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We explore a novel ontological approach to user profiling within recommender systems, working on the 
problem of recommending on-line academic research papers. Our two experimental systems, Quickstep and 
Foxtrot, create user profiles from unobtrusively monitored behaviour and relevance feedback, representing the 
profiles in terms of a research paper topic ontology. A novel profile visualization approach is taken to acquire 
profile feedback. Research papers are classified using ontological classes and collaborative recommendation 
algorithms used to recommend papers seen by similar people on their current topics of interest. Two small-scale 
experiments, with 24 subjects over 3 months, and a large-scale experiment, with 260 subjects over an academic 
year, are conducted to evaluate different aspects of our approach. Ontological inference is shown to improve 
user profiling, external ontological knowledge used to successfully bootstrap a recommender system and profile 
visualization employed to improve profiling accuracy. The overall performance of our ontological recommender 
systems are also presented and favourably compared to other systems in the literature. 
 
Categories and Subject Descriptors: I.2.6 [Artificial Intelligence]: Learning - Knowledge acquisition; I.2.11 
[Artificial Intelligence]: Distributed Artificial Intelligence - Intelligent agents; H.3.3 [Information Storage 
and Retrieval]: Information Search and Retrieval - Information filtering, Relevance feedback 
General Terms: Algorithms, Measurement, Design, Experimentation 
Additional Key Words and Phrases: Agent, Machine learning, Ontology, Personalization, Recommender 
systems, User profiling, User modelling 
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1. INTRODUCTION  

The mass of content available on the World-Wide Web raises important questions over 

its effective use. The web is largely unstructured, with pages authored by many people on 

a diverse range of topics, making simple browsing too time consuming to be practical. 

Web page filtering has thus become necessary for most web users. 

Search engines are effective at filtering pages that match explicit queries. 

Unfortunately, people find articulating what they want explicitly difficult, especially if 

forced to use a limited vocabulary such as keywords. As such search queries are often 
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poorly formulated, and result in large lists of search results that contain only a handful of 

useful pages. 

The semantic web offers the potential for help, allowing more intelligent search 

queries based on web pages marked up with semantic metadata. Semantic web technology 

is, however, very dependant on the degree to which authors annotate their web pages, and 

automatic web page annotation is still in its infancy. Annotation requires selflessness in 

authors because the annotations provided will only help other people searching their web 

pages. Because of this, the vast majority of web pages are not annotated, and in the 

foreseeable future will remain so. The semantic web can thus only be of limited benefit to 

the problem of effective searching. 

Recommender systems go some way to addressing these issues. We present a novel 

ontological approach to user profiling within recommender systems. Two recommender 

systems are build, called Quickstep and Foxtrot, and three experiments conducted to 

evaluate different aspects of their performance. Quickstep uses ontological inference to 

improve profiling accuracy and integrates an external ontology for profile bootstrapping. 

Foxtrot enhances the Quickstep system by employing the novel idea of visualizing user 

profiles to acquire direct profile feedback. 

This section discusses our chosen problem domain and our general approach to 

ontological recommendation, along with related work. In section 2 we describe the 

Quickstep recommender system and an experiment to show how inference can improve 

user profiling and hence recommendation accuracy. Section 3 details an integration 

between the Quickstep recommender system and an external ontology, along with an 

experiment to demonstrate its effectiveness at bootstrapping profiles. In section 4 the 

Foxtrot recommender system is described, with an experiment to demonstrate how profile 

visualization can be used to acquire feedback and hence improve profile accuracy. Lastly, 

in section 5 we bring this work together, collating the evidence found to support 

ontological to user profiling within recommender systems, and discuss future work. 

1.1 Recommender systems 

People find articulating what they want hard, but they are very good at recognizing it 

when they see it. This insight has led to the utilization of relevance feedback, where 

people rate web pages as ‘interesting’ or ‘not interesting’ and the system tries to find 

pages that match the ‘interesting’, positive examples and do not match the ‘not 

interesting’, negative examples. With sufficient positive and negative examples, modern 

machine learning techniques can classify new pages with impressive accuracy; in some 



cases text classification accuracy exceeding human capability has been demonstrated 

[Larkey 1998]. 

Obtaining sufficient examples is difficult however, especially when trying to obtain 

negative examples. The problem with asking people for examples is that the cost, in terms 

of time and effort, of providing the examples generally outweighs the reward people will 

eventually receive. Negative examples are particularly unrewarding, since there could be 

many irrelevant items to any typical query. 

Unobtrusive monitoring provides positive examples of what the user is looking for, 

without interfering with the users normal work activity. Heuristics can also be applied to 

infer negative examples from observed behaviour, although generally with less 

confidence. This idea has led to content-based recommender systems, which 

unobtrusively watch user behaviour and recommend new items that correlate with a 

user’s profile. 

Another way to recommend items is based on the ratings provided by other people 

who have liked the item before. Collaborative recommender systems do this by asking 

people to rate items explicitly and then recommend new items that similar users have 

rated highly. An issue with collaborative filtering is that there is no direct reward for 

providing examples since they only help other people. This leads to initial difficulties in 

obtaining a sufficient number of ratings for the system to be useful, a problem known as 

the cold-start problem [Maltz and Ehrlich 1995]. 

Hybrid systems, attempting to combine the advantages of content-based and 

collaborative recommender systems, have proved popular to-date. The feedback required 

for content-based recommendation is shared, allowing collaborative recommendation as 

well. 

1.2 User profiling 

User profiling is typically either knowledge-based or behaviour-based. Knowledge-based 

approaches engineer static models of users and dynamically match users to the closest 

model. Questionnaires and interviews are often employed to obtain this user knowledge. 

Behaviour-based approaches use the user’s behaviour as a model, commonly using 

machine-learning techniques to discover useful patterns in the behaviour. Behavioural 

logging is employed to obtain the data necessary from which to extract patterns. [Kobsa 

1993] provides a good survey of user modelling techniques. 

The user profiling approach used by most recommender systems is behaviour-based, 

commonly using a binary class model to represent what users find interesting and 

uninteresting. Machine-learning techniques are then used to find potential items of 



interest in respect to the binary model. There are a lot of effective machine learning 

algorithms based on two classes. A binary profile does not, however, lend itself to sharing 

examples of interest or integrating any domain knowledge that might be available. 

[Sebastiani 2002] provides a good survey of current machine learning techniques. 

1.3 Ontologies 

An ontology is a conceptualisation of a domain into a human-understandable, but 

machine-readable format consisting of entities, attributes, relationships, and axioms 

[Guarino and Giaretta 1995]. Ontologies can provide a rich conceptualisation of the 

working domain of an organisation, representing the main concepts and relationships of 

the work activities. These relationships could represent isolated information such as an 

employee’s home phone number, or they could represent an activity such as authoring a 

document, or attending a conference. 

We use the term ontology to refer to the classification structure and instances within a 

knowledge base. 

1.4 Problem domain 

The web is increasingly becoming the primary source of research papers to the modern 

researcher. With millions of research papers available over the web from thousands of 

web sites, finding the right papers and being informed of newly available papers is a 

problematic task. Browsing this many web sites is too time consuming and search queries 

are only fully effective if an explicit search query can be formulated for what you need. 

All too often papers are missed. 

We address the problem of recommending on-line research papers to the academic 

staff and students at the University of Southampton. Academics need to search for 

explicit research papers and be kept up-to-date on their own research areas when new 

papers are published. We examine an ontological recommender system approach to 

support these two activities. Unobtrusive monitoring methods are preferred because 

researchers have their normal work to perform and would not welcome interruptions from 

a new system. Very high accuracy on recommendations is not required since users will 

have the option to simply ignore poor recommendations. 

Real world knowledge acquisition systems are both tricky and complex to evaluate 

[Shadbolt et al. 1999]. A lot of evaluations are performed with user log data, simulating 

real user activity, or with standard benchmark collections, such as newspaper articles over 

a period of one year, that provide a basis for comparison with other systems. Although 

these evaluations are useful, especially for technique comparison, it is important to back 

them up with real world studies so we can see how the benchmark tests generalize to the 



real world setting. Similar problems are seen in the agent domain where, as Nwana 

[Nwana 1996] argues, it has yet to be conclusively demonstrated that people really benefit 

from agent-based information systems. 

This is why a real problem has been chosen upon which to evaluate our work. 

1.5 Related work 

Group Lens [Konstan et al. 1997] is an example of a collaborative filter, recommending 

newsgroup articles based on a Pearson-r correlation of other users’ ratings. Fab 

[Balabanović and Shoham 1997] is a content-based recommender, recommending web 

pages based on a nearest-neighbour algorithm working with each individual user’s set of 

positive examples. The Quickstep and Foxtrot systems are hybrid recommender systems, 

combining both these types of approach. 

Personal web-based agents such as NewsDude and Daily Learner [Billsus and Pazzani 

2000], Personal WebWatcher [Mladenić 1996] and NewsWeeder [Lang 1995] build 

profiles from observed user behaviour. These systems filter news stories/web pages and 

recommend unseen ones based on content, using k-Nearest Neighbour, naïve Bayes and 

TF-IDF machine learning techniques. Individual sets of positive and negative examples 

are maintained for each user’s profile. In contrast, by using an ontology to represent user 

profiles we pool these limited training examples, sharing between users examples of each 

class. 

Ontologies are used to improve content-based search, as seen in OntoSeek [Guarino et 

al. 1999]. Users of OntoSeek navigate the ontology in order to formulate queries. 

Ontologies are also used to automatically construct knowledge bases from web pages, 

such as in Web-KB [Craven et al. 1998]. Web-KB takes manually labelled examples of 

domain concepts and applies machine-learning techniques to classify new web pages. 

Both systems do not, however, capture dynamic information such as user interests. 

Digital libraries classify and store research papers, such as CiteSeer [Bollacker et al. 

1998]. Typically such libraries are manually created and manually categorized. While our 

systems are digital libraries, the content is dynamically and autonomously updated from 

the browsing behaviour of its users. 

[Mladenić and Stefan 1999] provides a good survey of text-learning and agent 

systems, including content-based and collaborative approaches. The systems most related 

to Quickstep and Foxtrot are Entrée [Burke 2000], which uses a knowledge base and 

case-based reasoning to recommend restaurant data, and RAAP [Delgado et al. 1998] that 

uses simple categories to represent user profiles with unshared individual training sets for 

each user. None of these systems use an ontology to explicitly represent user profiles. 



Of note is that very few systems in the recommender system literature perform user 

trials using real users. To test classifier accuracy, most use either labelled benchmark 

document collections, such as Reuters news feed collection, or logged user data, such as 

Usenet logs. 

1.6 Overview of approach 

Our ontological approach to recommender systems uses a hybrid recommender system, 

employing both collaborative and content-based recommendation techniques and 

representing user profiles in ontological terms. Two experimental systems have been built 

that follow this approach, called Quickstep and Foxtrot. Quickstep is a recommender 

system for a set of researchers within a computer science laboratory, while Foxtrot is a 

searchable database and recommender system for a computer science department. Figure 

1 shows the generic structure of our ontological recommender systems. 
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Fig. 1. Our ontological approach to recommender systems 

A web proxy is used to unobtrusively monitor each user’s web browsing, adding new 

research papers to the central database as users discover them. The research paper 

database thus acts as a pool of shared knowledge, available to all users via search and 

recommendation. The database of research papers is classified using a research paper 

topic ontology and a set of training examples. 

Recorded web browsing and relevance feedback elicited from users is used to 

compute daily profiles of user’s research interests. Interest profiles are represented in 

ontological terms, allowing other interests to be inferred that go beyond that just seen 

from directly observed behaviour. The interest profiles are visualized to allow elicitation 



of direct profile feedback, providing an additional source of information from which 

profiles can be computed. 

Recommendations are compiled daily using collaborative filtering techniques to find 

sets of interesting papers. These papers are then constrained to match the top topics of 

interest within the content-based profiles. The papers left are used to create the 

recommendations. 

Users can view their recommendations via a web page or weekly email message, look 

at and comment on visualizations of their profile via a web page or just search the 

research paper database for specific papers of interest. Quickstep, the earlier system, 

supports only web page recommendation while Foxtrot supports all the interface features. 

1.7 Empirical evaluation 

This paper describes three experiments performed using our two recommender systems. 

The first uses the Quickstep system to measure the effectiveness of using ontological 

inference in user profiling. Two 1.5 month trials were run using 24 members from the 

IAM research laboratory, comparing use of ontological profiles and inference to that of 

using unstructured profiles. 

The second experiment integrated the Quickstep system with an external personnel 

and publication ontology. This experiment measured how effectively an external ontology 

can bootstrap a recommender system to reduce the recommender system cold-start 

problem. Behaviour logs from the previous experiment were used as the basis for this 

evaluation. 

The third experiment took the Foxtrot recommender system and measures its overall 

effectiveness and the performance increase obtained when profiles are visualized and 

profile feedback acquired. A trial was run using 260 staff and students from the computer 

science department of the University of Southampton for an academic year, comparing 

performance of those subjects who provided profile feedback to those who did not. 

2. ONTOLOGICAL USER PROFILING AND PROFILE INFERENCE 

Our ontological approach to recommender systems, shown in figure 2, involves various 

sub-processes. Our first experimental recommender system, called Quickstep [Middleton 

et al. 2001], implements all these processes but with just a web page interface. Quickstep 

is thus just a recommender system, without any search, email or visualization facilities. It 

was built to help researchers in a computer science laboratory setting, representing user 

profiling with a research topic ontology and using ontological inference to assist the 

profiling process. An experiment was run to compare the recommendation performance 

for subjects whose profiler used ontological inference with those whose profiler did not. 



2.1 Overview of the Quickstep recommender system 

Quickstep unobtrusively monitors user browsing behaviour via a web proxy, logging 

each URL browsed during normal work activity. A machine-learning algorithm classifies 

browsed URLs overnight, using classes within a research paper topic ontology, and saves 

each classified paper in a central paper store. Explicit relevance feedback and browsed 

topics form the basis of the interest profile for each user. Is-a relationships within the 

research paper topic ontology are also exploited to infer general interests when specific 

topics are observed. 

Each day a set of recommendations is computed, based on correlations between user 

interest profiles and classified paper topics. These recommendations are accessible to 

users via a web page. Any feedback offered on these recommendations is recorded when 

the user looks at them. Users can provide new examples of topics and correct paper 

classifications where wrong. In this way the training set improves over time as well as the 

profiles. 
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Fig. 2. The Quickstep system 

2.2 Approach of the Quickstep recommender system 

The Quickstep system uses a java-based web proxy, which records time-stamped URLs 

for each user. This proxy could handle about 30 users. The system ran on a Solaris 

platform and was mostly written in Java. 

2.2.1 Ontology 

The research paper topic ontology is based on the computer science classifications 

made by the dmoz open directory project [dmoz] and some minor customisations. We 

chose to re-use an existing taxonomy to speed development time and provide a potential 



route for system integration with other external ontologies in the future. Our simple 

ontology holds is-a relationships between research paper topics, and has 27 classes; for 

the second trial this ontology was extended to 32 classes. Figure 3 shows a section from 

the ontology. Pre-trial interviews formed the basis of which additional topics would be 

added to the ontology to customize it for the target researchers. An expert review by two 

domain experts validated the ontology for correctness before use in our experiment. 

Artificial
Intelligence

Hypermedia

E-Commerce
Interface Agents
Mobile Agents
Multi-Agent-Systems
Recommender Systems

Agents
Belief Networks
Fuzzy
Game Theory
Genetic Algorithms
Genetic Programming
Knowledge Representation
Information Filtering
Information Retrieval
Machine Learning
Natural Language
Neural Networks
Philosophy [AI]
Robotics [AI]
Speech [AI]
Vision [AI]

Text Classification

Ontologies

Adaptive Hypermedia
Hypertext Design
Industrial Hypermedia
Literature [hypermedia]
Open Hypermedia
Spatial Hypertext
Taxonomic Hypertext
Visualization [hypertext]
Web [hypermedia]

Content-Based Navigation
Architecture [open hypermedia]

 
Fig. 3. Section from the Quickstep research paper topic ontology 

2.2.2 Research paper representation 

Research papers are represented using term vectors. We use ‘term’ to mean a single 

word within the text of a paper, thus all words that appear in the training set of example 

papers add one dimension to our term vectors. Term vector weights are computed from 

the term frequency (TF) divided by total number of terms, representing the normalized 

frequency in which a word appears within a research paper. Since many words are either 

too common or too rare to have useful discriminating power to a classifier, we use a few 

dimensionality reduction techniques to reduce the number of dimensions of the term 

vectors. Porter stemming [Porter 1980] is used to remove term suffixes and the SMART 

[SMART Staff 1974] stop list is used to remove very common words like “the” and “or”. 

Term frequencies below 2 are removed since they have little discriminating power. 

Dimensionality reduction is common in information system; [Sebastiani 2002] provides a 

good discussion of the issues. 



Most on-line research papers are in HTML, PS or PDF formats, with many papers 

being compressed. We support all these formats for maximum coverage in our problem 

domain, converting the papers to plain text and using this text to create the term vectors. 

Unusual or corrupt formats are ignored. Several heuristics are used to determine if the 

research papers are converted to text correctly and look like a typical research paper with 

terms such as ‘abstract’ and ‘references’. In the later experiments, term vectors for papers 

had around 15,000 dimensions after dimensionality reduction. 

2.2.3 Classifier 

Research papers in the central database are classified by an IBk [Aha et al. 1991] 

classifier, which is boosted by the AdaBoostM1 [Freund and Schapire 1996] algorithm. 

The IBk classifier is a k-Nearest Neighbour type classifier that uses example documents, 

called a training set, added to a term-vector space. Example documents in the training set 

are manually labelled using the class names within the research paper topic ontology. 

Figure 4 shows the basic k-Nearest Neighbour algorithm. The closeness of an unclassified 

vector to its neighbour vectors within the term-vector space determines its classification. 

w(da,db) = √
____________

Σ
j = 1..T

(tja – tjb)2

w(da,db) kNN distance between document a and b
da,db document vectors
T number of terms in document set
tja weight of term j document a  

Fig. 4. k-Nearest Neighbour algorithm 

Classifiers like k-Nearest Neighbour allow more training examples to be added to 

their term-vector space without the need to re-build the entire classifier. They also 

degrade well, so even when incorrect the class returned is normally in the right 

“neighbourhood” and so at least partially relevant. This makes k-Nearest Neighbour a 

robust choice of algorithm for research paper classification. 

Boosting works by repeatedly running a weak learning algorithm on various 

distributions of the training set, and then combining the specialist classifiers produced by 

the weak learner into a single composite classifier. The “weak” learning algorithm here is 

the IBk classifier. Figure 5 shows the AdaBoostM1 algorithm. 
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Fig. 5. AdaBoostM1 boosting algorithm 

AdaBoostM1 has been shown to improve the performance of weak learner algorithms 

[Freund and Schapire 1996], particularly for the stronger learning algorithms like k-

Nearest Neighbour. It is thus a sensible choice to boost our IBk classifier. 

Other types of classifier were considered, including the naïve Bayes classifier and the 

C4.5 decision tree, and informal tests run to evaluate their performance. The boosted IBk 

classifier was found to give superior performance for this domain. 

2.2.4 Web page interface 

Recommendations are presented to the user via a browser web page, shown in figure 

6. The web page applet loads the current recommendation set and records any feedback 

the user provides. Research papers can be jumped to, opening a new browser window to 

display the paper URL. If the user likes or dislikes a paper topic, the interest feedback 

combo-box allows “interested” or “not interested” to replace the default “no comment”. 



 
Fig. 6. Quickstep’s web-based interface 

Clicking on the topic and selecting a new one from a popup menu can change the 

topic of each paper, should the user feel the classification is incorrect. In the experiment 

later the ontology group has a hierarchical popup menu, and the flat list group has a single 

level popup menu. Figure 7 shows the hierarchical popup menu. 

 
Fig. 7. Topic popup menus 

New examples can be added via the interface, with users providing a paper URL and a 

topic label. These are added to the groups training set, allowing users to teach the system 

new topics or improve classification of old ones. 

All feedback is stored in log files, ready for the profile builders run. The feedback logs 

are also used as the primary metric for evaluation. Interest feedback, topic corrections and 

jumps to recommended papers are all recorded. 



2.2.5 Profiler 

Interest profiles are computed daily by correlating previously browsed research papers 

with their classification. User profiles thus hold a set of topics and interest values in these 

topics for each day of the trial. User feedback also adjusts the interest of topics within the 

profile and a time decay function weights recently seen papers as being more important 

than older ones. Ontological relationships between topics of interest are used to infer 

other topics of interest, which might not have been browsed explicitly; an instance of an 

interest value for a specific class adds 50% of its value to the super-class. Figure 8 shows 

the profiling algorithm. 

∑
n
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Interest value(n) / days old(n)Topic interest  =

Event
interest values
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Recommendation followed = 2
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Interest value for
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Fig. 8. Profiling algorithm 

Profile feedback details a level of interest in a topic over a period of time. The user 

defines the exact level and duration of interests when they draw interest bars onto the 

time/interest graph via the profile interface. The profiling algorithm automatically adjusts 

the daily profiles to match any topic interest levels declared via profile feedback. 

Event interest values were chosen to favour explicit feedback over implicit, and the 

50% value used to represent the reduction in confidence you get the further from the 

direct observation you are. 

Other profiling algorithms exist such as time-slicing and curve fitting, but the time-

decay function appeared in informal tests to produce a good result; we found it to be a 

robust function for finding current interests. 

2.2.6 Recommender 

Recommendations are formulated from a correlation between the users’ current topics 

of interest and papers classified as belonging to those topics. A paper is only 

recommended if it does not appear in the users browsed URL log, ensuring that 

recommendations have not been seen before. For each user, the top three interesting 

topics are selected with 10 recommendations made in total. Papers are ranked in order of 

the recommendation confidence before being presented to the user. 



Recommendation confidence =classification confidence *
topic interest value

 
Fig. 9. Quickstep recommendation algorithm 

The classification confidence is computed from the AdaBoostM1 algorithm’s class 

probability value for a paper, a value between 0 and 1. 

2.3 Evaluation of ontological inference in user profiling 

We used the Quickstep recommender system to compare subjects whose profiles were 

computed using ontological inference with subjects whose profiles did not use 

ontological inference. The experiment took place over a 3-month period in the IAM 

laboratory using 24 computer science researchers. An overall evaluation of the Quickstep 

recommender system was also performed. The Quickstep recommender system and this 

experiment are published in more detail in [Middleton et al. 2001]. 

2.3.1 Experimental design 

Two identical trials were conducted, the first with 14 subjects and the second with 24 

subjects, both over 1.5 months. Some interface improvements were made for the second 

trial and 5 more ontological classes were added. 

Subjects were divided into two groups, one using an ontological approach to user 

profiling with a topic ontology and the other using a flat, unstructured list of topics. Both 

groups had their own separate training set of examples, which diverged from the 

bootstrap training set as the trial progressed when users corrected the classification of 

papers and hence provided new examples. The classifier algorithm was identical for both 

groups; only the training set changed. 

The system interface used by both groups was identical, except for the popup menu 

for choosing paper topics. The ontology group had a hierarchical menu that used the topic 

ontology; the flat list group had a single level menu. 

The system recorded each time the user declared an interest in a topic by selecting it 

“interesting” or “not interesting”, jumped to a recommended paper or corrected the topic 

of a recommended paper. These feedback events were date stamped and recorded in a log 

file for later analysis, along with a log of all recommendations made. 

2.3.2 Experimental results 

Topic interest feedback is where the user comments on a recommended topic, 

declaring it “interesting” or “not interesting”, and is an indication of the accuracy of the 

current profile. When a recommended topic is correct for a period of time, a user will tend 

to become content with it and stop rating it as “interesting”. On the other hand, an 

uninteresting topic is likely to always attract a “not interesting” rating. Good topics are 



defined as either “no comment” or “interesting” topics. The cumulative frequency figures 

for good topics are presented in figure 10 as a ratio of the total number of topics 

recommended. 
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Fig. 10. Ratio of good topics / total topics 

The two ontological groups have a 7% and 15% higher topic acceptance. In addition 

to this trend, the first trial ratios are about 10% lower than the second trial ratios. 

A jump is where the user jumps to a recommended paper by opening it via the web 

browser. Jumps are correlated with topic interest feedback, so a good jump is a jump to a 

paper on a good topic. Recommendation accuracy is the ratio of good jumps to 

recommendations, and is an indication of the quality of the recommendations being made 

as well as the accuracy of the profile. Figure 11 shows the recommendation accuracy 

results. 
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Fig. 11. Recommendation accuracy 

There is a small 1% improvement in recommendation accuracy by the ontology group. 

Both trials show between 8-10% of recommendations leading to good jumps. 

A cross-validation test was run on each group’s final training set to assess the 

accuracy and coverage of the classifier. The results are shown in table I. The accuracy 

value is a ratio of how many correctly classified papers there were over the number 

classified. The coverage value is a ratio of how many papers were classified over the total 

number of papers. 



Table I. Quickstep classifier accuracy and coverage 

 Accuracy Coverage Classes Examples Terms 
Trial 1 Ontology 0.48 0.90 27 157 15897 
Trial 1 Flat list 0.52 1.00 25 162 16311 
Trial 2 Ontology 0.46 0.89 32 208 17601 
Trial 2 Flat list 0.46 0.97 32 212 16798 

2.3.3 Discussion 

From the experimental data of both trials, several suggestive trends are apparent. The 

initial ratios of good topics were lower than the final ratios, reflecting the time it takes for 

enough log information to be accumulated to let the profiles settle down. The ontology 

users were 7-15% happier overall with the topics suggested to them. 

A hypothesis for the ontology group’s apparently superior performance is that the is-a 

hierarchy produces a rounder, more complete profile by including general super class 

topics when a specific topic is browsed by a user. This in turn helps the profile to acquire 

a broad range of interests, rather than just latching onto one correct topic. 

The first trial showed fewer good topics than the second trial with a 10% difference 

seen by both groups. This is probably because of interface improvements made for the 

second trial, where the topic feedback interface was made less confusing. Subjects were 

sometimes rating interesting topics as not interesting if the paper quality was poor. Since 

there are more poor quality papers than good quality ones, this introduced a bias to not 

interesting topic feedback resulting in a lower overall ratio. 

About 10% of recommendations led to good jumps. Since 10 recommendations were 

given to the users at a time, on average one good jump was made from each set of 

recommendations received. As with the topic feedback, the ontology group again was 

marginally superior but only by a 1% margin; this trend is promising but not statistically 

significant even though it appears in both trials. This smaller difference is probably due to 

people having time to follow only 1 or 2 recommendations. Thus, although the ontology 

group had more good topics, only the top topic of the three recommended was really be 

looked at; the result was a smaller difference between the good jumps made and the good 

topics seen. 

These results are not statistically significant due to the sample size. Nevertheless, the 

trend in the data appears to be encouraging. 

2.4 Conclusions 

The results suggest how using ontological inference in the profiling process results in 

superior performance over using a flat list of unstructured topics. The ontology users 

tended to have more “rounder” profiles, including topics of interest that were not directly 



browsed. This increased the accuracy of the profiles, and hence usefulness of the 

recommendations. 

Very few systems in the recommender system literature perform user trials using real 

users, making direct comparison difficult. Most use either labelled benchmark document 

collections to test classifier accuracy or logged user data taken from sources such as 

newsgroups. NewsWeeder reports a 40-60% classification accuracy with real users, while 

Personal WebWatcher [Mladenić 1996] reports a 60-90% classification accuracy using 

benchmark data. Quickstep’s classifier is on the low side with 40-50% accuracy, but this 

appears much better when the number of classes used in classification is taken into 

account and the potential this allows for improving profiling via inference and profile 

feedback. 

The Daily Learner [Billsus and Pazzani 2000] system recommends news stories via a 

wireless hand held receiver. They used a k-NN algorithm for short-term profiles and a 

naïve Bayes algorithm for longer-term profiles. Over a 10-day trial, involving 300 users, 

they reported a precision of 33%, recall 29%, for the top 4 recommendations based on 

recording which stories were selected by users to read. This provided a small increase in 

performance compared to a edited news service, Yahoo! news. 

The Entrée [Burke 2000] restaurant recommender system, which uses a knowledge-

based approach to recommendation, reports a recommendation accuracy of 38%, for 15 

item profiles, to 70%, for 5 item profiles, based on analysis of historically logged user 

activity of a web site.  

An informal result was seen in the nearest neighbour classifier’s robustness. Even 

when it made a mistake, 50-60% of the time in fact, the class it chose was normally in the 

correct area. For example, for an “interface agent” paper the classification would more 

likely be “agent” than “human computer interaction”. The users liked this as it showed the 

system was at least making a reasonable attempt at classification, even if it was getting 

things wrong. 

3. BOOTSTRAPPING USING AN EXTERNAL ONTOLOGY 

Having a recommender system which represents user profiles in ontological terms offers 

the potential for communication and knowledge sharing with other, external ontologies. 

This section examines our integration of the Quickstep recommender system with an 

external ontology built from a publication database and personnel database. The 

integration is made possible because the external ontology uses the same research paper 

topic ontology as the Quickstep system. The experiment we ran bootstrapped the 

Quickstep recommender system with knowledge about the researchers who wanted to use 



it, thus reducing the cold-start problem, a problem inherent to all recommender systems. 

Details of this work have been published in [Middleton et al. 2002]. 

3.1 Integrating an external ontology with the Quickstep recommender system 

One difficult problem commonly faced by recommender systems is the cold-start 

problem [Maltz and Ehrlich 1995], where recommendations are required for new items or 

users for whom little or no information has yet been acquired. Poor performance resulting 

from a cold-start can deter user uptake of a recommender system. This effect is thus self-

destructive, as the recommender never achieves good performance since users never use 

it for long enough. We examine two types of cold-start problem. 

The new-system cold-start problem is where there are no initial ratings by users, and 

hence no profiles of users. In this situation most recommender systems have no basis on 

which to recommend, and hence perform very poorly. 

The new-user cold-start problem is where the system has been running for a while and 

a set of user profiles and ratings exist, but no information is available about a new user. 

Most recommender systems perform poorly in this situation too.  

Collaborative recommender systems fail to help in cold-start situations, since they 

cannot discover similar user behaviour because there is not enough previously logged 

behaviour data upon which to base any correlations. Content-based and hybrid 

recommender systems perform a little better since they need just a few examples of user 

interest in order to find similar items. 

External ontological sources of knowledge complement well the behavioural 

information held within the recommender systems, by providing initial knowledge about 

users and their domains of interest. Of particular interest to our academic problem domain 

is knowledge about departmental publications, the projects a researcher has worked on 

and the position a researcher has within the department. It should thus be possible to 

bootstrap the initial learning phase of a recommender system with such knowledge, 

easing the cold-start problem. 

In return for any bootstrap information the recommender system could provide details 

of dynamic user interests to the ontology. This would reduce the effort involved in 

acquiring and maintaining knowledge of people’s research interests. To this end we 

investigate the integration of Quickstep, a web-based recommender system, and an 

external ontology built from a publication database and personnel database.  

3.2 Approach to integrating the external ontology 

We integrate the Quickstep recommender system and external ontology using a 

synergistic arrangement. The external ontology initially bootstraps the recommender 



system, and after the cold-start is over the user profiles held within the recommender 

system are sent to the external ontology as an additional knowledge source. Figure 12 

shows the integrated system. 

The synergy of this relationship is fully explored in [Middleton et al. 2002]. 

A relationship analysis tool, Ontocopi [Alani et al. 2003], is used to uncover each user’s 

communities of practice by applying a set of ontology-based network analysis techniques 

that examine the connectivity of instances in the knowledge base with respect to the type, 

density, and weight of these connections. Ontocopi applies an expansion algorithm that 

generates the community of practice for a selected instance by identifying the set of close 

instances and ranking them according to the weight of their relationships. It applies a 

breadth-first spreading activation search, traversing the semantic relationships between 

instances until a defined threshold is reached. Semantic distance is thus used to indicate 

similarity between users. 

The external ontology used in this work was designed to represent the academic 

domain, and was developed by Southampton’s Advanced Knowledge Technologies 

(AKT) project team [O’Hara et al. 2001]. It models people, projects, papers, events and 

research interests. The ontology itself is implemented in Protégé 2000 [Eriksson et al. 

1999], a graphical tool for developing knowledge-based systems. It is populated with 

information extracted automatically from a departmental personnel database and 

publication database. The ontology consists of around 80 classes, 40 slots, over 13000 

instances and is focused on people, projects, and publications. 
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Fig. 12. Integration of Quickstep and an external ontology 

3.2.1 Bootstrapping algorithms 

Upon start-up, the ontology provides the recommender system with an initial set of 

publications for each of its registered users. Each user’s known publications are then 

correlated with the recommender systems classified paper database, and a set of historical 

interests compiled for that user. These historical interests form the basis of an initial 

profile, overcoming the new-system cold-start problem. Figure 13 details the new-system 



initial profile algorithm. As in the Quickstep profiling algorithm, fractional interest in a 

topic super-classes is inferred when a specific topic is added. 

∑
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Fig. 13. New-system initial profile algorithm 

When the recommender system is up and running and a new user is added, the 

ontology provides the historical publication list for the new user and the relationship 

analysis tool provides a ranked list of similar users. The initial profile of the new user is 

formed from a correlation between historical publications and any similar user profiles. 

This algorithm is detailed in figure 14, and addresses the new-user cold-start problem. 

t = research paper topic
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γ = weighting constant >= 0
Nsimilar = number of similar users
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confidence = confidence in user similarity
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Fig. 14. New-user initial profile algorithm 

3.3 Experiment to evaluate bootstrapping performance 

We used the integration of the Quickstep recommender system with an external ontology 

to evaluate how using ontological knowledge could reduce the cold-start problem. The 

external ontology used was the AKT ontology described earlier, based on a publication 

database and personnel database, coupled with a tool for performing relationship analysis 

of ontological relationships to discover similar users. The behavioural log data from the 

previous experiment was used to simulate the bootstrapping effect both the new-system 

and new-user initial profiling algorithms would have. Both the integration and 

experiment are published in more detail in [Middleton et al. 2002]. 



3.3.1 Experimental design 

Subjects were selected from those who participated in the previous Quickstep 

experiment and had entries within the external ontology. We selected nine subjects in 

total, with each subject typically having one or two publications. 

The URL browsing logs of these users, extracted from the 3 months of browsing 

behaviour recorded during the Quickstep trials, were broken up into weekly log entries. 

Seven weeks of browsing behaviour were taken from the start of the Quickstep trials, and 

an empty log created to simulate the very start of the trial where no behaviour has yet 

been recorded. 

Eight iterations of the integrated system were thus run, the first simulating the start of 

the trial and others simulating the following weeks 1 to 7. Interest profiles were recorded 

after each iteration. Two complete runs were made, one with the ‘new-system initial 

profiling’ algorithm and a control run with no bootstrapping. The control run without the 

‘new-system initial profiling’ algorithm started with blank profiles for each of its users. 

An additional iteration was run to evaluate the effectiveness of the ‘new-user initial 

profile’ algorithm. 

In order to evaluate the algorithms effect on the cold-start problem, all recorded 

profiles were compared to the benchmark week 7 profile. This allowed measurement of 

how quickly profiles converge to the stable state existing after a reasonable amount of 

behaviour data has been accumulated. The quicker the profiles move to this state the 

quicker they will have overcome the cold-start. Week 7 was chosen as the cut-off point of 

our analysis since after about 7 weeks of use the behaviour data gathered by Quickstep 

dominated the user profiles and the cold-start was over. 

3.3.2 Experimental results 

Two measurements were made when comparing profiles to the benchmark week 7 

profile. The first, profile precision, measures how many topics were mentioned in both 

the current profile and benchmark profile. Profile precision is an indication of how 

quickly the profile is converging to the final state, and thus how quickly the effects of the 

cold-start are overcome. The second, profile error rate, measures how many topics appear 

in the current profile that do not appear within the benchmark profile. Profile error rate is 

an indication of the errors introduced by the two bootstrapping algorithms. Figure 15 

describes these metrics. 

It should be noted that the absolute precision and error rate of the profiles are not 

measured – only the relative precision and error rate compared to the week 7 steady state 

profiles. Absolute profile precision is a subjective measurement. 
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Fig. 15. Bootstrapping evaluation metrics 

The results of our experiment are detailed in figure 16. The new-user results consist of 

a single iteration, so appear on the graph as a single point. 

At the start, week 0, no browsing behaviour log data is available to the system so the 

profiles without bootstrapping are empty. The new-system algorithm, however, can 

bootstrap the initial user profiles and achieves a reasonable precision of 0.35 and a low 

error rate of 0.06. We found that the new-system profiles accurately captured interests 

users had a year or so ago, but tended to miss current interests. This is because 

publications are generally not available for up-to-date interests. 

As expected, once the weekly behaviour logs become available to the system the 

profiles adjust accordingly, moving away from the initial bootstrapping. On week 7 the 

profiles fully converge to the benchmark profile, the cold-start being over. This is the 

reason the precision graph converges at week 7. Bootstrapping is most effective during 

week one, where no information about users is available and when the users are most 

likely to stop using the system due to poor performance.  

The new-user algorithm result show a more dramatic increase in precision to 0.84, but 

comes at the price of a significant error rate of 0.55. The profiles produced by the new-

user algorithm tended to be very inclusive, taking the set of similar user interests and 

producing a union of these interests. While this captures many of the new users real 

interests, it also included a large number of interests not relevant to the new user but 

which were interesting to the people similar to the new user. 
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Fig. 16. Bootstrapping profile precision 

3.3.3 Discussion 

The new-system algorithm produced profiles with a low error rate and a reasonable 

precision of 0.35. This reflects the fact that previous publications are a good indication of 

users current interests, and so can produce a good starting point for a bootstrap profile. 

Where the new-system algorithm fails is for more recent interests, which make up the 

remaining 65% of the topics in the final benchmark profile. To discover these more recent 

interests, it is possible that the new-system algorithm could be extended to take some of 

the other information available within the ontology into account, such as the projects a 

user is working on. To what degree these relationships will help is difficult to predict 

however, since the ontology itself has great difficulty in acquiring knowledge of recent 

interests. 

For the purposes of this experiment, those users who had some entries within the 

external ontology were selected. There were some users who had not entered their 

publications into the ontology or who had yet to publish their work. For these users there 

is little information within the ontology, making any new-system initial profiles of little 

use. In a larger scale system, more sources of information would be needed from the 

ontology to build the new-system profiles. This would allow some redundancy, and hence 

improve robustness in the realistic situation where information is sparsely available.  

The new-user algorithm achieved good precision of 0.84 at the expense of a 

significant error rate. This was partly because the new-user algorithm included all 

interests from the similar users. An improvement would be to only use those interests held 

by the majority of the similar people. This would exclude some of the less common 

interests that would otherwise be included into the new-user profile. 



3.4 Related work 

The cold-start problem is discussed by [Claypool et al 1999] who examines a hybrid 

approach to recommendation, using a content-based overlap coefficient technique 

coupled with a collaborative Pearson-r approach that takes over when sufficient ratings 

have been acquired. The hybrid concept is also adopted by [Melville et. al 2002] with a 

content-boosted approach, where pseudo ratings are generated by a naïve Bayes classifier 

to supplement real ratings. There is still a need to acquire initial examines of content, 

however, before recommendation can occur.  

Some metrics for measuring recommendation performance are suggested by [Schein 

et. Al 2002], along with a discussion of the cold-start problem. They apply a CROC curve 

based metric on a naïve Bayes classifier. 

Several heuristic-based item selection strategies are compared by [Rashid et al. 2002] 

using the Movie Lens dataset. Focus is given to reducing user effort during sign-up as 

well as recommendation accuracy. 

3.5 Conclusions 

Cold-starts in recommender systems are a significant problem. If initial recommendations 

are inaccurate, user confidence in the recommender system may drop with the result that 

users give up on the system and thus not enough usage data is gathered to ever overcome 

the cold-start. 

This experiment suggests that using an ontology to bootstrap user profiles can 

significantly reduce the impact of the recommender system cold-start problem. It is 

particularly useful for the new-system cold-start problem, where the alternative is to start 

with no information at all. 

A question still remains as to just how good an initial profile must be to fully 

overcome the effects of the cold-start problem. If initial recommendations are poor users 

will not use the recommender system and hence it will never get a chance to improve. We 

have shown that improvements can be made to initial profiles, but further empirical 

evaluation would be needed to evaluate exactly how much improvement is needed before 

the system is “good enough” for users to give it a chance. 

4. THE FOXTROT RECOMMENDER SYSTEM 

Our second experimental recommender system, called Foxtrot, extended the Quickstep 

system by implementing a research paper search interface, profile visualization interface 

and email notification in addition to the web page recommendation interface. Profile 

visualization is made possible because profiles are represented in ontological terms 

understandable to the users. Foxtrot was built to help researchers in a computer science 



department, allowing researchers to search the database of research papers in addition to 

receiving recommendations. A large-scale experiment was run to evaluate the overall 

approach, and to compare the recommendation performance of subjects who provided 

profile feedback to the performance of those subjects who just provided relevance 

feedback. 

4.1 Overview of the Foxtrot recommender system 

Foxtrot is an evolution of the Quickstep system, and fully follows the architecture shown 

earlier in figure 1. Foxtrot differs from Quickstep in the following ways. The number of 

interfaces supported is increased, providing a research paper search interface, profile 

visualization and feedback facility and email notification support. A static research paper 

ontology with many more classes is used, along with increased dimensionality reduction 

to cope with the increase in classes and hence term dimensions. The profiler takes profile 

feedback into account allowing users control over their own profiles. Lastly, a more 

collaborative recommendation algorithm is employed, talking into account the profiles of 

other similar users when deciding what to recommend.  

4.2 Approach of the Foxtrot recommender system 

The Foxtrot system used a Squid proxy, which can handle hundreds of users across the 

whole computer science department at the University of Southampton. Each user ran an 

Identd server so the Squid proxy could identify their usernames, and a modified Squid 

logging function was used to record time-stamped URLs for each user. The system ran on 

a dedicated LINUX platform and like Quickstep was mostly written in Java. 

Since Foxtrot is an evolution of the Quickstep system, only the processes that changed 

are detailed. All other processes, for example the classifier, work in the way described for 

the Quickstep system. 

4.2.1 Research paper topic ontology 

Foxtrot uses a research paper topic ontology to represent the research interests of its 

users. A class is defined for each research topic and is-a relationships defined where 

appropriate. The ontology is based on the CORA [McCallum et al. 2000] digital library, 

since it classifies computers science topics and has example papers for each class. Figure 

17 shows some of the classes within the ontology. An existing ontology was chosen for 

re-use to speed development time and provide a source of example papers. 
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Fig. 17. Section from the Foxtrot research paper topic ontology 

Labelled examples of research papers were manually added to the classifier training 

set, many taken from the results of the Quickstep trial and papers downloaded from the 

CORA system. There were a total of 97 classes and 714 training examples. The ontology 

remained fixed throughout the Foxtrot trial, but could in theory be updated as time goes 

on to reflect changes in the research domain. We decided not to allow users to add classes 

to the ontology since with a large number of users there are bound to be classification 

mistakes, and these could adversely effect the classification accuracy. For every 

ontological class a set of 5-10 example papers was provided at the start of the trial. 

4.2.2 Research paper representation 

Research papers are represented as term vectors, just as in the Quickstep system. 

Because of the increased number of classes an additional dimensionality reduction 

technique is employed to keep the number of terms within the vectors manageable. Each 

class was constrained to have only its top 50 terms, ranked by document frequency; the 

union of each classes most discriminating terms was thus used for term vectors. In the 

Foxtrot experiment, term vectors had 1152 dimensions. 

4.2.3 Interface 

Users primarily interact with Foxtrot via a web page. The basic interface is shown in 

figure 18. A web search engine metaphor, familiar to most computer scientists, was used 

for the interface design, allowing users to enter search queries via edit boxes and a search 

button used to initiate a search. 



 
Fig. 18. Foxtrot’s recommendation and search interface 

Search results are returned in the area below the edit boxes, showing the details of 

each research paper found. Two sets of radio buttons appear below each search result to 

allow users to provide relevance and quality feedback if they so desire. When users first 

go to the Foxtrot web page their daily recommendations are automatically presented in 

the search result area. In this way, users can choose to read the recommendations or just 

enter a search query and use the system normally. 

Users who are in the profile group can visualize their interest profiles by clicking on a 

profile tab. Figure 19 shows the profile interface. Profiles are displayed as a time/interest 

graph, showing what the system thinks their top few interests are over the period of the 

trial. Direct profile feedback can be drawn onto this graph by using the controls to the 

side. A drawing package metaphor is used here, and users can draw coloured horizontal 

bars to represent a level of interest in a topic over a period of time. In this way users can 

literally draw their own profiles. 



 
Fig. 19. Foxtrot’s profile visualization interface 

In addition to the Foxtrot web page, a weekly email notification feature was added 3 

months from the end of the trial. This provided a weekly email stating the top 3 

recommendations from the current set of 9 recommendations. Users could then jump to 

these papers or load the Foxtrot web page and review all 9 recommendations. Figure 20 

shows the email notification message. 

 
Fig. 20. Foxtrot’s email notification interface 

4.2.4 Recommendation agent 

Daily recommendations are formulated by a hybrid recommendation approach. A list 

of similar people to a specific user is compiled, using a Pearson-r correlation on the 

content-based user profiles. Recommendations for a user are then taken from those papers 

on the current topics of interest, which have also been read by people similar to that user. 

Figure 21 shows the recommendation algorithm. During the Foxtrot trial 3 papers were 

recommended each day on the 3 most interesting topics, making a total of 9 



recommended papers. Previously read papers were not recommended twice and if more 

than three papers were available for a topic they were ranked by average quality rating. 
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Fig. 21. Foxtrot’s recommendation algorithm 

4.3 Experiment to evaluate profile visualization and feedback 

Our third experiment used the Foxtrot recommender system to compare subjects who 

could visualize their profiles and provide profile feedback with subjects who could only 

use traditional relevance feedback. Profile visualization and feedback is only possible 

because profiles are represented using an ontology, which contains concepts users can 

understand. This experiment took place over an academic year with 260 staff and 

students of the computer science department at the University of Southampton. An 

overall evaluation of the Foxtrot recommender system was also performed. 

4.3.1 Experimental design 

The experimental trial took place over the academic year 2002, starting in November 

and ending in July. Of the 260 subjects registered to use the system, 103 used the web 

page, and of these 37 subjects used the system 3 or more times; this makes the uptake rate 

14% All 260 subjects used the web proxy and hence their browsing was recorded and 

daily profiles built. As such 260 subjects contributed, by way of the web proxy 

monitoring their web browsing, to the growth of the research paper database but there 

were only 37 active users during the experiment. By the end of the trial the research paper 

database had grown from 6,000 to 15,792 documents as a result of subject web browsing. 

Subjects were divided into two groups. The first ‘profile feedback’ group had full 

access to the system and its profile visualization and profile feedback options; the second 

‘relevance feedback’ group were denied access to the profile interface. It was found that 

many in the ‘profile feedback’ group did not provide any profile feedback at all, so in the 

later analysis these subjects are moved into the ‘relevance feedback’ group. A total of 9 

subjects provided profile feedback. 



Towards the end of the trial an additional email feature was added to the recommender 

system. This email feature sent out weekly emails to all users who had used the system at 

least once, detailing the top three papers in their current recommendation set. Email 

notification was started in May and ran for the remaining 3 months of the trial. 

The feedback data obtained from the trial occurs at irregular time intervals, based on 

when subjects looked at recommendations or browsed the web. For ease of analysis data 

is collated into weekly figures by summing interactions throughout each week. Group 

data is computed by summing the weekly contribution of each subject within a group. 

Figure 22 shows the metrics measured. 
<future papers> = browsed/jumped papers in the 4 weeks after profile
<papers> = browsed/jumped papers over duration of profile (normally 1 day)
<top topics> = top 3 topics of profile

Predicted profile accuracy = No of <future papers> matching <top topics>
No of <future papers>

Profile accuracy = No of <papers> matching <top topics>
No of <papers>

Web page rec accuracy = No of recommended papers browsed or jumped to
No of recommended papers

Email rec accuracy = No of emailed papers browsed or jumped to
No of emailed papers

Jumps to recommendations = No of jumps to recommended papers
No of jumps

Jumps to profile topics = No of jumps to papers matching <top topics>
No of jumps  

Fig. 22. Measured metrics 

4.3.2 Experimental results 

The recommendation accuracy metric takes explicit feedback and computes accuracy 

figures for both web page and email recommendations. A simple ratio is used to obtain 

the number of recommendations followed as a fraction of the total number of 

recommendations; this provides a measure of the effectiveness of the recommendations. 

Figure 23 shows the recommendation accuracy for web page and email recommendations. 



Web page and email recommendation accuracy
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Fig. 23. Web page and email recommendation accuracy 

The small number of subjects within the ‘profile feedback’ group accounts for the 

larger confidence intervals. While not statistically significant, there is an apparent trend 

for more accurate recommendation when using profile feedback, especially in the early 

weeks. Email recommendations appeared to be preferred by the ‘relevance feedback’ 

group, slightly out performing the ‘profile feedback’ group. 

The above results compare the profile feedback users with relevance feedback users. 

To show that the profile feedback user group was not “self selected”, containing only the 

active users, figure 24 shows the original grouping’s accuracy figures for only active 

users; active users are defined as those who used the system three or more times. There 

were 16 active users in the relevance feedback group and 21 active users in profile 

feedback group. The profile feedback group’s recommendation accuracy is still higher, 

though not by as much since the results are averaged in the profile feedback group 

between those who did provide a profile and those that only used relevance feedback. 

In addition to recommendation accuracy, the proportion of jumps to recommendations 

and jumps to papers with a top 3 topic was computed. Jumps to recommendations 

measure the degree to which subjects use the recommendation facility as opposed to just 

using the search facility of the database. Jumps to papers with a top 3 profile topic 

measures how well the profiles fitted the subject’s actual interests. Figure 25 shows these 

figures. 



Web page rec accuracy for active users & original groups
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Fig. 24. Web page recommender accuracy for original group’s active subjects 

The ‘profile feedback’ group made a greater proportion of jumps to recommendations 

than the ‘relevance feedback’ group; this trend is statistically significant. A similar trend 

is seen in jumps to papers on top profile topics, but is less clear. 

Jumps to recommendations and profile topics
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Fig. 25. Jumps to recommendations and profile topics 

Since user browsing is recorded, both the profile accuracy and profile predictive 

accuracy can be measured. Profile accuracy measures the number of papers jumped to or 

browsed that match the top 3 profile topics for the duration of that profile; since profiles 

are updated daily, the average duration of a profile is one day. This is a good measure of 

the accuracy of the current interests within a profile at any given time. Profile predictive 



accuracy measures the number of papers jumped to or browsed that match the top 3 

profile topics in a 4 week period after the profile was created. This measures the ability of 

a profile to predict subject interests. Metrics are measured for every profile computed 

over the period of the trial, providing a view on how the quality of the profiles varies over 

the length of the trial. Figure 26 shows the figures for the profile metrics. 

While not statistically significant, there is a trend for the ‘profile feedback’ group to 

have profiles that are better at predicting future browsing interests. This trend is not 

reflected in the daily profile accuracy figures however, where the two groups are similar. 

This would appear to show that the two groups are profiling slightly different interest sets, 

with the ‘profile feedback’ interests of a longer-term nature. 

Profile accuracy and profile predictive accuracy
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Fig. 26. Profile accuracy and profile predictive accuracy 

In addition to measuring subject group interactions with the system, the AdaBoostM1 

boosted IBk classifier performance was computed. A standard cross-validation test was 

applied to the classifier training set, to obtain the figures for accuracy and coverage. Table 

II shows the results. The accuracy value is a measure of how many correctly classified 

documents there were as a proportion of the number classified. The coverage value is a 

measure of how many documents were classified as a proportion of the total number of 

documents. 



Table II. Classifier accuracy and coverage 

 Accuracy Coverage Classes Examples Terms 
Classifier 0.42 1.00 97 714 1152 

A post trial questionnaire was sent out via email to every subject who used the system 

at least once. Table III shows the results of this survey, completed by 13 subjects. It 

shows that the search facility was most useful to the subjects, with the recommendation 

facility being only partially used. This is borne out by the relatively small amount of 

feedback provided by users during the trial. The most positive comments were from those 

users who were interested in general papers in an area, such as PhD students performing a 

literature review. The more negative comments came from those subjects wanting papers 

on very specific topics of much finer granularity than the research topic ontology offered. 
Table III. Foxtrot post trial questionnaire results 

Question 1 2 3 4 5 Mean 

How useful did you find the Foxtrot database? 4 2 5 2  2.38 

How much did you use the recommendation facility? 7 5  1  1.62 

How accurate were the recommended topics? 3 3 2 3 1 2.67 

How useful were the recommended papers? 4 2 4  2 2.5 

4.3.3 Discussion 

The ‘profile feedback’ group outperformed the ‘relevance feedback’ group for most of 

the metrics, and the experimental data revealed several trends. 

Web page recommendations, and jumps to those recommendations, were better for the 

‘profile feedback’ group, especially early on in the first few weeks after registering. This 

is probably because the ‘profile feedback’ users tended to draw interest profiles when 

they first registered with the system, and only update them occasionally afterwards. This 

has the effect that the profiles are most accurate early on and become out-dated as time 

goes by. This aging effect on the profile accuracy is shown by the ‘profile feedback’ 

group performance gradually falling towards that of the ‘relevance feedback’ group. One 

interesting observation is that the initial performance enhancement gained using profile 

feedback appears to help overcome the cold-start problem, a problem inherent to all 

recommender systems. 

Email recommendation appeared to be preferred by the ‘relevance feedback’ group, 

and especially by those users who did not regularly check their web page 

recommendations. A reason for this could be that since the ‘profile feedback’ group used 

the web page recommendations more, they needed to use the email recommendations 

less. There is certainly a limit to how many recommendations any user needs over a given 



time period; in our case nobody regularly checked for recommendations more than once a 

week. 

The overall recommendation accuracy was about 1%, or 2-5% for the profile feedback 

group. This may appear low, especially when compared to other recommendation systems 

such as Quickstep, but it reflects the nature of the recommendation service offered. Users 

had the choice to simply ignore recommendations if they did not help to achieve their 

current work goal. This optional nature of the system assisted system uptake and 

acceptance on a wide scale. 

The profile accuracy of both groups was similar, but there was a significant difference 

between the accuracy of profile predictions. This reflects the different types of interests 

held in the profiles of the two groups. The ‘profile feedback’ group’s profiles appeared to 

be longer term, based on knowledge of the users general research interests provided via 

the profile interface. The ‘relevance feedback’ profiles were based solely on the browsing 

behaviour of the users current task, hence contained shorter-term interests. Perhaps a 

combination of profile feedback-based longer-term profiles and behaviour-based short-

term profiles would be most successful. 

The overall profile accuracy was around 30%, reflecting the difficulty of predicting 

user interests in a real multi-task environment. Integrating some knowledge of which task 

the user is performing would allow access to some of the other 70% of their research 

interests. These interests were in the profile but did not make it to the top 3 topics of 

current interest. 

Profile feedback users tended to regularly check recommendations for about a week or 

two after drawing a profile. This appeared to be because users had acquired a conceptual 

model of how the system worked, and wanted to keep checking to see if it had done what 

they expected. If a profile was required to be drawn before registering on the system, this 

behaviour pattern could be exploited to increase system uptake and gain some early 

feedback. This may in turn increase initial profile accuracy and would certainly leave 

users with a better understanding of how the system worked, beneficial for both gaining 

user trust and encouraging effective use of the system. 

In order to perform such a large trial, involving the monitoring of subject web-

browsing behaviour over a significant period of time, a number of things had to be done 

concerning subject privacy rights. Firstly every subject was informed of the trial, and 

what it involved, via email and a web site. All aspects of the profiling and monitoring 

process were explained in detail. User’s names were encrypted using a one-way 

encryption algorithm so that if someone were to examine the web browsing logs they 



would not be able to trace usernames to network account names, and hence real people. 

The key to this one-way encryption was destroyed after the trial finished. Finally, in 

accordance with the UK’s data protection act the trial was for purely research purposes. A 

commercial system would likely need written consent from each subject under UK law. 

A post-hoc power analysis was considered after the initial experimental analysis was 

completed, but not performed after consultation with a statistics expert due to reservations 

about its value. Post analysis of the data collected would also be problematic due to the 

encrypted nature of the user identifiers, and lack of easy correlations between the various 

logged data sources other than those that were pre-planned into the experimental design. 

4.4 Conclusions 

This experiment shows that profile visualization and profile feedback can significantly 

improve the profiling accuracy and the recommendation process. Our ontological 

approach makes this possible because user profiles are represented in terms the users can 

understand. 

The previous section on Quickstep compared performance to reported systems in the 

literature, and points out the lack of published experimental results for systems with real 

users. As such the Quickstep system is an ideal candidate for result comparison. 

The Quickstep [Middleton et al. 2001] system had a recommendation accuracy of 

about 10% with real users, while Foxtrot manages a 2-5% recommendation accuracy, 

reflecting the different types of subjects involved in the two experiments. The Quickstep 

subjects were willing researchers taken from a computer science laboratory, while the 

Foxtrot subjects were staff and students of a large department who would only be willing 

to use the system if it was perceived to offer direct benefits to their work. A 

recommendation accuracy of 5% means that on average 1 in 2 sets of recommendations 

contained a paper that was downloaded, while 10% means on average every set of 

recommendations contains a downloaded paper. While initially appearing low, this result 

is good when the problem domain is taken into account; most systems in the literature do 

not attempt such a hard and realistic problem. 

Individual aspects of the Foxtrot system could be enhanced further to gain a relatively 

small performance increase, such as increasing the training set size, fine tuning the 

ontological relationships and trying alternative classification algorithms. However, the 

main problem is that the system’s profiler is not capturing about 70% of the user’s 

interests. We expect major progress to come from expanding the ontology and using a 

task model for profiling, which are discussed in the next section. 



5. CONCLUSIONS 

Our ontological approach to recommender systems offers many advantages and a few 

disadvantages. The two experimental systems and three experiments conducted with 

them provide evidence for this. Due to the attenuating nature of real world trials with 

noisy data and varying levels of subject activity, some of the trends seen are not 

significant statistically. However, we do feel the power and consistency of the trends seen 

are significant, and it is our opinion that the advantages of our ontological approach 

clearly outweigh the disadvantages. 

Ontological user profiles allow inference to be employed, allowing interests to be 

discovered that were not directly observed in the user’s behaviour. Constraining examples 

of user interest to a common ontology also allows examples of ontological classes to be 

shared among all users, increasing the size of the classifiers training set. Multi-class 

classification is, however, inherently less accurate that binary class classification, which 

reduces classification accuracy. Our first experiment quantifies these effects and 

demonstrates that profile inference compensates for the lower classifier accuracy. 

Once profiles are represented using an ontology, they can communicate with other 

ontologies which share similar concepts. This allows external knowledge bases to be 

employed to help bootstrap the recommender system and reduce the cold-start problem 

inherent to all recommender systems. Our second experiment demonstrates this, using a 

publication and personnel ontology to bootstrap our recommender system with significant 

success. 

One last advantage of using an ontological user profile is that the profiles themselves 

can be visualized. Since our research paper ontology contains terms understandable to 

users, the profile visualizations are understandable too. Traditional binary profiles are 

often represented as term vector spaces, neural network patterns etc. that are difficult to 

understand by users. The ontological representation allows users to provide feedback on 

their own profiles, which is used to significantly improve profile accuracy. Our third 

experiment demonstrates this. 

There is a lack of experimental results in the literature for systems using real people. 

This is a failing of this research field, and it makes direct comparison of systems that 

address real problems hard. Our final experiment is particularly valuable in that it shows 

how a recommender system performs in a large scale, realistic situation. We feel that 

more large-scale trials are needed in the literature so that the utility of the recommender 

system paradigm can be quantified for a variety of work domains. 



5.2 Future work 

Expanding the ontology to include more relationships than just is-a links between topics 

would allow much more powerful inference, and thus give a significant boost to profiling 

accuracy. Knowledge of the projects people are working on, common technologies in 

research areas and linked research areas would all help. This technology could also help 

the cold-start problem. 

Knowledge of a user’s current task would allow the profiler to distinguish between 

short and long-term tasks, separate concurrently running tasks and adjust 

recommendations accordingly. While 70% of users’ browsing interests were not in the 

current profile’s top 3 topics, they were in the profile somewhere at a lower level of 

relevance. Having separate profiles for each user task would allow a finer grained 

profiling approach, significantly improving performance. This is far from easy to achieve 

in practice, but it appears to be an important aspect of user profiling and one that future 

versions of this system may well investigate. Papers such as [Budzik, J. et al. 2001] 

examine the use of contextual information in task modelling. 

An agent-based metaphor can easily be applied to our ontological recommender 

system and would allow extra information to come from external agents, via free 

exchange or trading. It is easy to see a situation where external agents, with ontologies 

containing personal information, interact with profile agents to share knowledge about 

specific interests with the goal of improving each other’s profiles. 
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