/RDFS encoding of the 15 Dublin
Core metadata elements which references and extends the DCMI published schema. This
is in keeping with the incremental extensibility build into RDF and is the same approach
taken by the W3C in its experiments with using RDF to describe images [x].

The ARTISTE RDF encoding of the Dublin Core Metadata Element Set, which has been
validated according to the RDF Model and Syntax Specification[vi] using the W3C RDF
Validation Service [Error! Bookmark not defined.], is available expressed as XML
in Appendix B. The schema has also been made available on the Web at http://artiste.it-
innovation.soton.ac.uk/rdf/dc.rdf

By referencing the ARTISTE Dublin Core schema the collection schemas provide a
mapping that relates standard metadata terms to individual database table and column

 ARTISTE - Deliverable D6.1 9 905-0004654 Rev. A 2002-08-13

http://artiste.it-innovation.soton.ac.uk/rdf/ArtisteCore.rdf
http://artiste.it-innovation.soton.ac.uk/rdf/dc.rdf
http://artiste.it-innovation.soton.ac.uk/rdf/dc.rdf

values. Thus the legacy metadata provided by the galleries and museums stored using
diverse legacy database schemas can be seamlessly accessed using ARTISTE. Queries are
composed using RDF, and subsequently translated to SQL at each site (Figure 2-8).

Figure 2-8 Use of RDF in the ARTISTE system

In the example shown in Figure 2-9 interoperability between disparate collections is
achieved by mapping the Dublin Core term title to columns in metadata tables. Collection
A defines image title within the Caption column and Collection B defines image title
within the TitleM column.

Figure 2-9 Application of Dublin Core in ARTISTE

An extract from the RDF for Collection A (the Victoria and Albert Museum Collection) is
shown in Figure 2-10.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 10

<ac:TextAttribute rdf:ID=“Caption">
 <rdfs:isDefinedBy rdf:resource="http://artiste.it-

innovation.soton.ac.uk/rdf/vam/vam.rdf.rdf#Caption"/>
 <rdfs:isDefinedBy rdf:resource=“ http://artiste.it-

innovation.soton.ac.uk/rdf/dc.rdf.rdf##title”/>
</ac:TextAttribute>

Figure 2-10 Extract from the Collection schema for the Victoria and Albert Museum
creating a mapping of Dublin Core 'Title'

An extract from the RDF for Collection B (the C2RMF Collection) would look very
similar with the TextAttribute TitleM being defined both by itself (for the sake of
completeness) and by the ARTISTE Dublin Core schema already published on the web.

In this case a user can then execute a single query across both collections and at each
collection the RDF URI for DC Title is translated to the SQL for selecting Caption or
TitleM.

The translation to SQL is performed by the ARTISTE application server using the
SiRPAC RDF Parser [xi]

As it is the responsibility of each site to define which metadata terms are supported, it is
unlikely that collections will provide the same querying capabilities. For example, each
collection only supports a subset of the Dublin Core and/or additional terms defined in
other standard metadata schemas. To ensure interoperability the ARTISTE system
generates a Query Context when a user builds a new query based upon the collections
they wish to search. The Query Context, which is constructed from the RDF parsed by
SiRPAC, contains a intersection of query capabilities supported by the selected
collections.

2.3 Multilingual Metadata
Interoperability between collections in a European context is not a purely technical
problem. Any system seeking to provide seamless access to multiple geographically and
culturally distributed collections must take account of the multilingual nature both of the
metadata and the requirements of users who wishes to access that metadata.

The ARTISTE system contains metadata in English (from the Victoria & Albert Museum
and the National Gallery), French (from the C2RMF) and Italian (from the Uffizi).
Furthermore the web interface to ARTISTE supports four languages (English, French,
Italian and Danish) reflecting the language needs of the members of the consortium.

ARTISTE provides a technical solution to the latter part of this linguistic challenge by
including multiple labels and comments for each query item defined in the Collection
schemas and uses the XML special attribute ‘xml:lang’ to specify the language used in
the content of the element. The values of the attribute are language identifiers as defined
by the IETF Standard RFC 1766, Tags for the Identification of Languages [xii].

However the SiRPAC RDF Parser does not support the ‘xml:lang’attribute. Therefore the
two letter IEFT language identifier is repeated in the element value string, separated from
the actual attribute value by a semicolon. The ‘xml:lang’ attribute is retained in the RDF
since other RDF Parsers (and potentially future versions of SirPAC) support the attribute
and for the ARTISTE RDF schemas to be useful beyond the life of the project it is

 ARTISTE - Deliverable D6.1 11 905-0004654 Rev. A 2002-08-13

desirable that they conform to best practise. An example taken from the C2RMF
collection schema is shown in Figure 2-11

<ac:TextAttribute rdf:ID="lauthor">

 <rdfs:label xml:lang="en">en:Related
Artists</rdfs:label>

 <rdfs:label xml:lang="fr">fr:Lien avec
l'auteur</rdfs:label>

 <rdfs:label xml:lang="it">it:Vinculo con el
artista</rdfs:label>

 <rdfs:label xml:lang="dk">dk:Relation til
artisten</rdfs:label>

 <rdfs:comment xml:lang="en">en:Other artists who
influenced the work of art eg the school of
GIOTTO DI BONDONE</rdfs:comment>

 <rdfs:comment xml:lang="fr">fr:nom d'autres
artistes qui on influencela realisation de
l'oeuvre d'art ex: l'ecole de GIOTTO DI
BONDONE</rdfs:comment>

 <rdfs:comment xml:lang="it">it:Altri artisti che
influenzarono l'opera d'arte, per esempio la
scuola di GIOTTO di BONDONE</rdfs:comment>

 <rdfs:comment xml:lang="dk">dk:Andre kunstnere som
har pavirket kunstarten f.eks. the school og
Giotto Di Bondone</rdfs:comment>

 <rdfs:isDefinedBy rdf:resource="http://artiste.it-
innovation.soton.ac.uk/test_rdf/c2rmf/c2rmf.rdf#l
author" />

 </ac:TextAttribute>

Figure 2-11 Use of RDF to provide multilingual descriptions

The Query Context is generated according to the language Locale selected by the user so
that when the RDF schemas are parsed the appropriate language labels and explanatory
comments are extracted, stored in the Query Context and displayed to the user.

Therefore the ARTISTE system enables users to specify queries in multiple languages.
For example, using the example above, one English speaking user might wish to search
the C2RMF for works of art influenced by Giotto do Bondone and would therefore
submit a query where “Related ARTISTE contains ‘de Bondone’”. A Italian user wishing
to perform the same search would submit a query where ‘Vinculo con el artista contains
‘de Bondone’”. In each case the same SQL query is executed against the database and the
same results returned to the user.

However this does not address the issue of multilingual attribute values stored in the
database. For example a user might wish to search across the National Gallery, the Uffizi
and the C2RMF collections for images called “The Forest”. The RDF mapping between
the legacy database schemas enables the user to execute a single query across all three
sites, by searching the those fields mapped to the Dublin Core term Title. However since
the metadata stored in the C2RMF database is written in French and the metadata in the
Uffizi database is written in Italian, there will be no records in those databases containing
the text string ‘Forest’ (instead those databases would contain ‘Forêt’ and ‘Foresta’
respectively).

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 12

It is unreasonable to consider translating all the metadata from the various galleries into a
common language mainly because this would negate one of the key advantages of the
ARTISTE system in that it does not require changes to be made to legacy metadata.
Furthermore such action would not take account of the fact that users would continue to
submit queries containing value strings in various languages which would continue to
produce a mismatch with the metadata in one or more of the databases.

A possible solution would be to maintain the legacy metadata in its original languages
and perform multiple translations on the query value string supplied by the user,
according to which databases the query was being executed over. For example a user,
accessing the ARTISTE system in English, might submit a search for images in the
Victoria & Albert Museum, the Uffizi Gallery and the C2RMF collection with a title
containing the word ‘Forest’. The ARTISTE system would build and execute a query for
title contains ‘Forest’ against the Victoria & Albert Museum and corresponding queries
for title contains ‘Foresta’ and title contains ‘Foret’ against the Uffizi and C2RMF
collections respectively. A demonstration BabelFish Web Service [xiii] exists which
provides an interface to AltaVista’s Babelfish translation application and could be
invoked to perform this action. However the service has not been tested and the
functionality to make use of real-time translation has not been implemented in ARTISTE.

2.4 Thesauri
In addition to mapping legacy database schemas to common metadata standards (Section
2.2) and enabling multilingual functionality (Section 2.3) ARTISTE uses RDF and RDFS
to support metadata thesauri.

Building on the CERED/NBII draft RDF Server Standard Documentation [xiv]
ARTISTE supports a total of 15 thesauri for legacy gallery metadata attributes: seven
from the Victoria & Albert Museum and eight from the C2RMF. ARTISTE also supports
one thesaurus for a dynamically generated metadata element (see Section 3). The thesauri
can be broken down into three basic types:

• Simple Controlled Vocabularies
• Controlled Vocabularies using Codes
• Multilingual Controlled Vocabularies

2.4.1 Simple Controlled Vocabularies

For simple controlled vocabularies the list of allowed terms for a given attribute is
encoded in RDF using the resources defined in the CERED/NBII schema. This RDF
document, or Collection Thesaurus is included by reference in the Collection schema for
the gallery collection.

2.4.2 Controlled Vocabularies using Codes

For Controlled Vocabularies using Codes the Collection Thesaurus document contains a
list of allowed codes for a given attribute, encoded in RDF using the resources defined in
the CERED/NBII schema. The values these codes refer to are stored in a separate RDF
document, again encoded using the resources defined in the CERED/NBII schema. This
single attribute thesaurus is included by reference in the Collection Thesaurus which is in
turn included by reference in the Collection schema for the gallery collection.

 ARTISTE - Deliverable D6.1 13 905-0004654 Rev. A 2002-08-13

2.4.3 Multilingual Controlled Vocabularies

Multilingual functionality was highlighted above as an important part of achieving
interoperability (Section 2.3). Multilingual Controlled Vocabularies provide such
functionality at the level of the thesaurus and are simply a special case of Controlled
Vocabularies using Codes. Multilingual vocabularies consist of a list of allowed attribute
values (this may be a code or the actual value in a default language representation)
encoded in the collection thesaurus document. The values referred to are stored in a
separate RDF document utilising the RDFS attribute ‘rdfs:label’ and the XML attribute
‘xml:lang’ as well as the using the resources defined in the CERED/NBII schema.

All eight of the thesauri for the C2RMF metadata are multilingual, supporting English
and French representations. An example from the Collection Thesaurus for C2RMF and
the multilingual controlled vocabulary for the C2RMF metadata attribute Category are
shown in Figure 2-13 and Figure 2-12. Figure 2-14 and Figure 2-15 show the resulting
user interface. Queries constructed using either interface to the metadata would return the
same results.

<?xml version="1.0" ?>
- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#" xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"
xmlns:ac="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTECore.rdf#"
xmlns:aconf="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTEConfiguration.rdf#"
xmlns:z19="http://artiste.it-
innovation.soton.ac.uk/rdf/thesaurus.rdf#"
xmlns:categ="http://artiste.it-
innovation.soton.ac.uk/rdf/c2rmf/c2rmf-
thesaurus/categ.rdf#">

<z19:Category rdf:ID="categ">
 <z19:IC>DE</z19:IC>
 <z19:IC>DP</z19:IC>
 <z19:IC>EN</z19:IC>
 <z19:IC>ES</z19:IC>
 <z19:IC>OR</z19:IC>
 <z19:IC>PE</z19:IC>
 <z19:IC>SC</z19:IC>
 <z19:IC>ST</z19:IC>
 <z19:IC>TA</z19:IC>

 </z19:Category>

Figure 2-12 Extract from the Collection Thesaurus for the C2RMF Collection listing the
codes for the controlled list of allowed ‘Category’ values

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 14

http://artiste.it-innovation.soton.ac.uk/rdf/c2rmf/

<?xml version="1.0" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#" xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"
xmlns:ac="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTECore.rdf#"
xmlns:aconf="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTEConfiguration.rdf#"
xmlns:z19="http://artiste.it-
innovation.soton.ac.uk/rdf/thesaurus.rdf#">

<z19:Category rdf:ID="DE">
 <rdfs:label xml:lang="en">en:drawing</rdfs:label>
 <rdfs:label xml:lang="fr">fr:dessin</rdfs:label>

 </z19:Category>
<z19:Category rdf:ID="DP">
 <rdfs:label xml:lang="en">en:drawing and

painting</rdfs:label>
 <rdfs:label xml:lang="fr">fr:dessin et

peinture</rdfs:label>
 </z19:Category>
<z19:Category rdf:ID="EN">
 <rdfs:label

xml:lang="en">en:illumination</rdfs:label>
 <rdfs:label

xml:lang="fr">fr:enluminure</rdfs:label>
 </z19:Category>

Figure 2-13Extract from the single attribute thesaurus for the C2RMF metadata attribute
‘Category’. The thesaurus specifies the multilingual labels for the codes declared in the

Collection Thesaurus

 ARTISTE - Deliverable D6.1 15 905-0004654 Rev. A 2002-08-13

Figure 2-14 The English language version of the ‘Category’ thesaurus.

Figure 2-15 The French language version of the ‘Category’ thesaurus.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 16

2.4.4 Issues and Solutions

In some cases the legacy metadata attributes controlled by thesauri are the same attributes
mapped to common metadata standards such as Dublin Core. This is problematic because
although the two (or three, or four) legacy metadata attributes from the various collections
are close enough in concept and content to be usefully abstracted to a single standard
metadata element it is not the case that the controlled list provided by one gallery for their
metadata attribute matches the values contained in the corresponding field in another
gallery’s database. It is therefore important to associate thesauri with distinct query items
in the application server rather than the TextAttributes defined in the collection schemas.
This is achieved in the ARTISTE application server which takes the RDF parsed by the
SiRPAC and generates a distinct query item in the Query Context.

A second issue which arose in the design and implementation of the multilingual
controlled vocabularies was the size of the RDF documents. In some cases the number of
allowed terms, each with both an English and a French label produced a document several
thousand lines long when encoded in RDF. This proved too large for the SiRPAC parser
to process and caused the ARTISTE system to hang. Therefore the contents of the
thesaurus was stored inside the database. Although this marks a limitation of the SiRPAC
parser it has the added benefit of enabling ‘contains’ queries across the controlled values.

The Collection Thesaurus RDF documents (c2rmf_thesaurus.rdf and vam_thesaurus.rdf),
and a sample single attribute thesaurus RDF document showing multilingual labels
(category.rdf), which have been validated according to the RDF Model and Syntax
Specification[vi] using the W3C RDF Validation Service [Error! Bookmark not
defined.], have been published on the Web. The URLs to the thesauri as follows:

Collection Thesaurus for the C2RMF Collection

http://artiste.it-innovation.soton.ac.uk/rdf/c2rmf/c2rmf-thesaurus.rdf

Collection Thesaurus for the Victoria and Albert Collection

http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam-thesaurus.rdf

The single attribute thesauri are available in the following web accessible directories:

Single Attribute Thesauri for the C2RMF Collection

http://artiste.it-innovation.soton.ac.uk/rdf/c2rmf/c2rmf-thesaurus/

Single Attribute Thesauri for the Victoria and Albert Collection

http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam-thesaurus/

 ARTISTE - Deliverable D6.1 17 905-0004654 Rev. A 2002-08-13

http://artiste.it-innovation.soton.ac.uk/rdf/c2rmf/c2rmf-thesaurus.rdf
http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam-thesaurus.rdf
http://artiste.it-innovation.soton.ac.uk/rdf/c2rmf/c2rmf-thesaurus/
http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam-thesaurus/

3. Dynamic Generation of Metadata

3.1 Automatic Classification
As described in Section 1.2 ARTISTE uses image processing algorithms as the basis of
content-based retrieval. While the majority of the algorithms developed in ARTISTE
produce feature vectors which are stored in the database and then compared against query
feature vectors to produce results some algorithms act as image classifiers.

One such classifier, developed by the IAM group at the University of Southampton, is the
border finder algorithm which enables users to classify and retrieve picture frames by
their shape, e.g. diamond, circle, ellipse, tondo, triptych, square, rectangle.

There are two parts to this classifier:

• Locating the borders of the picture frame, and

• Labelling the located border with a classification.

For a given image, locating the borders is performed by converging a series of 'sensors'
around the edge of the image to the centre of the image. The 'sensors' will stop when they
meet a strong change in intensity, which is likely to be due to the presence of a picture
frame. The final positions of the sensors indicate the overall shape of the border.

Classifying the border involves a neural network which is trained to recognize shapes.
The positions of the sensors are fed into the neural network which then determines the
overall shape of the border. The classification process is illustrated in Figure 3-1

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 18

Figure 3-1

The metadata classification produced by the neural net is then inserted automatically into
the database.

3.2 Integration through RDF
One of the advantages ARTISTE gains by using RDF to encode information about the
metadata formats and elements supported by any one site is that the interface to the
system is flexible enough to cope with the dynamic generation of metadata. All that is
required for the newly generated metadata to become accessible to users querying the
system is that a collection whose images have been classified declares so in the RDF
schema describing their metadata. An example of such a declaration from the National
Gallery Collection schema is shown in Figure 3-2.

<?xml version="1.0" ?>
- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-

rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"

 xmlns:ac="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTECore.rdf#"
xmlns:aconf="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTEConfiguration.rd
f#" xmlns:dc="http://artiste.it-
innovation.soton.ac.uk/rdf/dc.rdf#"
xmlns:agm="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTEGenMetadata.rdf#
">

:
<ac:TextAttribute rdf:ID="BorderShape">
 <rdfs:isDefinedBy rdf:resource=
"http://artiste.itinnovation.soton.ac.uk/rdf/A

RTISTEGenMetadata.rdf#BorderShape"/>
 </ac:TextAttribute>

Figure 3-2

3.2.1 ARTISTE General Metadata Schema

That declaration references an ARTISTE General Metadata Schema which contains the
multilingual label information for the user interface. The RDF for the BorderShape
metadata element as declared in the ARTISTE General Metadata Schema is shown in
Figure 3-3

 ARTISTE - Deliverable D6.1 19 905-0004654 Rev. A 2002-08-13

http://artiste.it-innovation.soton.ac.uk/rdf/ngl/

<?xml version="1.0" ?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-

ns#" xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"
xmlns:ac="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTECore.rdf#">

<ac:TextAttribute rdf:ID="BorderShape">
 <rdfs:label xml:lang="en">en:Border

Shape</rdfs:label>
 <rdfs:label xml:lang="fr">fr:Forme de

cadre</rdfs:label>
 </ac:TextAttribute>

 </rdf:RDF>

Figure 3-3ARTISTE General Metadata Schema contain TextAttribute description of
BorderShape metadata element used to reference dynamically generated metadata.

3.2.2 ARTISTE General Metadata Thesaurus

In the case of the BorderShape metadata element, indeed in most classification scenarios,
the metadata values generated by the neural net form a finite set. They can therefore be
controlled by a thesaurus which can offer multilingual access to the data. Figure 3-4
shows an extract from the BorderShape RDF thesaurus while Figure 3-5 and Figure 3-6
show the resulting multilingual access to the dynamically generated metadata..

<?xml version="1.0" ?>
- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-

syntax-ns#" xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"
xmlns:ac="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTECore.rdf#"
xmlns:aconf="http://artiste.it-
innovation.soton.ac.uk/rdf/ARTISTEConfiguration.rdf#"
xmlns:z19="http://artiste.it-
innovation.soton.ac.uk/rdf/thesaurus.rdf#">

- <z19:Category rdf:ID="rectangle">
 <rdfs:label xml:lang="en">en:rectangle</rdfs:label>
 <rdfs:label xml:lang="fr">fr:rectangle</rdfs:label>

 </z19:Category>
- <z19:Category rdf:ID="triptych">
 <rdfs:label xml:lang="en">en:triptych</rdfs:label>
 <rdfs:label xml:lang="fr">fr:triptych</rdfs:label>

 </z19:Category>
- <z19:Category rdf:ID="square">
 <rdfs:label xml:lang="en">en:square</rdfs:label>
 <rdfs:label xml:lang="fr">fr:carre</rdfs:label>

 </z19:Category>
:
:

 </rdf:RDF>

Figure 3-4Single Attribute Thesaurus for the dynamically generated metadata element
Bordershape

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 20

http://artiste.it-innovation.soton.ac.uk/rdf/agm-thesaurus/
http://artiste.it-innovation.soton.ac.uk/rdf/agm-thesaurus/
http://artiste.it-innovation.soton.ac.uk/rdf/agm-thesaurus/
http://artiste.it-innovation.soton.ac.uk/rdf/agm-thesaurus/

Figure 3-5English Language using thesaurus for dynamically generated metadata
element.

Figure 3-6French Language interface using thesaurus for dynamically generated
metadata element.

 ARTISTE - Deliverable D6.1 21 905-0004654 Rev. A 2002-08-13

3.3 Metadata Validation
ARITSTE provides tools to validate dynamically generated metadata as shown in Figure
3-7.

Figure 3-7ARTISTE metadata validation tool.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 22

4. Open Archive Initiative

4.1 Open Archive Initiative Metadata Harvesting Protocol
The goal of the OAI harvesting protocol is to supply and promote an application-
independent interoperability framework that can be used by a variety of communities
engaged in publishing content on the Web. ARTISTE is an OAI data provider and has
implemented support for the Open Archives Initiative Protocol for Metadata Harvesting,
thus providing open access to metadata stored with each museum and gallery collection.

4.2 Implementation of Support for OAI-PMH

4.2.1 Repository

In OAI terminology each installation of the ARTISTE system acts as a metadata
repository. This is defined as a network accessible server that can process the 6 OAI-
PMH requests:

• Identify

• List Metadata Formats

• List Identifiers

• List Records

• List Sets

• Get Record

Thus each Site (Victoria & Albert Museum, C2RMF, National Gallery, Uffizi) is enabled
to act as OAI Repository

The OAI-PMH distinguishes between three distinct entities related to the metadata made
accessible by the OAI-PMH in a repository: resource, item and record.

4.2.2 Resources

A resource is the object or "stuff" that metadata is "about". The nature of a resource,
whether it is physical or digital, or whether it is stored in the repository or is a constituent
of another database, is outside the scope of the OAI-PMH. In ARTISTE the resources are
the images stored in the database. These are never returned to the client as the result of an
OAI-PMH request.

 ARTISTE - Deliverable D6.1 23 905-0004654 Rev. A 2002-08-13

4.2.3 Item

An item is a constituent of a repository from which metadata about a resource can be
disseminated. Conceptually an item is a container that stores or dynamically generates
metadata about a single resource in multiple formats, each of which can be harvested as
records via the OAI-PMH. In the ARTISTE implementation of the OAI-PMH, items are
conceptually equivalent to the unique identifiers stored in the databases for each of the
images since all the metadata associated with an image (or resource) is accessed via this
identifier.

Each item has an identifier that is unique within the scope of the ARTISTE OAI
repository of which it is a constituent. This unambiguously identifies an item within the
repository and is used in OAI-PMH requests for extracting metadata from the item. It
would therefore be possible to use the existing TOR database image_id as the item
identifier for OAI. However the OAI-PMH specifies that the format of a unique ID for
records must correspond to that of the URI syntax. The OAI-PMH specifies further
formatting (in an XML Schema named ‘oai-identifier’) which is recommended but not
required. The advantage of adopting this naming convention is that identifiers are
resolvable via a central OAI resolution service.

To comply with the ‘oai-identifier’ format the unique IDs must be comprised of

A "scheme" = oai

A "repositoryIdentifier" that is a unique ID for a repository.

A “local ID” that is the unique ID of a record within a repository

These three parts must be concatenated using a "delimiter" which must be a colon.

The ARTISTE implementation of support for OAI_PMH therefore includes the
generation of oai-identifiers for all the images in the ARTISTE system. These take the
form:

oai:artiste:SiteName/ImageID

For example:

oai:artiste:c2rmf/13640

4.2.4 Record.

A record is metadata in a specific metadata format. A record is returned as an XML-
encoded byte stream in response to a protocol request to disseminate a specific metadata
format from a constituent item. The XML-encoding of records is organized into the
following parts:

• header -- contains the unique identifier of the item and properties necessary for
selective harvesting. The header consists of the following parts:

o the unique identifier -- the unique identifier of an item in a repository;

o the date stamp -- the date of creation, modification or deletion of the
record for the purpose of selective harvesting.

• metadata -- a single manifestation of the metadata from an item. The OAI-PMH
supports items with multiple manifestations (formats) of metadata. The specific

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 24

metadata format of the record to be disseminated is specified by means of an
argument -- the metadataPrefix -- in the GetRecord or ListRecords
request that produces the record. The ListMetadataFormats request returns
the list of all metadata formats available from a repository, or for a specific item
(which can be specified as an argument to the ListMetadataFormats
request).

Each of ARTISTE OAI Repositories support the dissemination of records in the OAI
Dublin Core metadata format as well as the legacy formats described in the individual
Collection schemas.

4.2.5 Sets

A OAI set is an optional construct for grouping items for the purpose of selective
harvesting. The ARTISTE OAI repositories do not contain sets.

4.2.6 HTTP Embedding of OAI-PMH requests

OAI-PMH requests are expressed as HTTP requests. OAI-PMH requests to the ARTISTE
server can be submitted using either the HTTP GET or POST methods. There is a single
base URL for all requests. The ARTISTE OAI Repositories expose their base URL, as the
value of the baseURL element in the Identify response.

The baseURL specifies the ARISTE host and port, and the path to the OAI Servlet.

In addition to the base URL, all requests consist of a list of keyword arguments, which
take the form of key=value pairs. Arguments may appear in any order and multiple
arguments must be separated by ampersands. Each OAI-PMH request must have at least
one key=value pair that specifies the OAI-PMH request issued by the harvester:

key is the string 'verb';

value is one of the defined OAI-PMH requests .

The number and nature of additional key=value pairs depends on the arguments for the
individual request.

The OAIServlet is initialised and accepts the GET or POST request. The servlet creates a
new instance of the ARTISTE OAI Harvester using JNDI and a JDBC/ODBC
connection. The servlet also creates a new instance of a SAX2 filter (XML Writer [xv])
that serializes its events to an XML document. The ARTISTE OAI Harvester is then
passed the XML Writer object to which it streams the response XML.

4.2.7 Response Format

Responses to requests are formatted as HTTP responses, with appropriate HTTP header
fields. The Content-Type returned for all OAI-PMH requests is text/xml.

All responses to OAI-PMH requests are well-formed XML instance documents. Encoding
of the XML uses the UTF-8 representation of Unicode. The responses validate against the
XML Schema for Validating Responses to OAI-PMH Requests [xvi] .

 ARTISTE - Deliverable D6.1 25 905-0004654 Rev. A 2002-08-13

The example response to a GetRecord request in Figure 4-1 shows an XML-encoding of a
record and its components:

• the header part with:

o a unique identifier of the item from which the record was disseminated,
equal to oai:artiste:Sample/46518;

o the datestamp of the record equal to 2002-02-28;

• the metadata part. This consists of a single root tag - in the example the tag
oai_dc- with the nested tags belonging to the corresponding metadata format --
in the example, Dublin Core elements such as title. Note that the root tag
within the metadata part includes a number of attributes that are common to all
XML documents that use namespaces and schema validity:

o namespace declarations -- the declarations of the namespaces used
within the metadata part, each of which is prefixed with xmlns .
Namespace declarations within the metadata part fall into two categories:

� metadata format specific namespace(s) - every metadata part
must include one or more xmlns prefixed attributes that define
the correspondence between a metadata format prefix -- e.g. dc --
and the namespace URI (as defined by the XML namespace
specification) of the respective metadata format. Some metadata
formats employ tags from multiple namespaces, requiring
multiple xmlns prefixed attributes -- in the example, there is
only a single declarations for oai_dc .

� xml schema namespace - every metadata part must include the
attribute xmlns:xsi, the value of which must always be the URI
shown in the example, which is the namespace URI for XML
schema.

� xsi:schemaLocation -- the value of which is a URI, URL
pair; the first is the namespace URI (as defined by the XML
namespace specification) of the metadata that follows in this
part, and the second is the URL of the XML schema for
validation of the metadata that follows.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 26

<?xml version="1.0" encoding="UTF-8" ?>
-<GetRecord xmlns="http://www.openarchives.org/OAI/1.1/OAI_GetRecord"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.openarchives.org/OAI/1.1/OAI_GetReco
rd http://www.openarchives.org/OAI/1.1/OAI_GetRecord.xsd">

 <responseDate>2002-07-31T12:37:17+01:00</responseDate>
 <requestURL>http://artiste.it-

innovation.soton.ac.uk/servlet/OAIServlet?verb=GetRecord</reque
stURL>

<record>
<header>
 <identifier>oai:artiste:Sample/46518</identifier>
 <datestamp>2002-07-31T12:37:26+01:00</datestamp>

 </header>
<metadata>
<oai_dc xmlns="http://purl.org/dc/elements/1.0/"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://artiste.it-
innovation.soton.ac.uk/rdf/oai_dc.rdf
http://artiste.it-
innovation.soton.ac.uk/rdf/oai_dc.xsd">

 <contributor>taylorc</contributor>
 <identifier>pcd228810120146-026</identifier>
 <description>An Indian black buck is shown being led

by it's keeper. The border of the image is a floral
design and watercolour and gold on
paper.</description>

 <subject>INDIAN PAINTING</subject>
 <source>CT1755</source>
 <title>Indian Black BuckMughalc.1615No Date</title>
 <creator>Indian Black BuckMughalc.1615No

Date</creator>
 </oai_dc>

 </metadata>
 </record>

 </GetRecord>

Figure 4-1Example response to a GetRecord request to the OAI Repository

4.3 OAI Clients
Each ARTISTE OAI repository can be access in three ways

1. Issuing an HTTP Get request directly via a web browser using the base URL
http://artiste.it-innovation.soton.ac.uk/servlet/OAIServlet eg

http://artiste.it-
innovation.soton.ac.uk/servlet/OAIServlet?verb=GetRecord&identifier=oai:arXi
v:hep-th/9901001&metadataPrefix=oai_dc

2. Via a dedicated ARTISTE OAI Web Interface. The OAI Web Interface to the
ARTIST dissemination system is available at http://artiste.it-
innovation.soton.ac.uk/oai_home.html .

 ARTISTE - Deliverable D6.1 27 905-0004654 Rev. A 2002-08-13

http://artiste.it-innovation.soton.ac.uk/servlet/
http://artiste.it-innovation.soton.ac.uk/servlet/OAIServlet
http://artiste.it-innovation.soton.ac.uk/oai_home.html
http://artiste.it-innovation.soton.ac.uk/oai_home.html

 Figure 4-2 shows an example ListMetadataFormats request being issues via the
ARTISTE OAI Web Interface to the Sample Dissemination system. Figure 4-3
shows the resulting XML response.

Figure 4-2A ListMetadataFormats request being issued via the web interface to the
Sample ARTISTE OAI Repository.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 28

Figure 4-3 The XML response to a ListMetadataFormats request to the Sample ARTISTE
OAI Repository.

3. Via the official OAI Repository Explorer online at http://oai.dlib.vt.edu/~oai/cgi-
bin/Explorer/oai1.1/testoai as shown in Figure 4-4 .

 ARTISTE - Deliverable D6.1 29 905-0004654 Rev. A 2002-08-13

http://oai.dlib.vt.edu/~oai/cgi-bin/Explorer/oai1.1/testoai
http://oai.dlib.vt.edu/~oai/cgi-bin/Explorer/oai1.1/testoai

Figure 4-4 A GetRecord request being issued to the Sample ARTISTE OAI Repository via
the official OAI Repository Explorer

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 30

5. Distributed Query Layer

ARTISTE is participating in an initiative to redesign the primary open standard for
interoperability between digital libraries, z39.50 [xvii], using web technologies such as
XML and SOAP. The z39.50 into the Next Generation (ZING) initiative has proposed a
Search and Retrieve Web Service (SRW) based on the z39.50 protocol for searching
databases that contain metadata and objects.

ARTISTE is one of the early implementers of SRW and has extended the capabilities of
SRW to enable image content and metadata based searches over multiple ARTISTE
collections. Having emerged from the digital library community z39.50 has been
traditionally concerned with text based searching. ARTISTE has been working with
ZING to incorporate the ability to deal with content-based searching of images and thus
expand international standards of information retrieval.

The implemented support for an extended version of the SRW protocol forms the basis of
a ‘distributed query layer’(DQL) through which the ARTISTE servers communicate with
each other as illustrated in Figure 1-2.

5.1 Z39.50
The z39.50 protocol specifies formats and procedures governing the exchange of
messages between a client and server enabling the client to request that the server search a
database and identify records which meet specified criteria, and to retrieve some or all of
the identified records. In other words it provides a framework for distributed queries.

A Z39.50 server must support a core of functions: initialisation, search and retrieval. The
basic process of querying is shown in Figure 5-1.

 ARTISTE - Deliverable D6.1 31 905-0004654 Rev. A 2002-08-13

Figure 5-1 Overview of z39.50 functionality. Diagram from Biblio Tech Review

(http://www.biblio-tech.com/html/z39_50.html)

The underlying protocol generally adopted for Z39.50 is TCP/IP.

As an investigation of the usefulness of the z39.50 protocol to the ARTISTE project a test
z39.50 client and server were built using the Open Source Java toolkit JZKit from
Knowledge Integration [xviii] It was not expected that the z39.50 server would directly
execute a search on the database. Instead the z39.50 server would issue a request to the
ARTISTE server which would perform the search and return the appropriate result to the
z39.50 server. It would then be up to the z39.50 server to return appropriate results to the
z39.50 client

The functionality provided by the ARTISTE system can be described using 6 broad
categories. These are:

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 32

i) Metadata Querying

ii) Image Querying

iii) Complex Querying

iv) Saving and Manipulating Queries

v) Cataloguer Functions

vi) Administrator Functions

Categories v and vi are not query based and the functionality they describe would not be
supported by a distributed query layer. Therefore the evaluation of z39.50 focused on
support for categories i-iv. The conclusions drawn from the evaluation are summarized in
Table 1

Table 1 Evaluation of support for ARTISTE DQL functionality by z39.50

ARTISTE metadata and image content based
searching functionality

Supported by z39.50
protocol

Metadata Query Y

Image Query N

Query Across Multiple Databases Y

Query Across Multiple Sites N

Query Using Multiple Metadata Terms Y

Query Using Metadata Terms & A Query Image N

Query Using Controlled Metadata Terms N

Query Using Multilingual Metadata Terms N

Save a Query N

Delete a Query N

Browse Query Runs and Retrieve Results for a
Query

N

Support dynamics of new & changing metadata N

 ARTISTE - Deliverable D6.1 33 905-0004654 Rev. A 2002-08-13

5.2 ZING SRW
ZING (Z39.50 International: Next Generation) is an umbrella term for a series of
initiatives that are being pursued by the z39.50 community. The ZING aims to make the
semantic content of Z39.50 more broadly available and to make Z39.50 more attractive to
information providers, developers, vendors, and users, by lowering the barriers to
implementation while preserving the existing intellectual contributions of Z39.50.

SRW is the ZING Search/Retrieve Web Service which defines a draft framework for
query and retrieval that takes the core search and retrieval protocol from z39.50 and
specifies a Web Service implementation.

The SRW protocol retains many concepts from the traditional z39.50 protocol including
Result Sets, Abstract Access points, Abstract Record schemas, Explain and Diagnostics.
However it differs significantly from z39.50 in several ways which make it a better
candidate for the ARTISTE DQL that ‘pure’ or ‘traditional’ z39.50.

5.2.1 SRW Features which Differ from Z39.50

• Result Set Named by Server

In contrast to Z39.50 where the client names the result set, for SRW the server
assigns the result set id. After a server executes a query it may include in the response
a result set name. This coincides with the ARTISTE concept of a result set which is
named by a query_run_id. This result set persists in the underlying database and can
be accessed multiple times.

• Connections, Sessions, State

There is no explicit concept of connection, session, or state. Each invocation of the
Search/Retrieve service will be a request/response sequence, via an XML/SOAP/RPC
message using HTTP POST. The most notable of the differences between SRW and
z39.50 is that queries are specified using the Common Query Language, and XML
messages are exchanged between client and server using SOAP. The use of XML
and SOAP makes it much simpler to develop SRW clients and servers than Z-Client
and Z-Servers since tools that support these technologies are readily available off the
shelf.

• No distinction between server and database

SRW does not distinguish between a server and a database. A single SRW request
can therefore be sent to multiple sites and/or multiple databases.

• Single record syntax

All SRW records are retrieved according to a single record syntax (XML) and
therefore the Z39.50 concept of record syntax is not meaningful in SRW. The Z39.50
concepts of element set/specification and schema are represented by XML schemas.
The following record schemas are distinguished in SRW: Dublin Core, Onix, MODS,
and MarcXml. The use of XML as a record syntax means that the SRW responses can

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 34

be encoded in RDF/RDFS and thus interoperate with the ARTISTE query ontology
defined in ARTISTE Core as well as the various Collection schemas.

• String Query

SRW specifies string queries. The query language, CQL ("Common Query
Language"), is a human-readable-string query-representation based loosely on CCL
(however just the query, no commands) with access points defined.

• Flat Access Points

Flat access points are defined, rather than utilizing attribute vectors as in traditional
Z39.50. Again this means a better match with the ARTISTE RDF access points which
do not use attribute vectors.

• Static Explain

Explain information will be static. The ARTISTE system was not designed with the
provision of a z39.50 Explain function but the provision of a static set of data about
the system is implementable within the existing architecture.

• XML instead of ASN.1.

XML is used for abstract syntax as well as encoding. ASN.1/BER is not used. Again
the use of XML maps well into the ARTISTE architecture.

5.2.2 Limitations of SRW

However because the SRW initiative is primarily concerned with lowering the barriers to
implementation of z39.50 it does not address all of deficiencies in z39.50 as a basis for an
ARTISTE DQL as outlined above.

To support searching over multiple sites for example, it would be necessary to introduce
an ARTISTE Distributed Query Layer Protocol (DQLP) that carries requests to an
intermediate server that manages the breakdown of the DQLP query into multiple z39.50
SRW requests. The DQLP would most likely use SOAP as a transport protocol. The
intermediate server would also be responsible for the collation of results into a results set,
and the storage of queries and result sets.

It also seems unlikely that it will be possible to include the multi-lingual or controlled
metadata terms in a DQL based on z39.50 SRW firstly because their use depends on
control of the client, not something that is part of the ARTISTE DQL, and secondly
because the SRW specification does not include services to query the server about which
query items are supported. This functionality is available in the complete z39.50
specification and is know as ‘Explain ‘ but is very sparsely supported. The ‘Explain’
functionality in SRW is based on static information only and could not therefore
interrogate the ARTISTE Query Context to discover lists of controlled values or
multilingual labels for metadata attributes. This information is available to users via the
published RDF Collection schemas.

Furthermore having emerged from the digital library community, z39.50 has been
traditionally concerned with text based searching. As a result the CQL query language
proposed by the SRW specification supports metadata based querying but makes no

 ARTISTE - Deliverable D6.1 35 905-0004654 Rev. A 2002-08-13

provision for content based queries. For example there is no provision to specify image
analysers in combination with image operators and the search term is always assumed to
be a text string. Conversely the CQL specification also allows for the formulation of more
complex text queries than ARTISTE is capable of processing. For example the specifying
left and/right truncation of terms is not possible within ARTISTE nor is the specification
of proximity expressed in terms of "word", "sentence", "paragraph", or "element". Such
functionality is not available in the TOR database and therefore not in the ARTISTE
application server.

Finally the SRW protocol is limited because of its draft status. A pre-release of version
1.0 is expected to be available in mid-August 2002 and release 1.0 is due be announced in
early October but at the time of writing the specifications are incomplete and under
frequent revision.

These limitations were addressed by extending the protocol in those areas where it does
not cover image content based querying (notably CQL), and by maintaining close
contact with the members of the ZING group developing the SRW specifications, both
via the ZING mailing list and at various face to face meetings. As an early implementer of
the draft SRW specification [xix]. ARTISTE has given feedback to the community on
implementation and modification of SRW.

5.3 ARTISTE SRW Server
The ARTISTE SRW runs on the Tomcat JSP/servlet container engine[xx] under Apache
[xxi]. The ARTISTE SRW Server receives an request from a client in the form of an
XML message via SOAP/RPC. A W3C submission has proposed an extension to the
SOAP bindings to enable a SOAP 1.1 message to be carried within a MIME
multipart/related message [xxii]. However this is not well supported by existing SOAP
toolkits has not been adopted as part of the SRW protocol so it is not possible to actually
embed a query image in the message sent to the SRW Server. Images are therefore passed
to and from the SRW server by reference using URIs. The SRW Service parses the
request parameters and uses the query ontology described in the ARTISTE Core RDF
schema (Section 2.2.1) to build a corresponding ARTISTE query. If the SRW request
contains an image content based query the ARTISTE SRW Server retrieves the query
image from the specified web server and passes it, along with the RDF specified query, to
the ARTISTE application server. The ARTISTE application server translates the query to
the appropriate SQL and executes it against the database. The results are returned to the
SRW Server which then makes another call on the ARTISTE application server to extract
the metadata associated with the returned results in either the default metadata format
(Dublin Core) or another format specified in the SRW request. The SRW Server the
responds to the SRW request by sending an XML message containing the URL of image
results and RDF encoded metadata back to the client.

The rest of this section describes in more detail the ARTISTE implementation of the
SRW protocol.

5.3.1 Request Parameters

5.3.1.1 Query

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 36

Optional

If neither a query nor a result set id argument is received by the Server the request is
interpreted as an ‘Explain’ request.

If both a query and a result set id argument are received by the Server an error message is
returned. – i.e. it is not possible to execute a query over a subset of the collection.

May be supplied on its own or accompanied any of the following combinations

• record schema, start record, maximum records

• record schema, start record

o the Server decides how may records to return. The ARTISTE SRW
returns 50 records by default

• record schema, maximum records

o the start record is assumed to be 1

• record schema

o the Server decides how may records to return. The ARTISTE SRW
returns 50 records by default.

o the start record is assumed to be 1

• start record, maximum records

o the Server returns records using a default schema. The ARTISTE
SRW default schema is Dublin Core

• start record

o the Server returns records using a default schema. The ARTISTE
SRW default schema is Dublin Core. The Server decides how may
records to return.

o The ARTISTE SRW returns 50 records by default

• maximum records

o the Server returns records using a default schema. The ARTISTE
SRW default schema is Dublin Core.

o the start record is assumed to be 1

The implemented ARTISTE SRW accepts queries specified in either the standard CQL
syntax or the extended version of the syntax known as CAQL (Common ARTISTE Query
Language)

If an invalid query string is received an error message is returned

If a valid query string CQL is received which employs those elements of the CQL syntax
not supported by ARTISTE an error message is returned.

The draft SRW specification states that

 ARTISTE - Deliverable D6.1 37 905-0004654 Rev. A 2002-08-13

The server, upon receiving the request, might execute the query, or might decide that
there is already a stored result set corresponding to the supplied query string … The
server may decide to use retained results rather than re-execute the query, and this
decision is entirely at the server's discretion and is transparent to the protocol.
(http://www.loc.gov/z3950/agency/zing/srw.html)

Upon receipt of a valid query request the ARTISTE SRW always executes that query. If
the client wants to retrieve results from a stored result set they should supply a resultSetId
not a query.

5.3.1.2 Result Set Id

Optional

Again if neither a query nor a result set id argument is received by the Server the request
is interpreted as an ‘Explain’ request.

Again if both a query and a result set id argument are received by the Server an error
message is returned. – i.e. it is not possible to execute a query over a subset of the
collection.

May be supplied on its own or accompanied any of the combinations listed above for
Query

The Result Set Id must have been supplied by the server in an earlier response.

The ARTISTE SRW uses query_run_ids as result set ids.

If an invalid result set id is received (i.e. one for which there is no corresponding record in
the database) an error message is returned. If a valid result set id is received which
contains no results it is processed as normal.

5.3.1.3 Record Schema

Optional.

Ideally the reference to the record schema would be a URI

e.g. http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam.rdf

However the SRW specification mandates single word identifiers such as DC, ONIX or,
MODS . The ARTISTE SRW Servers support reference to record schemas either by
identifier or by URI.

All ARTISTE SRW Servers support the oai_dc record schema. Individual SRW Server
also support the record schemas based on the Collection thesauri for example vam (URI
reference http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam.rdf) or ngl (URI reference
http://artiste.it-innovation.soton.ac.uk/rdf/ngl/ngl.rdf.) The information about which
records schemas a Server supports is read in from the RDF Collection schemas defining
the underlying collection.

If a reference to a schema not supported by the ARTISTE SRW is received an error
message is returned.

5.3.1.4 Start Record

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 38

http://www.loc.gov/z3950/agency/zing/srw.html
http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam.rdf
http://artiste.it-innovation.soton.ac.uk/rdf/vam/vam.rdf

Optional

If omitted Start Record is set to 1.

5.3.1.5 Maximum Records

Optional

If this is set to zero then no records are returned.

If omitted Maximum Records is set to 50.

The ARTISTE SRW imposes a limit on the total number of records that can be returned
an a single response. This limit is set to 100. If the server receives a request for more than
100 records an error message is returned. This constraint is not part of the draft SRW
protocol but following an ARTISTE initiated discussion on the ZING mailing list there
was general approval for its inclusion.

5.3.1.6 Session Id

Optional

The ARTISTE SRW does not support session ids. If the Server receives a session id an
error message is returned.

5.3.2 Response Parameters

5.3.2.1 Response to a valid SRW

The response to a valid SRW request contains:

• Result Set

• Result Set Id

• Number of Records

• Records

The draft SRW specification states that the Result Set also contains

Result Set Idle Time

The ARTISTE SRW does not support this and it is not returned as part of a response.

The draft SRW specification states that

In each Search/Retrieve response the server may include a result set idle time value
indicating a projected (not guaranteed) length of time that the result set will remain
available if it is not referenced. Once the result set is referenced in a subsequent
Search/Retrieve request, that response may include a new value for the result set idle
time. (http://www.loc.gov/z3950/agency/zing/srw.html)

The ARTISTE SRW does not include a result set idle time in the response

 ARTISTE - Deliverable D6.1 39 905-0004654 Rev. A 2002-08-13

http://www.loc.gov/z3950/agency/zing/srw.html

5.3.2.2 Response to an Explain Request

An explain request returns

• Explain

• Comment

• Record Schemas

An invalid request returns

5.3.3 Diagnostics

The draft SRW specification states that

The Z39.50 tradition of providing rich diagnostics is retained in SRW. Thus application
level diagnostics will be defined, not just mappings to lower-level fault codes.
(http://www.loc.gov/z3950/agency/zing/srw.html)

The intention is to use the Bib-1 Diagnostics defined within the Z39.50-1995 Standard
(http://lcweb.loc.gov/z3950/agency/defns/bib1diag.html)

The ARTISTE SRW has not fully implemented the Bib-1 codes but does return
diagnostic error messages according to the suggested schema in
http://www.loc.gov/z3950/agency/zing/service.html

<diagnostic>
<code> code </code>
<text> text </text>
<addInfo> additional information </addInfo>
</diagnostic>

The Bib-1 diagnostics supported by the ARTISTE SRW are listed in Table 2. In other
cases errors are reported as code 999 and an ARTISTE SRW determined Diagnostic
Meaning. These diagnostics are listed in Table 3

Table 2Bib-1 Diagnostics

Code Meaning Additional Info

30 Specified result set does not exist (unspecified)

108 Malformed Query (unspecified)

Table 3ARTISTE Diagnostics

Code Meaning Additional Info

999 ARTISTE SRW
Diagnostic The ARTISTE SRW does not support Session Ids

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 40

http://www.loc.gov/z3950/agency/zing/srw.html
http://lcweb.loc.gov/z3950/agency/defns/bib1diag.html

999 ARTISTE SRW
Diagnostic

The ARTISTE SRW does not support Sort Keys.

999 ARTISTE SRW
Diagnostic

A query request cannot be accompanied by a result set
ID

999 ARTISTE SRW
Diagnostic

Number or records requested exceeds the ARTISTE
SRW limit. The ARTISTE SRW Server returns a
maximum of DEFAULT_MAXIMUM_RECORDS
records.

999 ARTISTE SRW
Diagnostic

The ARTISTE SRW Server does not support the
RECORD_SCHEMA_NAME record schema. A list of
supported record schemas can be obtained by issuing an
'Explain' request

The SRW specification suggests (but does not mandate) non-fatal diagnostics. All errors
are fatal in the ARTISTE SRW.

5.3.4 Common ARTISTE Query Language

This section provides a detailed breakdown of the SRW specified language CQL and
describes those elements supported by the ARTISTE SRW and the extensions made to the
syntax to enable image content based searching. The extended version of CQL is known
as CAQL.

The CQL syntax begins :

cql-query ::= and-expr *("or" and-expr).

and-expr ::= not-expr *("and" not-expr).

not-expr ::= base-expr *("not" base-expr).

base-expr ::= primary | "("cql-query ")".

The ARTISTE DQL cannot support any of these statements since ARTISTE does not
support ‘OR’ or ‘NOT’ statements. Therefore the ARTISTE CAQL will support the
following top level query syntax:

caql-query ::=base-expr *(“and” base-expr)

base-expr::=primary | caql-query

The SRW CQL syntax proceeds to specify

primary ::= result-set-expression | [index-name rel-op] adj-expr

 ARTISTE - Deliverable D6.1 41 905-0004654 Rev. A 2002-08-13

The ARTISTE CAQL expands this to provide support for image content queries

primary ::=result-set-expression | [index-name rel-op] adj-expr |
index-name img-op img-analyser img-exp

 The SRW CQL specification of result-set-expression and index-name remains unchanged
in the ARTISTE CAQL

The SRW CQL syntax specifies

rel-op ::= "=" | "<" | "<=" | ">" | ">=" | "<>"|"fuzzy"|
"stem"|"relevance"

The ARTISTE DQL only supports equals and contains operators, therefore the CAQL
specifies

rel-op ::=”=” | "<" | "<=" | ">" | ">="

The ARTISTE CAQL further specifies those elements necessary to an image content
query

img-op ::= “SimilarTo” | “PartOf”

img-analyser ::= identifier

img-expr ::= url

The SRW CQL includes the ability to specify “sameParagraph” and “sameSentence”
queries. The ARTISTE does not support such queries. Nor does the ARTISTE support
the ‘OR’ and ‘NOT’ statements used in the CQL adj-primary, and-term, and
not-term elements. Therefore the ARTISTE CAQL specifies a much simpler version
of the CQL adj-expr:

adj-expr ::=term *(“and” adj-expr)

term ::=identifier|quoted-string-literal

There is no similar concept in relation to image expressions because ARTISTE does not
support the use of multiple image analysers in a single querying it is not possible to say
“Find me image similar to the colour content of this image which are also similar to the
colour content of this other image”

The entire BNF for the CAQL syntax is available in Appendix C.

5.3.4.1 Example CAQL Queries

dc.Title = advise “and” consent and bath.AuthorWord = drury (taken from SRW
Example)

dc.Creator contains Vinci and artisteCore.VisibleLightImage SimilarTo CCV
http://artiste.it-innovation.soton.ac.uk/test_images/test.jpg

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 42

http://artiste.it-innovation.soton.ac.uk/test_images/test.jpg

dc.Subject = TEXTILE and artisteCore.VisibleLightImage part of MCCV http://artiste.it-
innovation.soton.ac.uk/test_images/test.jpg and dc.Creator contains Morris and William

The attribute/value part of the may be either an RDF URI pointing to an element as
defined in a schema supported by ARTISTE e.g.

http://artiste.it-innovation.soton.ac.uk/test_rdf/dc.rdf#title

http://artiste.it-innovation.soton.ac.uk/test_rdf/vam/vam.rdf#PictureReference

Alternatively it may be a z39.50 IndexSet.IndexCode construction using the Bib-1
Attribute Set eg

 Bib-1.1100

 Bib-1.1103

In this case the Bib-1 code is mapped via a Bib-1 RDF schema (http://artiste.it-
innovation.soton.ac.uk/test_rdf/bib1.rdf) to the local database schema.

5.4 Summary of SRW support for ARTISTE functionality
As illustrated in Table 4 although the SRW does not support all the elements of the
ARTISTE metadata and image content based searching functionality it does expose a
powerful subset of that functionality.

Table 4 Comparison of Artiste distributed search and retrieval functionality with
ARTISTE SRW

ARTISTE metadata and image content based
searching functionality

Supported by ARTISTE
SRW

Metadata Query Y

Image Query Y

Query Across Multiple Databases Y

Query Across Multiple Sites N

Query Using Multiple Metadata Terms Y

Query Using Metadata Terms & A Query Image Y

Query Using Controlled Metadata Terms N

Query Using Multilingual Metadata Terms N

Save a Query N

Delete a Query N

Browse Query Runs and Retrieve Results for a
Query

N

 ARTISTE - Deliverable D6.1 43 905-0004654 Rev. A 2002-08-13

http://artiste.it-innovation.soton.ac.uk/test_images/test.jpg and dc.Creator
http://artiste.it-innovation.soton.ac.uk/test_images/test.jpg and dc.Creator
http://artiste.it-innovation.soton.ac.uk/test_rdf/dc.rdf
http://artiste.it-innovation.soton.ac.uk/test_rdf/bib1.rdf
http://artiste.it-innovation.soton.ac.uk/test_rdf/bib1.rdf

Support dynamics of new & changing metadata Y

Furthermore some of those aspects of ARTISTE metadata and image content based
searching functionality which are not directly supported by the SRW protocol are in fact
indirectly enabled.

Firstly although the user cannot explicitly save or delete queries or browse query runs, the
fact that the SRW Service returns a result_set_id as part of each response does mean that
results for a query can be retrieved and the records iterated over. Secondly although each
SRW Server communicates with a single site the protocol is designed to allow
amalgamation of request to different SRW Servers. Thus a gateway to all the ARTISTE
SRW Servers could be constructed (in fact this is the function performed by the
ARTISTE application server which issues requests to the distributed databases via SRW
and then collects the results before returning then to the user). Thirdly although the SRW
interface does not explicitly expose the multilingual thesauri these are available on the
web and users of the SRW are free to consult the RDF document in the creation of their
queries.

The implementation of the SRW protocol therefore enables the ARTISTE system to
execute metadata and image content based queries over distributed collections using a
standard messaging and query protocol.

Equally importantly, support for the SRW protocol means that ARTISTE exposes a
standard interface for the open query and retrieval of images across multiple collections.

5.5 ARTISTE SRW Client
The service can be accessed via standalone client which takes the following arguments
via a command line interface.
 -p port number
 -q query
 -k record schema
 -r result set id
 -b start record
 -m maximum records
 -j session id
 -c sortKey

Figure 5-2and Figure 5-3 show a sample request and response to the ARTISTE SRW
Server using the DQLCLient. Figure 5-4 shows one of the images returned in the
response, accessed by following the URL returned in the <VisibleLightImage> element.

A public version of this client accessing the ARTISTE dissemination system is available
at http://artiste.it-innovation.soton.ac.uk/servlet/DQLServlet.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 44

POST /axis/servlet/AxisServlet HTTP/1.0

Content-Length: 1005

Host: localhost

Content-Type: text/xml; charset=utf-8

SOAPAction: ""

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-
ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-
ENC="http://schemas.xmlsoap.org/soap/encoding/">

 <SOAP-ENV:Body>

 <ns1:searchRetrieve xmlns:ns1="SrwService">

 <query xsi:type="xsd:string">http://artiste.it-
innovation.soton.ac.uk/test_rdf/oai_dc.rdf#subject = 'WEDDING DRESS'
AND http://artiste.it-
innovation.soton.ac.uk/test_rdf/ARTISTECore.rdf#VisibleLightImage SimilarTo CCV
http://artiste.it-innovation.soton.ac.uk/test_images/test.jpg</query>

 <startRecord xsi:type="xsd:int">-1</startRecord>

 <maximumRecords xsi:type="xsd:int">3</maximumRecords>

 <recordSchema xsi:nil="true"/>

 <resultSetId xsi:nil="true"/>

 <sessionId xsi:nil="true"/>

 <sortKey xsi:nil="true"/>

 </ns1:searchRetrieve>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Figure 5-2 Example Request to the ARTISTE SRW

 ARTISTE - Deliverable D6.1 45 905-0004654 Rev. A 2002-08-13

 ARTISTE - Deliverable D6.1
 <DublinCoreSource>CT41073</DublinCoreSource>

905-0004654 Rev. A 2002-08-13 46

<?xml version="1.0" encoding="UTF-8"?>

<SOAP-ENV:Envelope xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <SOAP-ENV:Body>

 <ns1:searchRetrieveResponse SOAP-
ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:ns1="SrwService">

 <searchRetrieveResult xsi:type="ns2:Element"
xmlns:ns2="http://xml.apache.org/xml-soap">

 <resultSet>

 <resultSetId>654</resultSetId>

 <numberOfRecords>7</numberOfRecords>

 <records>

 <record>

 <recordSchema>oai_dc</recordSchema>

 <recordData>

 <VisibleLightImage>http://huxelrebe.it-
innovation.soton.ac.uk/servlet/RetrieveImageServlet?imageId=39011&siteId=Sample
</VisibleLightImage>

 <DublinCoreOtherContributors>taylorc</DublinCoreOtherContributors>

 <DublinCoreSubject>WEDDING DRESS</DublinCoreSubject>

 <DublinCoreSource>CT41072</DublinCoreSource>

 <DublinCoreCreator>Posy detail from a Gina Fratini wedding dress comprising
of a cream silk smocked organza dress trimmed with 19th century lace, plus a cap
and posyGiven by Miss Gina Fratini.c.1970</DublinCoreCreator>

 <DublinCoreTitle>Posy detail from a Gina Fratini wedding dress comprising
of a cream silk smocked organza dress trimmed with 19th century lace, plus a cap
and posyGiven by Miss Gina Fratini.c.1970</DublinCoreTitle>

 <DublinCoreIdentifier>pcd658116310757-068</DublinCoreIdentifier>

</recordData>

</record>

 <record>

 <recordSchema>oai_dc</recordSchema>

 <recordData>

 <VisibleLightImage>http://huxelrebe.it-
innovation.soton.ac.uk/servlet/RetrieveImageServlet?imageId=39012&siteId=Sample
</VisibleLightImage>

 <DublinCoreOtherContributors>taylorc</DublinCoreOtherContributors>

 <DublinCoreSubject>WEDDING DRESS</DublinCoreSubject>

 <DublinCoreCreator>Cap detail from a Gina Fratini wedding dress
comprising of a cream silk smocked organza dress trimmed with 19th century lace,
plus a cap and posy. Given by Miss Gina Fratini.c.1970</DublinCoreCreator>

 <DublinCoreTitle>Cap detail from a Gina Fratini wedding dress comprising

Figure 5-3Example Response to a request to the ARTISTE SRW

Figure 5-4 Image retrieved as part of SRW Record.

 ARTISTE - Deliverable D6.1 47 905-0004654 Rev. A 2002-08-13

6. Impact on Standards

The ARTISTE approach is to use existing standards and technologies where possible for
metadata structuring and translation. This underpins an open standards approach to
providing an open interface for metadata harvesting and image search and retrieval.

Throughout the project, ARTISTE as tracked appropriate standards and has provided
feedback to the community of users of those standards on how the standards could be
improved to support images as well as textual information.

More information on ARTISTE impact on international standards for metadata and
information retrieval can be found in ARTISTE Deliverable 6.2 [xxiii] which also
includes a series of high level observations and recommendations concerning digital
library standards.

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 48

7. Conclusion

The exploitation of cultural image collections is limited because of a lack of relevant
metadata to describe the images, lack of conformance to common schema for metadata
that does exist, and lack of appropriate and convenient access methods. The ARTISTE
project has addressed these issues not simply by providing access through a single
application but the incorporating the ability to deal with content based searching into
international standards of information retrieval.

ARTISTE aimed to increase the interoperability of diverse, distributed collections and
thus make it possible to use a single interface to, quickly and transparently, search and
browse the wealth of digital image information the collections contain as if they were a
single entity. The approach we have taken in ARTISTE is to use existing standards and
technologies where possible for metadata structuring and translation. ARTISTE makes
considerable use of existing open metadata standards such as Dublin Core and RDF
Schema. ARTISTE also uses the framework of RDF to enable multilingual access to
metadata and metadata thesauri thus addressing another key interoperability issue.

The standards based approach to improving metadata interoperability and access in turn
underpins an open standards approach to providing an open interface for metadata
harvesting and image search and retrieval. Access to metadata is supported through the
Open Archive Initiative (OAI) information retrieval standard for distributed access. A
z39.50 based approach for a Search and Retrieve Web service (SRW) is used to provide
open query and retrieval of images across multiple collections.

Therefore the image collections in an ARTISTE system are not only interoperable with
the other ARTISTE image collections, through the ARTISTE system they also become
accessible to many cultural heritage systems and digital library repositories which support
the same standards and image retrieval protocols.

 ARTISTE - Deliverable D6.1 49 905-0004654 Rev. A 2002-08-13

8. References

[1] 1 www.artisteweb.org
[2] 1 Addis, M., Lewis, P., Martinez, K. "ARTISTE image retrieval system puts

European galleries in the picture", Cultivate Interactive, issue 7, 11 July 2002
http://www.cultivate-int.org/issue7/artiste/

[3] 1 www.sculpteurweb.org
[4] 1 ARTISTE Deliverable D8.3 System Integration, IT Innovation Centre, 2002.
[5] 1 A. Michard, V. Christophides, M. Scholl, M. Stapleton, D. Sutcliffe, A.M.

Vercoustre, “The Aquarelle resource discovery system”, Computer Networks
and ISDN Systems, Vol. 30, 1185-1200, 1998.

[6] 1 Resource Description Framework (RDF) Model and Syntax Specification,
W3C Recommendation 22 February 1999, http://www.w3.org/TR/REC-rdf-
syntax/

[7] 1 Resource Description Framework (RDF) Schema Specification 1.0, W3C
Candidate Recommendation 27 March 2000, http://www.w3.org/TR/rdf-
schema/

[8] 1 W3C RDF Validation Service http://www.w3.org/RDF/Validator/
[9] 1 Dublin Core Metadata Element Set, Version 1.1: Reference Description
[10] http://dublincore.org/documents/dces/
[11] 1 Dublin Core. RDF Schema declaration for the Dublin Core Element Set 1.1
[12] http://purl.org/dc/elements/1.1/
[13] 1 Yves Lafon, Bert Bos, Describing and retrieving photos using RDF and

HTTP, 2002 http://www.w3.org/TR/photo-rdf/
[14] 1 SiRPAC RDF Parser http://www-db.stanford.edu/~melnik/rdf/api.html
[15] 1 IEFT RFC 1766 Tags for the Identification of Languages

http://www.ietf.org/rfc/rfc1766.txt?number=1766
[16] 1 Xmethods BabelFish Web Service

http://www.xmethods.com/ve2/ViewListing.po;jsessionid=NLV1Eophdnjdkr
YScwfNuTWI(QhxieSRM)?serviceid=14

[17] 1 CERES and National Biological Information Infrastructure (NBII)
Biological Resources Division (BRD) Draft RDF Server Standard
Documentation http://ceres.ca.gov/thesaurus/RDF.html

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 50

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/RDF/Validator/
http://dublincore.org/documents/dces/
http://purl.org/dc/elements/1.1/
http://www-db.stanford.edu/~melnik/rdf/api.html
http://www.ietf.org/rfc/rfc1766.txt?number=1766
http://www.xmethods.com/ve2/ViewListing.po;jsessionid=NLV1EophdnjdkrYScwfNuTWI(QhxieSRM)?serviceid=14
http://www.xmethods.com/ve2/ViewListing.po;jsessionid=NLV1EophdnjdkrYScwfNuTWI(QhxieSRM)?serviceid=14
http://ceres.ca.gov/thesaurus/RDF.html

[18] 1 XML Writer v.02 is a Java utility class written by Dave Megginson which
extends the Java the XMLFilterImpl
class(http://www.megginson.com/Software/)

[19] 1 XML Schema for Validating Responses to OAI-PMH Requests
http://www.openarchives.org/OAI/openarchivesprotocol.html#OAIPMHsche
ma

[20] 1 National Information Standards Organisation, Z39.50 Information Retrieval
Protocol http://www.niso.org/z3950.html, 1998.

[21] 1 Knowledge Integration http://www.k-int.com/jzkit
[22] 1 ARTISTE is an early implementer of the SRW protocol

http://www.loc.gov/z3950/agency/zing/srwu/implementors.html
[23] 1 Tomcat http://jakarta.apache.org/tomcat/
[24] 1 Apache http://httpd.apache.org/
[25] 1 “SOAP Messages with Attachments” John J. Barton, Hewlett Packard Labs
[26] Satish Thatte, Microsoft, Henrik Frystyk Nielsen, Microsoft

http://www.w3.org/TR/SOAP-attachments
[27] 1 “Impact on World-wide Metadata Standards”, ARTISTE Deliverable D6.2,

IT Innovation Centre

 ARTISTE - Deliverable D6.1 51 905-0004654 Rev. A 2002-08-13

http://www.niso.org/z3950.html
http://www.w3.org/TR/SOAP-attachments

Appendix A. ARTISTE Core RDF
Schema

 <?xml version="1.0" ?>

- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"
xmlns:ac="http://artiste.it-
innovation.soton.ac.uk/rdf/ArtisteCore.rdf#">

- <!-- - ARTISTE SCHEMA

 -->

- <!-- - QueryItem

 -->

- <rdfs:Class rdf:ID="QueryItem">

 <rdfs:subClassOf rdf:resource="http://www.w3.org/1999/02/22-rdf-
syntax#Property" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="Image">

 <rdfs:subClassOf rdf:resource="#QueryItem" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="Colour">

 <rdfs:subClassOf rdf:resource="#QueryItem" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="Attribute">

 <rdfs:subClassOf rdf:resource="#QueryItem" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="TextAttribute">

 <rdfs:subClassOf rdf:resource="#Attribute" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="IntegerAttribute">

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 52

 <rdfs:subClassOf rdf:resource="#Attribute" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="RealAttribute">

 <rdfs:subClassOf rdf:resource="#Attribute" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="DateAttribute">

 <rdfs:subClassOf rdf:resource="#Attribute" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="FeatureVectorAttribute">

 <rdfs:subClassOf rdf:resource="#Attribute" />

 </rdfs:Class>

 <rdfs:Property rdf:ID="WholeImage" />

- <rdfs:Property rdf:ID="VisibleLightImage">

 <rdfs:label xml:lang="en">en:Visible Light Image</rdfs:label>

 </rdfs:Property>

- <rdfs:Property rdf:ID="FeatureVector">

 <rdfs:label xml:lang="en">en:FeatureVector</rdfs:label>

 </rdfs:Property>

- <rdfs:Property rdf:ID="SubImage">

 </rdfs:Property>

- <rdfs:Property rdf:ID="PrincipalColour">

 </rdfs:Property>

- <!-- - QueryOperator

 -->

- <rdfs:Class rdf:ID="QueryOperator">

 </rdfs:Class>

- <rdfs:Class rdf:ID="SimilarTo">

 <rdfs:subClassOf rdf:resource="#QueryOperator" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="PartOf">

 <rdfs:subClassOf rdf:resource="#QueryOperator" />

 </rdfs:Class>

 ARTISTE - Deliverable D6.1 53 905-0004654 Rev. A 2002-08-13

- <rdfs:Class rdf:ID="Equals">

 <rdfs:subClassOf rdf:resource="#QueryOperator" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="Like">

 <rdfs:subClassOf rdf:resource="#QueryOperator" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="LessThan">

 <rdfs:subClassOf rdf:resource="#QueryOperator" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="GreaterThan">

 <rdfs:subClassOf rdf:resource="#QueryOperator" />

 </rdfs:Class>

- <rdf:Property rdf:ID="AllowedSubject">

 <rdfs:domain rdf:resource="#QueryOperator" />

 <rdfs:range rdf:resource="#QueryItem" />

 </rdf:Property>

- <rdf:Property rdf:ID="AllowedObject">

 <rdfs:domain rdf:resource="#QueryOperator" />

 <rdfs:range rdf:resource="#QueryItem" />

 </rdf:Property>

- <rdfs:Class rdf:ID="QueryExpressionRule">

 </rdfs:Class>

- <ac:QueryExpressionRule rdf:ID="SimilarImage">

 <ac:QueryOperator>#SimilarTo</ac:QueryOperator>

 <ac:AllowedSubject>#Image</ac:AllowedSubject>

 <ac:AllowedObject>#Image</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="SimilarColour">

 <ac:QueryOperator>#SimilarTo</ac:QueryOperator>

 <ac:AllowedSubject>#Colour</ac:AllowedSubject>

 <ac:AllowedObject>#Colour</ac:AllowedObject>

 </ac:QueryExpressionRule>

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 54

- <ac:QueryExpressionRule rdf:ID="SimilarSubImage">

 <ac:QueryOperator>#PartOf</ac:QueryOperator>

 <ac:AllowedSubject>#Image</ac:AllowedSubject>

 <ac:AllowedObject>#Image</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="SimilarFeatureVector">

 <ac:QueryOperator>#SimilarTo</ac:QueryOperator>

 <ac:AllowedSubject>#FeatureVectorAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#FeatureVectorAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="TextEquals">

 <ac:QueryOperator>#Equals</ac:QueryOperator>

 <ac:AllowedSubject>#TextAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#TextAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="TextLike">

 <ac:QueryOperator>#Like</ac:QueryOperator>

 <ac:AllowedSubject>#TextAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#TextAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="RealEquals">

 <ac:QueryOperator>#Equals</ac:QueryOperator>

 <ac:AllowedSubject>#RealAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#RealAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="RealLessThan">

 <ac:QueryOperator>#LessThan</ac:QueryOperator>

 <ac:AllowedSubject>#RealAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#RealAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="RealGreaterThan">

 <ac:QueryOperator>#GreaterThan</ac:QueryOperator>

 ARTISTE - Deliverable D6.1 55 905-0004654 Rev. A 2002-08-13

 <ac:AllowedSubject>#RealAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#RealAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="IntegerEquals">

 <ac:QueryOperator>#Equals</ac:QueryOperator>

 <ac:AllowedSubject>#IntegerAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#IntegerAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="IntegerLessThan">

 <ac:QueryOperator>#LessThan</ac:QueryOperator>

 <ac:AllowedSubject>#IntegerAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#IntegerAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <ac:QueryExpressionRule rdf:ID="IntegerGreaterThan">

 <ac:QueryOperator>#GreaterThan</ac:QueryOperator>

 <ac:AllowedSubject>#IntegerAttribute</ac:AllowedSubject>

 <ac:AllowedObject>#IntegerAttribute</ac:AllowedObject>

 </ac:QueryExpressionRule>

- <!-- - Analyser

 -->

- <rdfs:Class rdf:ID="Analyser">

 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/rdf-
schema#Resource" />

 </rdfs:Class>

- <rdf:Property rdf:ID="AnalyserAppliesTo">

 <rdfs:domain rdf:resource="#Analyser" />

 <rdfs:range rdf:resource="#QueryExpressionRule" />

 </rdf:Property>

- <!-- Schema

 -->

- <rdfs:Class rdf:ID="Schema">

 </rdfs:Class>

- <rdfs:Class rdf:ID="Thesaurus">

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 56

 <rdfs:subClassOf rdf:resource="#Schema" />

 <rdfs:isDefinedBy rdf:resource="http://artiste.it-
innovation.soton.ac.uk/rdf/thesaurus.rdf" />

 </rdfs:Class>

- <rdfs:Class rdf:ID="MetadataSchema">

 <rdfs:subClassOf rdf:resource="#Schema" />

 <rdfs:isDefinedBy rdf:resource="http://artiste.it-
innovation.soton.ac.uk/rdf/ArtisteCore.rdf#MetadataSchema" />

 </rdfs:Class>

- <!-- - General classes and properties

 -->

- <rdfs:Class rdf:ID="URI">

 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/rdf-
schema#Resource" />

 </rdfs:Class>

- <rdf:Property rdf:ID="Name">

 </rdf:Property>

- <rdf:Property rdf:ID="Description">

 </rdf:Property>

- <rdf:Property rdf:ID="Hostname">

 </rdf:Property>

- <rdf:Property rdf:ID="Port">

 </rdf:Property>

- <!-- - Site

 -->

- <rdfs:Class rdf:ID="Site">

 <rdfs:subClassOf rdf:resource="http://www.w3.org/TR/rdf-
schema#Resource" />

 </rdfs:Class>

- <rdf:Property rdf:ID="SiteName">

 <rdfs:subPropertyOf rdf:resource="#Name" />

 <rdfs:domain rdf:resource="#Site" />

 <rdfs:range rdf:resource="http://www.w3.org/TR/rdf-
schema#Literal" />

 </rdf:Property>

 ARTISTE - Deliverable D6.1 57 905-0004654 Rev. A 2002-08-13

- <rdf:Property rdf:ID="SiteDescription">

 <rdfs:subPropertyOf rdf:resource="#Description" />

 <rdfs:domain rdf:resource="#Site" />

 <rdfs:range rdf:resource="http://www.w3.org/TR/rdf-
schema#Literal" />

 </rdf:Property>

- <rdf:Property rdf:ID="SiteSchemaLocation">

 <rdfs:domain rdf:resource="#Site" />

 <rdfs:range rdf:resource="#URI" />

 </rdf:Property>

 </rdf:RDF>

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 58

Appendix B. Dublin Core RDF Schema
 <?xml version="1.0" ?>

- <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs="http://www.w3.org/TR/rdf-schema#"
xmlns:dc="http://artiste.it-
innovation.soton.ac.uk/test_rdf/dc.rdf#">

- <rdf:Description rdf:about="">

 <dc:title>The Dublin Core Element Set</dc:title>

 <dc:creator>The Dublin Core Metadata Inititative</dc:creator>

 <dc:description>The Dublin Core is a simple metadata element set
intended to facilitate discovery of electronic
resources.</dc:description>

 <dc:date>1995-03-01</dc:date>

 </rdf:Description>

- <rdf:Description ID="title">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Title</rdfs:label>

 <rdfs:label xml:lang="fr">fr:Dublin Core Titre</rdfs:label>

 <rdfs:label xml:lang="it">it:Dublin Core Titolo</rdfs:label>

 <rdfs:comment xml:lang="en">en:The name given to the resource,
usually by the Creator or Publisher.</rdfs:comment>

 <rdfs:comment xml:lang="fr">fr:Typiquement, un titre sera le nom
par lequel la ressource est officiellement connue.</rdfs:comment>

 <rdfs:comment xml:lang="it">it:Un nome dato alla
risorsa</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="creator">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Creator</rdfs:label>

 ARTISTE - Deliverable D6.1 59 905-0004654 Rev. A 2002-08-13

 <rdfs:label xml:lang="fr">fr:Dublin Core Createur</rdfs:label>

 <rdfs:label xml:lang="it">it:Dublin Core Creatore</rdfs:label>

 <rdfs:comment xml:lang="en">en:The person or organization
primarily responsible for creating the intellectual content of the
resource. For example, authors in the case of written documents,
artists, photographers, or illustrators in the case of visual
resources.</rdfs:comment>

 <rdfs:comment xml:lang="fr">fr:Exemples de Createur incluent une
personne, une organisation, ou un service. Typiquement, un nom du
Createur devrait etre utilise pour designer cette
entite.</rdfs:comment>

 <rdfs:comment xml:lang="it">it:L argomento della
risorsa.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="subject">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Subject</rdfs:label>

 <rdfs:label xml:lang="fr">fr:Dublin Core Sujet et mots-
clefs</rdfs:label>

 <rdfs:label xml:lang="it">it:Dublin Core Soggetto e Parole
chiave</rdfs:label>

 <rdfs:comment xml:lang="en">en:The topic of the resource.
Typically, subject will be expressed as keywords or phrases that
describe the subject or content of the resource. The use of
controlled vocabularies and formal classification schemes is
encouraged.</rdfs:comment>

 <rdfs:comment xml:lang="fr">fr:Le sujet du contenu de la
ressource.</rdfs:comment>

 <rdfs:comment xml:lang="it">it:L argomento della
risorsa.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="description">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core
Description</rdfs:label>

 <rdfs:label xml:lang="fr">fr:Dublin Core
Description</rdfs:label>

 <rdfs:label xml:lang="it">it:Dublin Core Titolo</rdfs:label>

 <rdfs:comment xml:lang="en">en: A textual description of the
content of the resource, including abstracts in the case of

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 60

document-like objects or content descriptions in the case of
visual resources.</rdfs:comment>

 <rdfs:comment xml:lang="fr">fr:Une description du contenu de la
ressource.</rdfs:comment>

 <rdfs:comment xml:lang="it">it:Una spiegazione del contenuto
della risorsa</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="publisher">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Publisher</rdfs:label>

 <rdfs:comment xml:lang="en">en:The entity responsible for making
the resource available in its present form, such as a publishing
house, a university department, or a corporate
entity.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="contributor">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Other
Contributors</rdfs:label>

 <rdfs:comment xml:lang="en">en:A person or organization not
specified in a Creator element who has made significant
intellectual contributions to the resource but whose contribution
is secondary to any person or organization specified in a Creator
element (for example, editor, transcriber, and
illustrator).</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="type">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Type</rdfs:label>

 <rdfs:comment xml:lang="en">en:The category of the resource,
such as home page, novel, poem, working paper, technical report,
essay, dictionary. For the sake of interoperability, Type should
be selected from an enumerated list that is currently under
development in the workshop series.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="format">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 ARTISTE - Deliverable D6.1 61 905-0004654 Rev. A 2002-08-13

 <rdfs:label xml:lang="en">en:Dublin Core Format</rdfs:label>

 <rdfs:comment xml:lang="en">en:The data format of the resource,
used to identify the software and possibly hardware that might be
needed to display or operate the resource. For the sake of
interoperability, Format should be selected from an enumerated
list that is currently under development in the workshop
series.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="identifier">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Identifier</rdfs:label>

 <rdfs:comment xml:lang="en">en:A string or number used to
uniquely identify the resource. Examples for networked resources
include URLs and URNs (when implemented). Other globally-unique
identifiers, such as International Standard Book Numbers (ISBN) or
other formal names are also candidates for this
element.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="source">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Source</rdfs:label>

 <rdfs:comment xml:lang="en">en:Information about a second
resource from which the present resource is derived. While it is
generally recommended that elements contain information about the
present resource only, this element may contain a date, creator,
format, identifier, or other metadata for the second resource when
it is considered important for discovery of the present resource;
recommended best practice is to use the Relation element instead.
For example, it is possible to use a Source date of 1603 in a
description of a 1996 film adaptation of a Shakespearean play, but
it is preferred instead to use Relation "IsBasedOn" with a
reference to a separate resource whose description contains a Date
of 1603. Source is not applicable if the present resource is in
its original form.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="language">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Language</rdfs:label>

 <rdfs:comment xml:lang="en">en:The language of the intellectual
content of the resource. Where practical, the content of this
field should coincide with RFC 1766 [Tags for the Identification

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 62

of Languages, http://ds.internic.net/rfc/rfc1766.txt]; examples
include en, de, es, fi, fr, ja, th, and zh.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="relation">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Relation</rdfs:label>

 <rdfs:comment xml:lang="en">en:An identifier of a second
resource and its relationship to the present resource. This
element permits links between related resources and resource
descriptions to be indicated. Examples include an edition of a
work (IsVersionOf), a translation of a work (IsBasedOn), a chapter
of a book (IsPartOf), and a mechanical transformation of a dataset
into an image (IsFormatOf). For the sake of interoperability,
relationships should be selected from an enumerated list that is
currently under development in the workshop series.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="coverage">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Coverage</rdfs:label>

 <rdfs:comment xml:lang="en">en:The spatial or temporal
characteristics of the intellectual content of the resource.
Spatial coverage refers to a physical region (e.g., celestial
sector); use coordinates (e.g., longitude and latitude) or place
names that are from a controlled list or are fully spelled out.
Temporal coverage refers to what the resource is about rather than
when it was created or made available (the latter belonging in the
Date element); use the same date/time format (often a range) [Date
and Time Formats (based on ISO8601), W3C Technical Note,
http://www.w3.org/TR/NOTE-datetime] as recommended for the Date
element or time periods that are from a controlled list or are
fully spelled out.</rdfs:comment>

 </rdf:Description>

- <rdf:Description ID="rights">

 <rdf:type rdf:resource="http://www.w3.org/TR/REC-rdf-
syntax#Property" />

 <rdfs:label xml:lang="en">en:Dublin Core Rights</rdfs:label>

 <rdfs:comment xml:lang="en">en:A rights management statement, an
identifier that links to a rights management statement, or an
identifier that links to a service providing information about
rights management for the resource.</rdfs:comment>

 </rdf:Description>

 </rdf:RDF>

 ARTISTE - Deliverable D6.1 63 905-0004654 Rev. A 2002-08-13

Appendix C. BNF for CAQL Syntax
caql-query ::=base-expre *(“and” base-expr)

base-expr::=primary | caql-query

primary ::=result-set-expression | [index-name rel-op] adj-
expr | index-name img-op img-analyser img-exp

result-set-expression ::=”resultSet =” identifier

index-name ::= [index-prefix “.”]index-base-name

index-base-name ::= identifier

index-prefix ::=identifier

rel-op ::=”=”|”contains”

img-op ::= “SimilarTo” | “PartOf”

img-analyser ::= identifier

img-expr ::= url

adj-expr ::=term *(“and” adj-expr)

term ::=identifier|quoted-string-literal

Identifiers and Literals
An identifier is a sequence of letters, digits, and underscores. Quoted string literals are
required for terms containing any other characters, and start with a double-quote and end
with a matching closing double-quote. To allow double-quotes to be embedded in a
string, two double-quotes in a row generate a single literal double-quotes character
without terminating the string literal

URL

protocol://hostname/pathname

 ARTISTE - Deliverable D6.1 905-0004654 Rev. A 2002-08-13 64

 ARTISTE - Deliverable 65 905-0004654 Rev. A 2002-08-13

 D6.1

Reserved Words
The following are reserved words and so must be quoted if used as text in a term. As
reserved words they are case-insensitive.

and

resultSet

SimilarTo

Part of

Contains

i www.artisteweb.org
ii Addis, M., Lewis, P., Martinez, K. "ARTISTE image retrieval system puts
European galleries in the picture", Cultivate Interactive, issue 7, 11 July 2002
http://www.cultivate-int.org/issue7/artiste/
iii www.sculpteurweb.org
iv ARTISTE Deliverable D8.3 System Integration, IT Innovation Centre, 2002.
v A. Michard, V. Christophides, M. Scholl, M. Stapleton, D. Sutcliffe, A.M.
Vercoustre, “The Aquarelle resource discovery system”, Computer Networks and
ISDN Systems, Vol. 30, 1185-1200, 1998.
vi Resource Description Framework (RDF) Model and Syntax Specification, W3C
Recommendation 22 February 1999, http://www.w3.org/TR/REC-rdf-syntax/
vii Resource Description Framework (RDF) Schema Specification 1.0, W3C
Candidate Recommendation 27 March 2000, http://www.w3.org/TR/rdf-schema/
viii Dublin Core Metadata Element Set, Version 1.1: Reference Description
http://dublincore.org/documents/dces/
ix Dublin Core. RDF Schema declaration for the Dublin Core Element Set 1.1
 http://purl.org/dc/elements/1.1/
x Yves Lafon, Bert Bos, Describing and retrieving photos using RDF and HTTP,
2002 http://www.w3.org/TR/photo-rdf/
xi SiRPAC RDF Parser http://www-db.stanford.edu/~melnik/rdf/api.html
xii IEFT RFC 1766 Tags for the Identification of Languages
http://www.ietf.org/rfc/rfc1766.txt?number=1766
xiii Xmethods BabelFish Web Service
http://www.xmethods.com/ve2/ViewListing.po;jsessionid=NLV1EophdnjdkrYSc
wfNuTWI(QhxieSRM)?serviceid=14
xiv CERES and National Biological Information Infrastructure (NBII) Biological
Resources Division (BRD) Draft RDF Server Standard Documentation
http://ceres.ca.gov/thesaurus/RDF.html
xv XML Writer v.02 is a Java utility class written by Dave Megginson which
extends the Java the XMLFilterImpl class(http://www.megginson.com/Software/)

http://www.w3.org/TR/REC-rdf-syntax/
http://www.w3.org/TR/rdf-schema/
http://dublincore.org/documents/dces/
http://purl.org/dc/elements/1.1/
http://www-db.stanford.edu/~melnik/rdf/api.html
http://www.ietf.org/rfc/rfc1766.txt?number=1766
http://www.xmethods.com/ve2/ViewListing.po;jsessionid=NLV1EophdnjdkrYScwfNuTWI(QhxieSRM)?serviceid=14
http://www.xmethods.com/ve2/ViewListing.po;jsessionid=NLV1EophdnjdkrYScwfNuTWI(QhxieSRM)?serviceid=14
http://ceres.ca.gov/thesaurus/RDF.html

 ARTISTE - Deliverable 905-0004654 Rev. A 2002-08-13 66

 D6.1

xvi XML Schema for Validating Responses to OAI-PMH Requests
http://www.openarchives.org/OAI/openarchivesprotocol.html#OAIPMHschema
xvii National Information Standards Organisation, Z39.50 Information Retrieval
Protocol http://www.niso.org/z3950.html, 1998.
xviii Knowledge Integration http://www.k-int.com/jzkit
xix ARTISTE is an early implementor of the SRW protocol
http://www.loc.gov/z3950/agency/zing/srwu/implementors.html
xx Tomcat http://jakarta.apache.org/tomcat/
xxi Apache http://httpd.apache.org/
xxii “SOAP Messages with Attachments” John J. Barton, Hewlett Packard Labs
Satish Thatte, Microsoft, Henrik Frystyk Nielsen, Microsoft
http://www.w3.org/TR/SOAP-attachments
xxiii “Impact on World-wide Metadata Standards”, ARTISTE Deliverable D6.2,
IT Innovation Centre

http://www.niso.org/z3950.html
http://www.w3.org/TR/SOAP-attachments

	Document Changes
	Reviewers of Current Revision
	Conventions Used in This Document
	Trademarks
	Control Information
	Introduction
	ARTISTE Project Overview
	ARTISTE System Overview
	Report Structure

	Metadata
	Metadata Storage
	RDF Mapping
	ARTISTE Core Schema
	Dublin Core Schema

	Multilingual Metadata
	Thesauri
	Simple Controlled Vocabularies
	Controlled Vocabularies using Codes
	Multilingual Controlled Vocabularies
	Issues and Solutions

	Dynamic Generation of Metadata
	Automatic Classification
	Integration through RDF
	ARTISTE General Metadata Schema
	ARTISTE General Metadata Thesaurus

	Metadata Validation

	Open Archive Initiative
	Open Archive Initiative Metadata Harvesting Protocol
	Implementation of Support for OAI-PMH
	Repository
	Resources
	Item
	Record.
	Sets
	HTTP Embedding of OAI-PMH requests
	Response Format

	OAI Clients

	Distributed Query Layer
	Z39.50
	ZING SRW
	SRW Features which Differ from Z39.50
	Limitations of SRW

	ARTISTE SRW Server
	Request Parameters
	Query
	Result Set Id
	Record Schema
	Start Record
	Maximum Records
	Session Id

	Response Parameters
	Response to a valid SRW
	Response to an Explain Request

	Diagnostics
	Common ARTISTE Query Language
	Example CAQL Queries

	Summary of SRW support for ARTISTE functionality
	ARTISTE SRW Client

	Impact on Standards
	Conclusion
	References
	
	
	
	
	
	ARTISTE Core RDF Schema
	Dublin Core RDF Schema
	BNF for CAQL Syntax

