The University of Southampton
University of Southampton Institutional Repository

Global optimisation-based control algorithms applied to boundary layer transition problems

Global optimisation-based control algorithms applied to boundary layer transition problems
Global optimisation-based control algorithms applied to boundary layer transition problems
Turbulent flow has a significantly higher drag than the corresponding laminar flow at the same flow conditions. The presence of turbulent flow over a large part of an aircraft therefore incurs a significant penalty of increased fuel consumption due to the extra thrust required. One possible way of decreasing the drag is to apply surface suction to delay the transition from laminar to turbulent flow. However, in order for the gain from the reduction in drag to outweigh the extra costs associated with the suction system, the suction must be distributed in an optimum, or near optimum, manner. In this paper two practical cases are considered. In the first of these a flat plate with panels whose positions are adjustable but do not overlap is treated. Since the cost function in this case is multi-modal, non-smooth and non-convex, methods for solving the optimisation problems necessary to design multi-panel suction systems based on direct search techniques are developed. In the second case considered the problem is that of linear distributed suction over the front part of an aerofoil. For this case, the computational load increases so significantly that in some cases it is not really feasible to continue the investigation using a single processor code. To overcome this, three parallel global optimisation algorithms are developed for the design of multi-panel suction systems on an aerofoil and it is shown that good solutions can be found efficiently.
boundary layer transition control, flow control, aerofoils, non-smooth direct optimisation, parallel global
0967-0661
475-490
Veres, G.V.
3c2a37d2-3904-43ce-b0cf-006f62b87337
Tutty, O.R.
c9ba0b98-4790-4a72-b5b7-09c1c6e20375
Rogers, E.
611b1de0-c505-472e-a03f-c5294c63bb72
Nelson, P.A.
5c6f5cc9-ea52-4fe2-9edf-05d696b0c1a9
Veres, G.V.
3c2a37d2-3904-43ce-b0cf-006f62b87337
Tutty, O.R.
c9ba0b98-4790-4a72-b5b7-09c1c6e20375
Rogers, E.
611b1de0-c505-472e-a03f-c5294c63bb72
Nelson, P.A.
5c6f5cc9-ea52-4fe2-9edf-05d696b0c1a9

Veres, G.V., Tutty, O.R., Rogers, E. and Nelson, P.A. (2004) Global optimisation-based control algorithms applied to boundary layer transition problems. [in special issue: UKACC Conference Control 2002] Control Engineering Practice, 12 (4), 475-490. (doi:10.1016/j.conengprac.2003.09.009).

Record type: Article

Abstract

Turbulent flow has a significantly higher drag than the corresponding laminar flow at the same flow conditions. The presence of turbulent flow over a large part of an aircraft therefore incurs a significant penalty of increased fuel consumption due to the extra thrust required. One possible way of decreasing the drag is to apply surface suction to delay the transition from laminar to turbulent flow. However, in order for the gain from the reduction in drag to outweigh the extra costs associated with the suction system, the suction must be distributed in an optimum, or near optimum, manner. In this paper two practical cases are considered. In the first of these a flat plate with panels whose positions are adjustable but do not overlap is treated. Since the cost function in this case is multi-modal, non-smooth and non-convex, methods for solving the optimisation problems necessary to design multi-panel suction systems based on direct search techniques are developed. In the second case considered the problem is that of linear distributed suction over the front part of an aerofoil. For this case, the computational load increases so significantly that in some cases it is not really feasible to continue the investigation using a single processor code. To overcome this, three parallel global optimisation algorithms are developed for the design of multi-panel suction systems on an aerofoil and it is shown that good solutions can be found efficiently.

Text
cep2.pdf - Other
Download (414kB)

More information

Published date: April 2004
Keywords: boundary layer transition control, flow control, aerofoils, non-smooth direct optimisation, parallel global
Organisations: Inst. Sound & Vibration Research, Aeronautics, Astronautics & Comp. Eng, IT Innovation, Southampton Wireless Group

Identifiers

Local EPrints ID: 258931
URI: http://eprints.soton.ac.uk/id/eprint/258931
ISSN: 0967-0661
PURE UUID: d0e7632a-842a-4d18-bc7c-ea11ff32bb05
ORCID for E. Rogers: ORCID iD orcid.org/0000-0003-0179-9398
ORCID for P.A. Nelson: ORCID iD orcid.org/0000-0002-9563-3235

Catalogue record

Date deposited: 29 Feb 2004
Last modified: 15 Mar 2024 02:42

Export record

Altmetrics

Contributors

Author: G.V. Veres
Author: O.R. Tutty
Author: E. Rogers ORCID iD
Author: P.A. Nelson ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×