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Abstract
In alternating current electrokinetics, electric fields are used to generate
forces on particles. Techniques have been applied for the manipulation of
particles and the measurement of their dielectric properties. The fields are
typically generated by microelectrode structures fabricated on planar
surfaces. One particular design, using interdigitated bar electrodes, is used
both in dielectrophoretic field flow fractionation and travelling wave
dielectrophoresis. This paper presents a Fourier series analysis of the
dielectrophoretic force on a particle generated by this type of electrode
array, for both dielectrophoresis and travelling wave dielectrophoresis.
Simple expressions are derived for the force at a distance of the order of the
electrode spacing from the electrodes. A full analytical expression is given
for the dielectrophoretic force in two dimensions. Comparisons are made
with previously published experimental observations.

1. Introduction

Alternating current (ac) electrokinetics is the study of particle
movement arising from the interaction of a non-uniform ac
electric field with polarizable particles [1, 2]. The technique
is now being used for the analysis and separation of biological
particles, such as cells, bacteria and viruses [3–6]. One
ac electrokinetic technique is dielectrophoresis (DEP), where
polarizable particles move towards or away from regions of
strong electric field. DEP forces can be used in conjunction
with hydrodynamic forces and gravity to separate particles
using field flow fractionation (FFF) methods [7–9]. In
this case, the DEP force is generated using an array of
interdigitated planar electrodes that forms the bottom of a
flow-through chamber. The force levitates different particles to
different heights producing a vertical separation. The particles
experience a drag force from a parabolic flow profile, resulting
in horizontal separation along the electrode array.

Another widely used technique for particle manipulation
and separation is travelling wave dielectrophoresis (twDEP). In

this case particles move in a travelling electric field generated
by an array of interdigitated parallel electrodes [10–13] and
there is no need to pump liquid along the device in order
to produce horizontal motion. The horizontal velocity of
the particles (i.e. the twDEP force) depends on the effective
polarizability and size of the particles. Therefore a mixture
of different particles can be fractionated into ‘bands’ along
the device, and if long arrays are used then a high degree of
separation is possible [13].

For both of these techniques, the electrode arrays are
similar, consisting of a large number of thin parallel bar
microelectrodes (typically 10–40 µm wide) fabricated on a
flat substrate (such as a glass microscope slide). A sample
consisting of a suspension of particles in an electrolyte is placed
on the array and a voltage applied to the microelectrodes to
produce the required electrokinetic forces. The force for both
DEP and twDEP depends on a number of factors, including the
effective polarizability of the particle (which in turn depends
on the frequency) and also the electric field. Thus knowledge
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of the electric field generated in these systems is essential for
an accurate analysis and modelling of particle behaviour.

The electric field (and as a result the DEP force) has been
solved analytically and numerically for a number of electrode
geometries using various techniques such as point charge,
charge density, finite difference, integral equation methods or
Fourier series [14–18]. The forces in both DEP and twDEP
cases for a parallel interdigitated array have been solved using
similar numerical methods [19], as well as using analytical
approximations based on Green’s theorem [20] and circuit
simulation methods for electrorotation electrodes [21].

In this paper we use Fourier series analysis to model the
electric field from a parallel bar electrode array for two cases:
first for a two-phase electrode array where only the DEP force
is present and second for the case of twDEP with a four-phase
electrode array. The forces in these two cases are calculated
and compared with experimental results and previous solutions
presented in the literature. One aim of this paper is to provide
analytical expressions for the force on a particle, which can
readily be compared with experimental results and used to
develop models for particle movement.

2. Basic equations and assumptions

2.1. Dielectrophoretic forces

The dielectrophoretic force and the travelling wave dielec-
trophoretic force arise from the interaction of a non-uniform
electric field with the dipole moment induced in a polarizable
particle. Generally single frequency signals are used to gen-
erate the electric field, which can then be written in phasor
notation as E = Re [Ẽ eiωt ], where i = √−1, ω is the fre-
quency of the electric field, t is the time, Re [. . .] indicates the
real part of [. . .] and Ẽ is a general complex amplitude of the
electric field.

In a uniform field, the complex amplitude of the induced
dipole moment of a spherical particle is proportional to that of
the electric field so that

p̃ = vαẼ (1)

where v is the volume of the particle and α is the effective
polarizability. The polarizability is a complex factor that
depends on the permittivity and conductivity of both the
particle and the fluid, and the frequency of the applied field.
For a non-uniform field, assuming that the particle diameter is
much smaller than a typical distance associated with the non-
uniformity, the higher order moments can be neglected and the
particle can be considered to have the induced dipole moment
as given by equation (1).

The time-averaged force on the dipole of the particle is [2]

〈F 〉 = 1
2 Re [(p̃ · ∇)Ẽ∗] = 1

2v Re [α(Ẽ · ∇)Ẽ∗] (2)

where ∗ indicates a complex conjugate. If the electric field has
a non-uniform magnitude but no variation in phase, the force
can be written as

〈F 〉 = 1
4v Re [α]∇|Ẽ|2. (3)

Wang et al [22] showed that if the electric field also has a
spatially dependent phase (as in the case of twDEP), then the

force expression includes an additional component due to the
gradient of the phase. If the components of the electric field
are written as

Ex(t) = Ex cos(ωt + ϕx)

Ey(t) = Ey cos(ωt + ϕy)

Ez(t) = Ez cos(ωt + ϕz) (4)

the total dielectrophoretic force is

〈F (t)〉 = 1
4v(Re [α]∇|E|2

+2 Im [α](E2
x∇ϕx + E2

y∇ϕy + E2
z∇ϕz)) (5)

where Im [. . .] indicates the imaginary part of [. . .].

2.2. General statements and assumptions

For currents and frequencies typically used in ac electrokinetic
systems, Maxwell’s equations can be reduced to the quasi-
electrostatic form [23]:

E = −∇φ the electric field is irrotational

∇ · J +
∂ρ

∂t
= 0 the charge conservation equation

∇ · D = ρ Gauss’s law

where J is the current density, ρ is the free charge density
and D is the electric flux density or the displacement vector.
For a homogeneous linear dielectric with permittivity ε and
conductivity σ , J = σE and D = εE, and the equation for
the potential is

σ∇2φ + ε
∂

∂t
∇2φ = 0. (6)

For a harmonic ac signal of frequencyω, the general stationary
solution is a time-dependent function given by

φ = φ1 cosωt + φ2 sinωt (7)

where both φ1 and φ2 satisfy Laplace’s equation. Equation (6)
is valid if the power dissipation is not high enough to create
inhomogeneities in the dielectrics. In addition, the frequency
must be high enough so that any double-layer effects at
the electrode–electrolyte interface can be neglected [24, 25].
These effects are not just those related to electrode polarization
but also the generation of ac electro-osmotic fluid flow in the
electrolytic medium [25, 26].

Figure 1 shows a diagram of the electrode geometry for a
typical DEP or twDEP separation system. Thin electrodes are
fabricated on a planar insulating substrate with width d1 and
spacing d2 as shown. Given this particular geometry, further
simplifications can be made. The electrodes are assumed to be
much longer than d1 so that the problem can be reduced to two
dimensions. The electrode array is assumed to be of infinite
length so that symmetry arguments can be used to reduce the
problem to a unit cell, which is repeated periodically.

2.3. Boundary conditions

The boundary condition for the electrodes is that of a fixed
potential. In this paper, two cases will be considered: a
dielectrophoretic array and a travelling wave dielectrophoretic
array. The two cases have different unit cells and different
boundary conditions for the potential at the electrodes.
However, certain boundary conditions are common to the two
configurations.
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Figure 1. Diagram showing the experimental arrangement of an
interdigitated electrode array used for dielectrophoretic separation
devices and travelling wave dielectrophoresis. The electrodes are
connected in phase sequence as shown in the diagram.

(a) The potential goes to zero as y goes to infinity.
(b) Since the electrodes are much thinner than their width, we

ignore the thickness so that the potential on the electrodes
is specified at y = 0.

(c) At the interface between the liquid and the glass, in the
gap between the electrodes, the potential at y = 0 satisfies

�

[
σ
∂φ

∂n
+ ε
∂

∂t

∂φ

∂n

]
= 0

where�[. . .] signifies the jump in [. . .] between the liquid
and the glass of the substrate and n is the normal to the
surface. This equality arises from the requirement that the
total current (displacement and free) across the interface
is continuous. In order to obtain an analytical expression
for the force, it is assumed that the potential between the
electrodes is a linear function.

3. The dielectrophoretic array

For DEP, the phases are connected as depicted in figure 1, with
electrodes connected alternately to two signals of frequency ω
with phases 0◦ and 180◦. In this case, φ2 in equation (7) is
zero, the phases ϕ in equation (4) are independent of position
and the phase related term (twDEP) in equation (5) is zero.
The boundary condition at y = 0 for the analytical solution of
the electrical potential is shown in figure 2.

3.1. The electrical potential

The function φ1(x, y) is a solution of Laplace’s equation and
can be determined uniquely fory > 0 if the boundary condition
at y = 0 is known. Since the boundary condition is periodic
in x with period λ = 2(d1 + d2), φ1(x, 0) can be written as a
Fourier series

φ1(x, 0) =
∞∑
n=1

An cos(knx) (8)

where kn = 2πn/λ, n is an integer and An are the Fourier
coefficients. For convenience we have chosen x = 0 to be at

Figure 2. The boundary condition for the potential at y = 0 used to
solve the electrical potential in the system for dielectrophoresis.

the mid-point of an electrode, so that φ1 is an even function of
x. The function φ1(x, y) is then

φ1(x, y) =
∞∑
n=1

An cos(knx) e−kny y > 0. (9)

The function has odd symmetry at x = λ/4 requiring that
φ1(λ/4, y) = 0 and therefore that cos(knλ/4) = 0. This
implies that n is an odd number such that n = 2m + 1 where
m = 0, 1, 2, 3 . . . and kn = [(2m + 1)π ]/2d. The coefficients
An are found from:

An = 2

λ

∫ λ

0
φ1(x, 0) cos(knx) dx

= 2Vo
d

[ ∫ d1/2

0
cos(knx) dx

+
∫ d

d1/2

(
2d − 2x

d2

)
cos(knx) dx

]
(10)

where d = (d1 + d2)/2. Evaluating the integral

An = 16Vod

π2d2(2m + 1)2
cos

(
(2m + 1)πd1

4d

)
(11)

and for the particular case d1 = d2 = d,

An = 16Vo
π2(2m + 1)2

cos
(
(2m + 1)

π

4

)
. (12)

The electric potential φ1 is plotted in figure 3 for this case.
This figure was produced using Mathematica® and shows the
potential calculated from the sum of the infinite Fourier series.

3.2. The electric field and the dielectrophoretic force

The electric field is E = −∇φ1(x, y) cos(ωt) = ∑∞
m=0

Em cos(ωt) where the components of the vector Em are the
mth terms of Fourier series:

Emx(x, y) = k2m+1A2m+1 sin(k2m+1x) e−k2m+1y

Emy(x, y) = k2m+1A2m+1 cos(k2m+1x) e−k2m+1y (13)

where the coefficients A and k are defined as above
(equation (11)). Since there is no phase variation, the time-
averaged DEP force is given by equation (3)

〈FDEP 〉 = 1
4vRe [α]∇(E2

x + E2
y) (14)
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Figure 3. Contour plot of the electric potential, φ1, calculated from
the sum of the infinite Fourier series. The grey scale extends from
−Vo (black) to +Vo (white).

Figure 4. Contour plot of the DEP force potential, (E2
x + E2

y ). The
gradient is proportional to the DEP force. The grey scale is from
maximum force potential (white) to minimum (black).

whereE2
x = (∑∞

m=0 Emx)
2 and equivalently forE2

y . Figure 4 is
a contour plot of the quantityE2

x +E2
y for the case d1 = d2 = d.

This is the DEP force potential whose gradient gives the force
in equation (14) and the figure indicates how it varies in space
above the electrodes. Figures 5(a) and (b) show how the
positive DEP force varies above the electrodes. Figure 5(a)
is a vector plot showing the direction of the force. Figure 5(b)
is a contour plot of the magnitude of the force calculated on
a log scale for the complete infinite series. The figure shows
that for large distance from the electrode surface, the force
direction is straight downwards with a constant magnitude for
any given height. When particles reach a height around d,
the direction of the force is no longer vertical, vectors point
towards the electrode edges and the magnitude of the force
increases rapidly.

3.2.1. The force at heights greater than d. The full expression
for the force is an infinite series but this can be simplified at
sufficient height above the electrodes since the higher order
terms become negligible. The first term in the force expression
comes from the square of E0 and the second comes from the
inner product E1 · E0. The exponential factor in |E0|2 is
e−4πy/λ = e−πy/d and that in E1 ·E0 is e−8πy/λ = e−2πy/d . For
a height y greater than (λ/4π) ln(10) = 0.733d , the factor in
the second term is approximately 10 times smaller than in the
first. In addition, the coefficients in front of the exponential
also decrease withm. Therefore, above a height of order d, all
but the first term can be neglected.

(a)

(b)

Figure 5. Plots showing the spatial variation in DEP force above the
electrodes. (a) Vector plot showing the direction of the DEP force.
(b) Contour plot of the magnitude of the DEP force plotted on a
logarithmic, grey scale.

Considering only the first term of the series given by
equation (14), the DEP force in the general case, d1 �= d2,
is

〈FDEP 〉 = −16
V 2

0 v

πd2
2d

Re [α] cos2

(
πd1

4d

)
e−πy/d ĵ (15)

with d = (d1 +d2)/2 and where î, ĵ and k̂ are the unit vectors.
For the particular case d1 = d2 = d

〈FDEP 〉 = −8
V 2

0 v

πd3
Re [α] e−πy/d ĵ. (16)

Equations (15) and (16) are valid above y ∼ d and do not
accurately describe the force for distances y < d. However,
these expressions are certainly applicable for the case of
negative DEP, such as in DEP–FFF systems where particles
are repelled from the electrodes [7–9].

3.2.2. Full solution of the force: infinite series sum. In
the particular case of d1 = d2 = d, a simple closed form
expression can be found for the infinite series. The explicit
expressions for Ex and Ey from equation (13) are:

Ex(x, y) =
∞∑

n=1,3...

8V0

nπd
cos

(
πn

4

)
sin

(
πnx

2d

)
e−kny

Ey(x, y) =
∞∑

n=1,3...

8V0

nπd
cos

(
πn

4

)
cos

(
πnx

2d

)
e−kny . (17)
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Transforming x according to x ′ = x + d/2 these expressions
become:

Ex(x, y) =
∞∑

n=1,3...

4V0

nπd

[
cos

(
πnx ′

2d

)

− sin

(
πn

2d

)
cos

(
πnx ′

2d

)]
e−kny

Ey(x, y) =
∞∑

n=1,3...

4V0

dπn

[
cos

(
πnx ′

2d

)

+ sin

(
πn

2d

)
sin

(
πnx ′

2d

)]
e−kny (18)

which can be written in closed form as [27]:

Ex(x, y) = 2V0

πd

[
tan−1

(
sin x̂

sinh ŷ

)
− tan−1

(
cos x̂

sinh ŷ

)]

Ey(x, y) = V0

dπ

[
ln

(
cosh ŷ + cos x̂

cosh ŷ − cos x̂

cosh ŷ + sin x̂

cosh ŷ − sin x̂

)]

(19)
where ŷ = πy/2d and x̂ = πx ′/2d = πx/2d + π/4. The
force is obtained from the derivatives of the electric field
components:

Ex,x(x, y) = ∂Ex

∂x
= −∂Ey

∂y
= −Ey,y(x, y)

= 2V0 sinh ŷ

d2

[
cos x̂

cosh 2ŷ − cos 2x̂
+

sin x̂

cosh 2ŷ + cos 2x̂

]

Ex,y(x, y) = ∂Ex

∂y
= ∂Ey

∂x
= Ey,x(x, y)

= 2V0 cosh ŷ

d2

[
cos x̂

cosh 2ŷ + cos 2x̂
− sin x̂

cosh 2ŷ − cos 2x̂

]
.(20)

Expanding the gradient in equation (14) as

∇(E2
x + E2

y) = 2ux(ExEx,x + EyEy,x)

+2uy(ExEy,x + EyEy,y) (21)

and using the expressions for the derivatives (equations (20)),
the x- and y-components of the gradient can be obtained.
This enables the DEP force to be calculated for a particle
at an arbitrary point above the electrodes. This analytical
solution can be used to calculate for example the trajectory
of a Brownian particle using the Langevin equation.

3.3. Examples and comparison with experiments

For the particular case of a homogeneous spherical particle
suspended in a liquid, the effective polarizability α is equal to
3εmfcm, where εm is the permittivity of the liquid and fcm is the
complex Clausius–Mossotti factor [1, 2]. The real part of fcm
is bounded by +1 and −1/2 and the imaginary part is bounded
by +3/4 and −3/4. For the case d1 = d2 = d , the levitation
height can be found by balancing the dielectrophoretic force
with the gravitational force FG = �ρvg giving

h = d

π
ln

[
−24V 2

0 εm Re [fCM ]

πd3�ρg

]
. (22)

This assumes that the particle is experiencing negative
dielectrophoresis, so that Re [fcm] < 0 and the particle is
repelled from the electrodes. For a 1 µm diameter particle

suspended in water on an electrode array with d = 20 µm
and V0 = 5 V, taking Re [fcm] = −1/2 with a particle density
twice that of water, the levitation height is 43 µm. Since the
force obeys an exponential law, this height does not change
significantly with particle density. For example, for a particle
with a density three times that of water the equilibrium height
is 38.5 µm and for 1.5 times the density of water the height is
47.4 µm.

For the same 1 µm particle, the force far from the
electrodes is

〈FDEP 〉 = −8.75 × 10−12 Re [fcm] e−πy/d ĵ N. (23)

For the case of DEP field flow fractionation, Markx et al
[7] calculated the DEP force on a levitated particle from
numerical simulation of the electric field using finite element
methods. Huang et al [8] and Wang et al [9] deduced an
analytical expression for the DEP force from a solution of
the potential using Green’s method [20]. Direct comparison
of our expression for the DEP force, equation (16) with the
data presented in [7] is summarized in table 1. The agreement
is excellent, provided that the applied voltage is sufficient to
levitate the particles to a height greater than d. Also, the
analytical expression for the DEP force given in [8, 9] is within
7% of that given by equation (16). It should be noted that
equation (16) gives the DEP force when the voltage on each
electrode is defined to have an amplitude ofV0, i.e. the potential
difference between two consecutive electrodes is 2V0.

4. The travelling wave array

In a four-phase travelling wave electrode array, each applied
signal has an amplitude of V0, and an angular frequency of
ω. The voltage on consecutive electrodes is phase shifted
by 90◦ as shown in figure 1, so that the travelling wave
moves in the positive direction. The wave has a wavelength
λ equal to the distance between every fourth electrode, i.e.
λ = 4(d1 + d2) = 8d.

4.1. The electrical potential

The electrostatic potential φ is the superposition of the two
functions: φ = φ1 cosωt + φ2 sinωt . The functions φ1 and
φ2 have the boundary conditions specified in figure 6. The
amplitude of φ2 is the same as φ1 but shifted λ/4 in the
x-direction: φ2(x, y) = φ1(x − λ/4, y).

Again, the functionφ1 is determined completely for y > 0
given the boundary condition at y = 0. Because of the
periodicity of the boundary condition, φ1(x, 0) is written as
the Fourier series

φ1(x, 0) =
∞∑
n=1

An cos(knx) (24)

where kn = 2πn/λ and φ1(x, 0) is again chosen to be an
even function of x. Solving Laplace’s equation, the function
φ1(x, y) for y > 0 is

φ1(x, y) =
∞∑
n=1

An cos(knx)e
−kny . (25)
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Table 1. A comparison of the experimentally determined levitation heights for 6 µm diameter latex beads reported in [7], with the levitation
heights calculated from equation (22).

V0 = 2 V (4 V pk to pk) V0 = 3 V (6 V pk to pk) V0 = 4 V (8 V pk to pk)
Electrode
spacing d (µm) h (exp) h (theory) h (exp) h (theory) h (exp) h (theory)

40 70 72 80 82 88 92
20 48 50 55 55 62 59
10 35 32 40 34 — —

As for the dielectrophoretic array, symmetry arguments require
that φ1(λ/4, y) = 0 implying that cos(knλ/4) = 0 and
kn = (2m + 1)2π/λ where m = 0, 1, 2, 3, . . .. Taking into
account the λ/4 shift in x with respect to φ1(x, y), gives the
following expression for the potential φ2(x, y)

φ2(x, y) =
∞∑
n=1
nodd

An cos(kn(x − λ/4))e−kny

=
∞∑
m=0

(−1)mA2m+1 sin

(
(2m + 1)2π

λ
x

)
e−(2m+1)(2π/λ)y .

(26)

The complete potential is therefore:

φ(x, y, t) =
∞∑
m=0

A2m+1

[
cos

(
(2m + 1)2π

λ
x

)
cos(ωt)

+(−1)m sin

(
(2m + 1)2π

λ
x

)
sin(ωt)

]
e−[(2m+1)2π/λ]y

=
∞∑
m=0

A2m+1 cos

(
(2m + 1)2π

λ
x−(−1)mωt

)
e−[(2m+1)2π/λ]y.

(27)

The potential is the superposition of waves propagating
alternately in the positive or negative x-direction depending
on whether m is even or odd, respectively [18]. As for
the previous case (section 3.2.1), at heights greater than
(λ/4π) ln(10) = 1.466d there is a pure propagating wave in
the x-direction (corresponding to m = 0), since at this height
higher order terms are negligible.

The Fourier coefficients are found from

A2m+1 = 2

λ

∫ λ

0
φ1(x, 0) cos(k2m+1x) dx

= 8V0

λ

[ ∫ d1/2

0
cos

(
(2m + 1)π

4d
x

)
dx

+
∫ d2+d1/2

d1/2

(
d1 + 2d2 − 2x

d2

)
cos

(
(2m + 1)π

4d
x

)
dx

]

(28)

which gives

A2m+1 = 16V0d

(2m + 1)2π2d2

[
cos

(
(2m + 1)πd1

8d

)

− cos

(
(2m + 1)π(d1 + 2d2)

8d

)]
. (29)

For the case d1 = d2 = d this simplifies to

A2m+1 = 16V0

(2m + 1)2π2

[
cos

(
(2m + 1)π

8

)

− cos

(
(2m + 1)3π

8

)]
. (30)

Figure 6. The boundary conditions for the potential functions φ1

and φ2 for the travelling wave dielectrophoresis array. The
amplitude of φ2 is the same as φ1 but shifted λ/4 in the x-direction.

4.2. The electric field and the dielectrophoretic forces

From E = −∇φ1(x, y) cos(ωt)−∇φ2(x, y) sin(ωt), the elec-
tric field can be written as the series E(x, y, t) = ∑∞

m=0 Em
where

Emx(x, y, t) = (2m + 1)π

4d
A2m+1 sin

(
(2m + 1)π

4d
x

−(−1)mωt

)
e−[(2m+1)π/4d]y

Emy(x, y, t) = (2m + 1)π

4d
A2m+1 cos

(
(2m + 1)π

4d
x

−(−1)mωt

)
e−[(2m+1)π/4d]y. (31)

Each term, Em(x, y, t), of this series is a vector that for fixed
(x, y) rotates clock-wise (m odd) or anti-clockwise (m even).
Alternatively, each Em can be viewed as a wave that travels
in the positive x-direction if m is even and in the negative
x-direction if m is odd [18].

4.2.1. The force at heights greater than 1.5d. The full
expression for the force can be simplified at sufficient
height above the electrodes since higher order terms become
negligible. As for the potential, at heights y greater than
(λ/4π) ln(10) = 1.466d all but the first term can be neglected.
The electric field components are then:

Ex(x, y, t) = π

4d
A1 e−(π/4d)y cos

(
ωt − π

4d
x − π

2

)

Ey(x, y, t) = π

4d
A1 e−(π/4d)y cos

(
ωt − π

4d
x
)
. (32)
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The components of the DEP force are

〈Fx(t)〉 = −v Im [α]
( π

4d

)3
A2

1 e−(π/2d)y

〈Fy(t)〉 = −v Re [α]
( π

4d

)3
A2

1 e−(π/2d)y . (33)

For the particular case of d1 = d2 = d

A1 = 16V0

π2

[
cos

(
π

8

)
− cos

(
3π

8

)]
= 0.877 354V0 (34)

and

〈Fx(t)〉 = − π3

64d3
v Im [α]A2

1 e−(π/2d)y

= − 0.372 923
vV 2

0

d3
Im [α] e−(π/2d)y (35)

〈Fy(t)〉 = −0.372 923
vV 2

0

d3
Re [α] e−(π/2d)y . (36)

It can be seen from these expressions that the x-component of
the force is proportional to the imaginary part of the Clausius–
Mossotti factor, and gives rise to the travelling wave movement
of the particle. The y-component is proportional to the real
part of the Clausius–Mossotti factor and is responsible for
levitation of the particle. It should be emphasized that these
expressions are only valid from y = 1.5d to infinity. Closer to
the electrodes, higher order effects must be taken into account.

4.2.2. Higher order terms in the force expressions. In
order to expand the problem to include higher order terms
in the DEP force (equation (5)), some manipulation is
required. We write the electric field components as
Ex(t) = Cx cos(ωt) +Dx sin(ωt), with a similar expression
for Ey . The coefficients Cx , Cy , Dx and Dy are obtained
from the corresponding Fourier series:

Cx =
∞∑
m=0

(2m + 1)π

4d
A2m+1 sin

(
(2m + 1)π

4d
x

)

×e−[(2m+1)π/4d]y

Dx = −
∞∑
m=0

(2m + 1)π

4d
A2m+1(−1)m cos

(
(2m + 1)π

4d
x

)

×e−[(2m+1)π/4d]y (37a)

Cy =
∞∑
m=0

(2m + 1)π

4d
A2m+1 cos

(
(2m + 1)π

4d
x

)

×e−[(2m+1)π/4d]y

Dy =
∞∑
m=0

(2m + 1)π

4d
A2m+1(−1)m sin

(
(2m + 1)π

4d
x

)

×e−[(2m+1)π/4d]y. (37b)

The gradient terms in the force can be written as

∇|E|2 = ∇(C2
x +D2

x + C2
y +D2

y) (38)

and
E2
x∇ϕx = Dx∇Cx − Cx∇Dx

E2
y∇ϕy = Dy∇Cy − Cy∇Dy. (39)

Figure 7. Contour plot of the DEP force potential in a travelling
wave device, |E|2. The grey scale is from maximum force potential
(white) to minimum (black).

(a)

(b)

Figure 8. Plots showing the spatial variation in DEP force above the
twDEP electrodes. (a) Vector plot showing the direction of the
force. (b) Contour plot of the magnitude of the force plotted on a
logarithmic, grey scale.

Using these equations, the expression for the complete DEP
force in two dimensions is

〈F 〉 = 1
4v(Re [α]∇(C2

x + C2
y +D2

x +D2
y)

+2 Im [α](Dx∇Cx − Cx∇Dx +Dy∇Cy − Cy∇Dy)).
(40)

The first term in this equation, the DEP component, is the same
as for the dielectrophoretic array case, with a potential given
by |E|2 = C2

x +D2
x +C2

y +D2
y . A contour plot of this potential

is shown in figure 7 for the case d1 = d2 = d. The DEP force
is perpendicular to the iso-lines and a plot of the force is shown
in figure 8 as (a) separate direction and (b) magnitude.

The twDEP component has a different behaviour that can
be illustrated as follows. The functions Cx , Cy , Dx and Dy

1559



H Morgan et al

Figure 9. Contour plot of ψ . The lines of constant ψ are parallel to
the direction of the travelling wave force (as shown by the vectors of
figure 10(a)).

obey the following equalities:

∂Cx

∂x
= −∂Cy

∂y

∂Cy

∂x
= ∂Cx

∂y
(41)

since they are the partial derivatives of φ1 and φ2. Taking this
into account, it can be shown that

Dx∇Cx − Cx∇Dx +Dy∇Cy − Cy∇Dy
= ∇ × [(CxDy − CyDx)k̂]. (42)

In two dimensions, the function ψ = CxDy −CyDx is similar
to a two-dimensional stream function for the twDEP force
component. The lines of constant ψ are parallel to the force
vectors and figure 9 shows a contour plot of ψ for the case
d1 = d2 = d, i.e. the twDEP component direction. In the
absence of any other forces, including the DEP component, the
contour lines in this figure indicate the path of the particle. This
can be seen in figure 10, which shows the twDEP component
of the force as (a) separate direction and (b) magnitude plots.
Again for y > d the force is uniform but for lower heights
the particle trajectory is no longer a simple translational
movement.

4.3. Examples

For the case of the homogeneous spherical particle (as in
section 3.2.3), with an applied potential of 5 V, there are certain
frequencies at which the particle levitates and experiences a
twDEP force since the imaginary part of fcm is non-zero.
Taking typical values of −0.1 for the real and −0.65 for
the imaginary parts of fcm, and assuming that the particle is
sufficiently high so that the far-field approximation can be used,
the corresponding forces are: ]

〈Fx〉 = 8.330 × 10−13 e−πy/2d N (43a)

〈Fy〉 = 8.330 × 10−13 e−πy/2d N. (43b)

For a particle with a density twice that of water, the equilibrium
levitation height is 41 µm. At this height the velocity
of the particle can be calculated (from Stoke’s formula,
vx = Fx/(6πηa)) to be 3.5 µm s−1.

The relationship between experimental parameters and the
movement of the particle in the regime far from the electrodes
(y > 1.5d) can be examined further. As for the previous case,
the levitation height of the particle can be determined

h = 2d

π
ln

[
−0.3729V 2

0 3εm Re [fCM ]

d3�ρg

]
. (44)

(a)

(b)

Figure 10. Plots showing the spatial variation in travelling wave
force above the twDEP electrodes. (a) Vector plot showing the
direction of the travelling wave force. (b) Contour plot of the
magnitude of the force plotted on a logarithmic, grey scale.

Substituting this into equation (35) and equating with the
Stoke’s drag force gives the velocity of the particle

vx = 2

9

a2�ρg

η

Im [fCM ]

Re [fCM ]
. (45)

This signifies that once the particle has reached a levitation
height greater than 1.5d, the velocity of the particle is
independent of the applied voltage. For a given particle,
the velocity only depends on the frequency of the applied
signal, through the ratio of the imaginary and real parts of
the Clausius–Mossotti factor. To increase the velocity, the real
part of the Clausius–Mossotti factor can be reduced but this
would also reduce the levitation height. Experimental results
[28] confirm that the twDEP velocity is independent of the
voltage when the voltage is high enough to levitate the particle
above y ∼ d.

5. Conclusion

Fourier series analysis of the solution to Laplace equation
has been used to obtain an analytical expression for the DEP
and twDEP forces in an interdigitated electrode array. The
solution was obtained assuming a linear potential function
between neighbouring electrodes. A simple expression has
been derived for the DEP and twDEP force at a distance of
the order of the electrode spacing from the surface of the
device. A full analytical solution for the x and y components
of the force has been obtained for the DEP electrode array.
Comparisons with previously published experimental data on
DEP and twDEP levitation show good agreement with the
analytical solutions.
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