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t. Distributed referen
e 
ounting is a general purpose te
h-nique, whi
h may be used, e.g., to dete
t termination of distributedprograms or to implement distributed garbage 
olle
tion. We presenta distributed referen
e 
ounting algorithm and a me
hani
al proofof 
orre
tness 
arried out using the proof assistant Coq. The algo-rithm is formalised by an abstra
t ma
hine, and its 
orre
tness hastwo di�erent fa
ets. The safety property ensures that if there existsa referen
e to a resour
e, then its referen
e 
ounter will be stri
tlypositive. Liveness guarantees that if all referen
es to a resour
e aredeleted, its referen
e 
ounter will eventually be
ome null.1 Introdu
tionReferen
e 
ounting is a general purpose te
hnique that is able to
ount the number of referen
es to a given resour
e. Collins [5℄ wasthe �rst to use it in order to determine when list 
ells were no longerneeded. Operating systems rely on this te
hnique in order to de
idewhen �les may be deleted or when �le des
riptors may be 
losed.Referen
e 
ounting is also a method for implementing garbage 
olle
-tion, a memory management te
hnique that automati
ally determineswhen obje
ts may be deallo
ated. We refer the reader to Jones andLins' book [19, se
tion 2.1℄ for a dis
ussion of the pro and 
ons of thiste
hnique for garbage 
olle
tion purpose.Distributed referen
e 
ounting is an extension of referen
e 
ount-ing where a resour
e and its users may be lo
ated at di�erent posi-tions. The diÆ
ulty of a distributed environment is that the de
ision
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e is used 
an no longer be taken lo
ally, but mustinvolve a 
ollaboration with the di�erent lo
ations parti
ipating inthe 
omputation. Distributed referen
e 
ounting may be used to im-plement distributed garbage 
olle
tion; a variant of this te
hnique isin parti
ular used in Java and RMI [27,18℄. Even though distributedreferen
e 
ounting is not able to deal with distributed 
y
les, it hasbeen a popular implementation te
hnique of distributed garbage 
ol-le
tion be
ause it is simple to implement and 
an ni
ely be integratedwith sequential garbage 
olle
tors [3,27,32,41℄. More generally, it maybe used for tra
king referen
es to resour
es [15℄. A possible use is todete
t termination of distributed programs [40℄; referen
e 
ountingmay be used for su
h an appli
ation be
ause pro
esses form a hier-ar
hy. Groups [31℄ also have a hierar
hi
al organisation and 
an bereferen
e 
ounted.The �rst author re
ently published a new algorithm for distributedreferen
e 
ounting [27℄. It has the property that all referen
es may befound at any time, whi
h 
an be useful when the owner of a resour
ewishes to propagate information to the resour
e users. In fa
t, thisalgorithm des
ribes a family of implementations, a

ording to thepoli
y adopted to propagate messages. In parti
ular, Piquer's Indire
tReferen
e Counting [32℄ 
an be seen as a parti
ular instan
e of ouralgorithm.The purpose of this paper is to present this algorithm and to proveits 
orre
tness. The 
orre
tness of a referen
e 
ounting algorithm hastwo di�erent fa
ets. Safety guarantees that if there exists a refer-en
e to a resour
e, then its referen
e 
ounter will be stri
tly positive.Liveness guarantees that if all referen
es to a resour
e are deleted, itsreferen
e 
ounter will eventually be
ome null.The 
ontribution of this paper is the des
ription of a me
hani
alproof that has been 
arried out using the 
al
ulus of indu
tive 
on-stru
tions and the proof assistant Coq [1℄. We have also studied someoptimisations and have 
onsidered two algorithm variants. In parti
-ular, we present referen
e listing , whi
h is a variant of the algorithmthat not only 
ounts referen
es to a resour
e, but also rememberswhere those referen
es were passed. Referen
e listing is a useful te
h-nique to assist in building a fault tolerant version of the algorithm[4℄.The motivation for this work is threefold. First, even with thebest intentions, it is easy to skip reasoning steps in paper proofs, orto overlook non-trivial properties. Parallel and distributed algorithmsare by nature diÆ
ult to verify, and we felt that a me
hani
al proofwould help us in understanding the algorithm deeply. Se
ond, the
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e Counting 3proof assistant Coq requires 
onstru
tive proofs, whi
h for
ed us notonly to state properties, but also to provide a me
hani
al way toderive them. Su
h an exer
ise has proved to be su

essful be
ausewe managed to spe
ify very pre
isely the notions of alternate queueand di�usion tree, whi
h are 
entral to the proof of safety. Third, wesee this work as part of a larger a
tivity aiming to 
ertify distributedsoftware systems; the hope is that our formalisation may be reusedas a module for more 
omplex systems.The sour
e 
ode for the proof in Coq is available from [30℄. Theproof is about 13000 lines long, plus an extra 3000 lines for algorithmvariants. We present here a sele
tion of de�nitions, lemmas and the-orems, in a notation that is very 
lose to the one in our Coq proof.For the sake of 
on
iseness, proofs are only sket
hed, but 
ompleteproof details may be obtained from [30℄.This paper is organised as follows. First, we set the 
ontext inwhi
h the algorithm was developed and present its intuition (Se
tion2). The algorithm is then formally des
ribed as an abstra
t ma
hine,whi
h we 
all the DRC-ma
hine (Se
tion 3). General properties ofthe ma
hine are de�ned, in
luding some basi
 invariants and a no-tion of di�usion tree that represents the path by whi
h referen
es arepropagated in a 
omputation (Se
tion 4). Corre
tness is established,involving both safety and liveness aspe
ts (Se
tion 6). Then, optimi-sations and algorithm variants are investigated (Se
tions 6 and 7).Finally, we 
on
lude the paper with related work.2 The Algorithm: Informal PresentationThe initial motivation for this work was the design and implemen-tation of a distributed language [29℄, based on the message-passinglibrary Nexus [10℄. This library essentially provides a notion of globalpointer (GP ), whi
h is a referen
e to a remote obje
t, and a formof remote pro
edure 
all, whi
h allows the programmer to a
tivate a
omputation on an obje
t pointed at by a GP ; any data, in
ludingglobal pointers, may be passed as argument to a remote pro
edure
all.We assume that several lo
ations parti
ipate to a 
omputationand we 
all them sites. During the 
ourse of a 
omputation, GP s are
reated and 
ommuni
ated by remote pro
edure 
alls. The site wherea GP is initially 
reated is 
alled its owner ; the owner 
ontains somedata that a GP is referring to. Newly 
reated global pointers must beunique; in pra
ti
e, a global pointer 
ontains a unique address repre-senting its host and a lo
ally unique identi�er. In this algorithm, we



4 Lu
 Moreau, Jean Dupratadopt the following failure assumptions: there exists a reliable mes-sage delivery, i.e. messages 
annot be lost, 
orrupted or dupli
ated;ma
hines never 
rash and are never taken out of servi
e; there is trusta
ross the entire domain.The purpose of distributed referen
e 
ounting is to keep tra
k ofthe di�erent GP s. More pre
isely, ea
h GP will be asso
iated with areferen
e 
ounter. On aGP 's owner, a referen
e 
ounter is expe
ted tobe stri
tly positive whenever a 
opy of the GP is a

essible remotely.We use tables to maintain asso
iations between 
ounters and globalpointers that were sent to remote sites. We 
all these tables send-tables as they are used whenever GP s are sent remotely. Ea
h site
ontains su
h a send-table.
Re
-T

s1GPRe
-T
s2Send-TSend-T 0

0Re
-T 1
opy(GP )
s1GPRe
-T
s2 GPSend-T
Send-T Re
-T de
(GP )

s1GPRe
-T
s2Send-TSend-T 0

Fig. 1 Copying and Deleting a Referen
eLet us 
onsider two sites s1 and s2, some data on s1, and a globalpointer GP pointing at this data. Initially, the 
ounter of GP is setto zero in the send-table of s1. Every time a GP is sent to a remotesite, its asso
iated 
ounter is in
remented by one. The reader willnote that referen
e 
ounters are used for 
ounting referen
es betweensites; other me
hanisms may be used for 
ounting referen
es lo
ally.The middle pi
ture in Figure 1 shows that 
opying GP has in-
reased its referen
e 
ounter in the send-table of s1. To a �rst ap-proximation, the send-table indi
ates the number of times a globalpointer was sent remotely. The middle pi
ture indi
ates that a 
opyof GP is a

essible on s2 and the send-table on s1 is stri
tly positive.Knowing that sending, propagating and re
eiving a message areevents that do not o

ur simultaneously, we adopt the following 
on-
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e Counting 5ventions. Ea
h pi
ture represents a snapshot of the system, at a givenpoint in time. A bold arrow from s1 to s2 indi
ates that a messagewas sent by s1 and re
eived by s2; the snapshot represents the stateof the system after the message has been re
eived and pro
essed.In order to keep referen
e 
ounters up to date, ea
h site has tobe able to determine whether a GP has already been re
eived. Forthis purpose, ea
h site maintains a se
ond table, 
alled re
eive-table1,whi
h 
ontains the global pointers that have already been re
eived.By 
onstru
tion, a GP belongs to its owner's re
eive table. A

ordingto the middle pi
ture of Figure 1, GP is in the re
eive-tables of boths1 (its owner) and s2.In addition to referen
e 
ounters, the distributed referen
e 
ount-ing algorithm uses 
ontrol messages, whose purpose is to update
ounters. A de
rement message is aimed at a site and 
ontains aglobal pointer GP . When the destination site re
eives su
h a mes-sage, it de
rements the 
ounter asso
iated with GP in its send-table;if the 
ounter rea
hes 0, the obje
t asso
iated with the pointer is thenunreferen
ed by remote sites.We use de
rement messages in two di�erent situations. First, whena GP is no longer needed by a site, GP is removed from the re
eivetable and a de
rement message is sent to GP 's owner . In Figure 1,as soon as GP is unneeded on s2, a de
rement message is sent to s1,whi
h in the present 
ase has the e�e
t of resetting its 
ounter in thesend-table of s1. A GP 
an be de
lared unneeded on a site if it is notrequired by the lo
al 
omputation and its asso
iated 
ounter in thesend-table is null.Se
ond, when a GP is re
eived by a site that already owns a 
opyof the GP (as indi
ated by its re
eive table), a de
rement message hasto be sent ba
k to the emitter so as to maintain a

urate referen
e
ounters. Now, we 
an re�ne the 
ounter des
ription: a 
ounter in asend-table represents the number of di�erent remote 
opies of a GPplus the number of messages related to it in transit.Let us now 
onsider three sites. Figure 2 illustrates a s
enario thatfollows the middle pi
ture of Figure 1, whereGP has been 
opied froms2 to s3. Using the same prin
iple, the 
ounter for GP on s1 and s2has a value 1, and the GP is also in the re
eive-tables of s2 and s3.In fa
t, the me
hanism we des
ribe here bears some resemblan
ewith Indire
t Referen
e Counting [32℄, where the sum of referen
e1 We 
all our tables send and re
eive be
ause they are used when sending orre
eiving global pointers, respe
tively. Other names may be found in the literature:entry and exit items [21,33℄, s
ions and stubs [34℄, or In
oming and Outgoingreferen
e tables [9℄.
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Re
-T 1 Re
-Ts3 GP

Re
-T 1s1GPSend-Ts2 GPSend-T 
opy(GP )

Fig. 2 Three Sites
ounters a
ross the di�usion tree of a GP is the number of its re-mote 
opies. The analogy does not extend further be
ause de
rementmessages are used di�erently.Let us re
all that, when a GP is no longer needed, a message issent to its owner . This design de
ision is motivated by the fa
t that aNexus GP only refers to its owner site, and has no information aboutthe sites it transited by. Unfortunately, untimely de
rement messagesmay be the 
onsequen
e as illustrated in Figure 3. If s3, whi
h re-
eived GP , deletes its referen
e to GP , then s3 sends a de
rementmessage to s1, that is, the GP 's owner. The e�e
t of the de
rementmessage is to reset the referen
e 
ounter on s1. This 
learly results inan in
onsistent situation as GP may still be a
tive on s2, while thereferen
e 
ounter on s1 is null.Besides the in
orre
tness related to the de
rement message, su
han indire
t referen
e 
ounter te
hnique may keep some pointers a
-tive longer than expe
ted; in other words, this results in a form ofmemory leak. Indeed, GP remains needed by s2 in Figure 2 be
ausethe 
ounter for GP in s2 send-table is not null, even if the lo
al
omputation does not use this pointer any longer.Our solution to both the untimely arrival of messages and mem-ory leaks involves a new type of message, 
alled in
rement-de
rement ,written in
 de
. An in
rement-de
rement message involves three dif-ferent sites: s1; s2; s3, respe
tively, the owner, the emitter and there
eiver of a GP . When GP rea
hes the re
eiver for the �rst time, anin
rement-de
rement message is sent to its owner. When the owners1 re
eives an in
rement-de
rement message, it in
rements GP 's ref-eren
e 
ounter, and then sends a de
rement message to the emitter s2
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Re
-Ts3

Re
-Ts1GPSend-T 0Re
-Ts2 GPSend-T 1 de
(GP )
Fig. 3 Untimely De
rement
on
erning GP (Figures 4 and 5). The in
rement-de
rement message
an be seen as a form of registration, whi
h has to be performed the�rst time a GP is re
eived; as a 
onsequen
e, this allows the ownerto be aware of all the sites that have re
eived 
opies of a GP .

2s1GPRe
-TSend-T s3 GPRe
-Ts2 GPRe
-TSend-T 1 in
 de
(GP; s2)
Fig. 4 Di�usion Tree Reorganisation (1)Introdu
ing the in
rement-de
rement message is not suÆ
ient toavoid untimely message arrivals. The in
rement-de
rement messagefrom the re
eiver s3 should arrive at the owner s1 before any de
re-ment message from the re
eiver s3 about the same GP . This 
an beenfor
ed by adding a further 
onstraint, in the form of FIFO trans-
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2s1GPRe
-TSend-T Re
-Ts3 GPs2 de
(GP )GPRe
-TSend-T

Fig. 5 Di�usion Tree Reorganisation (2)mission of messages. We therefore assume in-order message deliveryof messages between any pair of sites (in Se
tions 6 and 7, we dis
usshow su
h a 
onstraint may be partially relaxed).In Figure 5, we 
an observe that if GP is no longer needed on s2,its owner s1 may be informed by a de
 message. Su
h a property isparti
ularly important in the presen
e of mobile 
omputations jump-ing from sites to sites. The di�usion tree reorganisation provided bythe in
rement-de
rement message prevents the formation of 
hains ofpointers abandoned by mobile 
omputations.Remark We have presented distributed referen
e 
ounting asa general purpose te
hnique. It may be used to implement adistributed garbage 
olle
tor. The send-table must be de�nedas a root of the lo
al garbage 
olle
tor. A GP will be entered ina send-table only if its 
ounter is stri
tly positive. As a result,by its presen
e in the send-table, GP remains rea
hable fromthe lo
al 
olle
tor roots, whi
h ensures that the spa
e used bythe data referen
ed by GP 
annot be re
laimed. As soon as areferen
e 
ounter rea
hes zero, its entry may safely be removedfrom the send-table. In 
ontrast, the re
eive table must not bede�ned as a root of lo
al 
olle
tor.3 The Algorithm: The DRC-Ma
hineLet us now present the algorithm, following our en
oding in the Coqproof assistant [30℄. (A tutorial is available from [16℄.) The algorithmis formalised by an abstra
t ma
hine, 
alled the DRC-ma
hine, whose
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e Counting 9state spa
e is displayed in Figure 6. In the DRC-ma
hine, we onlymodel messages ex
hanged by the distributed referen
e 
ounting al-gorithm, and we do not model any form of 
omputation whi
h itwould be used in.S = fs0; s1; : : : ; snsg (Set of Sites)G = fgp0; gp1; : : : ; gpngg (Set of Global Pointers)M = 
opy : G !M j de
 : G !M (Set of Messages)j in
 de
 : G � S !MK = S � S ! Queue(M) (Set of Message Queues)ST = S � G ! Z (Set of Send Tables)RT = S � G ! Bool (Set of Re
eive Tables)C = ST �RT � K (Set of Con�gurations)Chara
teristi
 variables:s 2 S; GP 2 G; m 2 M; k 2 K; send T 2 ST ; re
 T 2 RT ; 
 2 CFig. 6 State Spa
e of the DRC-ma
hineA �nite number of sites are involved in a DRC-ma
hine, and we
onsider a �nite number of global pointers. The set of messages isde�ned by an indu
tive type, whose three 
onstru
tors are nameda

ording to the messages presented in Se
tion 2, namely 
opy, de
and in
 de
. Communi
ation 
hannels are represented by queues ofmessages between pairs of sites. We use the following notations andoperations on queues:q; q1; : : : : denote queues;; : the empty queue;first(q) : head of a non-empty queue q;tail(q) : non-empty queue q ex
ept its head;q x fmg : queue q after adding a message m at its tail;q1 x q2 : queue obtained after 
on
atenating q1 and q2.Send and Re
eive Tables are represented by fun
tions asso
iating sitesand global pointers with numbers or booleans, respe
tively. Countersare represented by integers; we shall establish that 
ounters are alwayspositive or null. A DRC-
on�guration is given by a tuple of sendtables, re
eive tables, and message queues. This abstra
t ma
hineis a suitable abstra
tion of a distributed system as send-tables andre
eive-tables may easily be distributed a
ross several sites.We assume that ea
h GP has been 
reated on a site (and asso
i-ated with some lo
al data). This site is 
alled the GP 's owner. We
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tion owner : GP ! Site;whi
h maps ea
h global pointer onto its owner site.The distributed referen
e 
ounting algorithm itself is en
oded bytransitions of the DRC-ma
hine displayed in Figure 7. Transitionsare de�ned as indu
tive types, whose 
onstru
tors are make 
opy,re
eive 
opy, re
eive in
 de
, re
eive de
 and delete. A transition fun
-tion maps a 
on�guration 
 and a transition t to a new 
on�guration
0: 
 7!t 
0;where t is any of the �ve permitted transitions. In a 
on
ise form, Fig-ure 7 displays the de�nitions of transitions and the transition fun
-tion. We used some notations su
h as post , re
eive or table updates,whi
h give an imperative look to the algorithm, and whose de�nitionsare as follows.- send T (s;GP ) := V denotes hsend T 0; re
 T; ki, su
h thatsend T 0(s;GP ) = V and send T 0(s; GP 0) = send T (s;GP 0) forany GP 0 6= GP .- re
 T (s;GP ) := V is similar.- post(s1; s2;m) denotes hsend T; re
 T; k0i, with k0(s1; s2) =k(s1; s2)xfmg, and k0(si; sj) = k(si; sj), 8(si; sj) 6= (s1; s2).- re
eive(s1; s2) denotes hsend T; re
 T; k0i, with k0(s1; s2) =tail(k(s1; s2)), and k0(si; sj) = k(si; sj), 8(si; sj) 6= (s1; s2).In ea
h rule of Figure 7, the 
onditions that appear to the lefthand side of an arrow are guards that must be satis�ed in order toperform the transition. The right-hand side denotes the 
on�gurationthat is rea
hed after transition.The �rst transition denotes the transition that is performed whena GP is 
opied from s1 to s2. We assume here that the two sitesare di�erent. Furthermore, it is a requirement for s1 to \have a
-
ess" to GP , otherwise sending GP to s2 would be impossible; su
ha 
ondition is modeled by GP 's presen
e in the re
eive-table of s1.The resulting 
on�guration sees the send-table of s1 in
reased and amessage 
opy sent between s1 and s2.The se
ond transition is 
on
erned with s2 handling an in
oming
opy(GP ) message from s1. The following 
ases are possible: (i)If s2 has a

ess to the global pointer GP , i.e. GP is present in s2re
eive-table, then a de
 message is sent ba
k to the emitter s1. (ii)Otherwise, s2 re
eive table is set to true; furthermore, if s1 and s2are di�erent from the owner, then an in
 de
 message should be sent
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on�guration 
 = hsend T; re
 T; ki, �ve transitions are per-mitted:make 
opy(s1; s2; GP ) :s1 6= s2 ^ re
 T (s1; GP )! f send T (s1; GP ) := send T (s1; GP ) + 1post(s1; s2; 
opy(GP )) gre
eive 
opy(s1; s2; GP ) :first(k(s1; s2)) = 
opy(GP )! f re
eive(s1; s2)if re
 T (s2; GP ) thenf post(s2; s1; de
(GP )) gelsefre
 T (s2; GP ) := truepost(s2; owner(GP ); in
 de
(GP; s1)) if s1; s2 6= owner(GP )ggre
eive in
 de
(s1; s2; GP; s3) :first(k(s1; s2)) = in
 de
(GP; s3)! f re
eive(s1; s2)send T (s2; GP ) := send T (s2; GP ) + 1post(s2; s3; de
(GP )) gre
eive de
(s1; s2; GP ) :first(k(s1; s2)) = de
(GP )! f re
eive(s1; s2)send T (s2; GP ) := send T (s2; GP )� 1 gdelete(s;GP ) :send T (s;GP ) = 0; re
 T (s;GP ); owner(GP ) 6= s! f re
 T (s;GP ) := falsepost(s; owner(GP ); de
(GP )) gFig. 7 Transitions of the DRC-Ma
hine



12 Lu
 Moreau, Jean Dupratto the owner as displayed in Figure 4. Consequently, a ne
essary
ondition to send an in
 de
 message is to have re
eived a GP that isnot lo
ally a

essible2. Let us note that the re
eived message has been\
onsumed" and is no longer present in the resulting 
on�guration.The third transition deals with an in
oming in
 de
(GP; s3) mes-sage: the send-table is in
reased and a de
 message is sent to site s3.The fourth transition rea
ts to an in
oming de
 message by de
reas-ing the send-table for the 
on
erned global pointer.De
iding when a referen
e is lost is appli
ation dependent. Forinstan
e, a distributed garbage 
olle
tor may use a lo
al garbage 
ol-le
tor to dete
t su
h an event; in distributed termination [40℄, the lostof a referen
e is triggered by the end of a lo
al 
omputation. As aresult, we 
annot model su
h 
riteria, but we 
an establish the 
ondi-tions that must hold in the distributed referen
e 
ounting algorithmwhen a referen
e is deleted, as formalised by the �fth transition. Thistransition is typi
ally �red when the appli
ation de
ides to release areferen
e. It 
an only be �red if the site is not the GP 's owner, ifthe send-table is null and if the re
eive-table 
ontains the GP . Thetransition sets the re
eive table to false and sends a de
 message asin the right-hand side of Figure 1.The initial 
on�guration is de�ned as follows. Re
eive-tables 
on-tain false entries ex
ept for GP owners; Send-tables are set to 0; Com-muni
ation 
hannels are empty. Formally, the initial 
on�guration 
iis de�ned by the tuple hre
 Ti; send Ti;Kii.re
 Ti = �s�GP: if (s = owner(GP )) then true else falsesend Ti = �s1�s2�GP:0Ki = �s1�s2:;A 
on�guration 
 is said to be legal if there is a sequen
e of tran-sitions t1; t2; : : : ; tn su
h that 
 is rea
hable from the initial 
on�gu-ration: 
i 7!t1 
1 7!t2 
2 : : : 7!tn 
:4 Algorithm PropertiesOur goal is to prove the 
orre
tness of the distributed referen
e 
ount-ing algorithm, whi
h has two di�erent fa
ets. Safety is the property2 Note that the de
ision of sending an in
 de
 message is based on the a

es-sibility of the GP at the time a 
opy message is re
eived, independently of theprevious history. A site, di�erent from the owner, may therefore re
eive a �rst
opy of a GP , delete the referen
e, and then re
eive a se
ond 
opy, whi
h may befollowed by an in
 de
 message.
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ording to whi
h the referen
e 
ounter of a GP on its owner is guar-anteed to be stri
tly positive whenever a 
opy of the GP is availableon a remote site. Liveness is the property that guarantees that if allreferen
es to a global pointer are deleted, the owner's send-table willeventually be
ome null.These properties will be established in Se
tion 5, but beforehandwe present some general properties of the algorithm. First, we estab-lish some invariants relating send-tables, re
eive-tables and messagesin transit. Se
ond, we analyse the use of in
 de
 messages, whi
h areonly found on 
hannels aimed at a GP 's owner; we show that these
hannels have a regular stru
ture. Third, we investigate the notionof di�usion tree, whi
h is, we previously 
laimed, reorganised by thein
 de
 message.4.1 InvariantsMessages may be assigned a weight, as a measure of their overallabsolute e�e
t on referen
e 
ounters. We assign 1 to de
 and 
opymessages be
ause their e�e
t is respe
tively to de
rease or in
rease
ounters. On the other hand, we assign a null weight to an in
 de
message, be
ause it in
reases the owner's send-table, but it is followedby a de
 message whi
h de
reases another 
ounter.Weight(de
(GP )) = 1Weight(
opy(GP )) = 1Weight(in
 de
(GP; s)) = 0Similarly, we 
an 
onvert the boolean value stored in a re
eive tableinto an integer. INT (true) = 1INT (false) = 0The �rst invariant establishes that the 
ounters stored in send-tables are dire
tly linked to re
eive table values and the weight ofmessages in transit.Lemma 1. Let 
 = hsend T; re
 T; ki be a legal 
on�guration. Thefollowing equality holds. For any GP 2 G:Xsi2S send T (si; GP ) = Xsi2S INT (re
 T (si; GP )) � 1+ Xm2K#GP Weight(m);
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 Moreau, Jean Dupratwhere m 2 K # GP denotes the set of messages in K that are relatedto GP .Proof. The detailed proof appears in �le invariant1.v. It uses anindu
tion on legal transitions and a 
ase analysis on the di�erenttypes of transitions. ut owner s2s1 
opy(GP )in
 de
(GP; s2) de
(GP ) 
opy(GP )de
(GP )
Fig. 8 Messages Under Control of s2The se
ond invariant de�nes the value of referen
e 
ounters onsites that di�er from the owner. In Figure 8, we identify messagesthat update the send-tables of s2, or whi
h result from a 
hange inthe send-table of s2. Indeed, the send-table of s2 is in
reased everytime a 
opy(GP ) message is sent to a remote site; su
h a 
opy messagemay be followed by a de
 message or an in
 de
 message (towards theowner); the latter is followed by a de
 message ba
k to s2. In reality,we have to 
onsider all sites s1 to whi
h s2 sends su
h 
opy messages.De�nition 1. Let k be a set of queues of a DRC-ma
hine 
on�gura-tion. Let si be a site of S. The set of messages under 
ontrol of si,written 
ontrol(GP; si), is de�ned as:
ontrol(GP; si) = f m j m = 
opy(GP );m 2 k(si; sj)m = de
(GP );m 2 k(sj ; si) orm = in
 de
(GP; si); m 2 k(sk; sj)for any sj; skg:The se
ond lemma is stated as follows: the value of a send-tableon a site si that di�ers from the owner is given by the number ofmessages under 
ontrol of si.
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e Counting 15Lemma 2. Let hsend T; re
 T; ki be a legal DRC 
on�guration. Thefollowing property holds. For any GP 2 G, for any si 2 S su
h thatsi 6= owner(GP ):send T (si; GP ) = #(
ontrol(GP; si));where # denotes the 
ardinality of a set.Proof. The equality is initially true and is preserved by ea
h transi-tion. The 
ase analysis is available in �le invariant2.v. utBoth invariants may be 
ombined together in order to obtain thevalue of the owner's send-table in terms of the messages in transitand re
eive-tables. We will then be able to derive the safety propertyby proving that the owner's send-table is positive whenever a globalpointer is a

essible remotely. However, we need to establish furtherproperties about 
ontents of messages queues with in
 de
 messagesand the notion of di�usion tree.4.2 Alternate QueuesA message in
 de
 is sent if a site s re
eives a message 
opy(GP ) andthe re
eive table for the GP is empty on s. Site s will send again anin
 de
 message only after it has performed a delete transition, whi
h
leared the re
eive-table for that GP . Consequently, we 
an �nd twomessages in
 de
(GP; si) and in
 de
(GP; sj) in a same queue only ifthere is (at least) one de
 message between them.We 
hara
terise su
h a behaviour by the notion of alternate queue,whi
h spe
i�es how in
 de
 and de
 messages must be interleaved.De�nition 2 (Alternate). An alternate queue for a given GP isde�ned indu
tively as follows:{ q is alternate for GP if it does not 
ontain messages related toGP ;{ q x fin
 de
(GP; s)g is alternate for GP if q does not 
ontainmessages related to GP ;{ if q is alternate for GP , so is qxfmg provided that m is not anin
 de
 message related to GP ;{ if q is alternate for GP , so is q x fde
(GP )g x q1 x fin
 de
(GP; s)g,provided that q1 is a queue of messages not related to GP .We 
an prove that any queue of messages between a site and aGP 's owner is alternate.
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 T; ki be a legal DRC-
on�guration. Forany GP 2 G and for any s 2 S, k(s; owner(GP )) is alternate forGP .Proof. The proof appears in �le invariant5.v and pro
eeds by in-du
tion on the legal transitions, and by a 
ase analysis of the di�erenttransitions. ut4.3 Di�usion TreeIn a distributed appli
ation, global pointers are ex
hanged betweensites taking part in the 
omputation. Su
h operations are modeledby 
opy messages in the DRC-ma
hine. One 
an easily derive a graphstru
ture whose nodes are sites and edges represent the presen
e ofa 
opy message between two sites.However, our motivation is not so mu
h about understandingwhere 
opy messages are sent to, whi
h is appli
ation-spe
i�
, but toinvestigate the role of in
 de
 messages in the algorithm. An in
 de
message indi
ates that a site s has re
eived a new global pointer , i.e.s has re
eived a global pointer that was not a

essible on s. Fromthis idea, we 
an derive a notion of di�usion tree, whi
h formalisesthe path taken by global pointers to rea
h new sites.We de�ne the root of the di�usion tree as the owner of a globalpointer. A dire
t 
hild is a site that re
eives a new global pointer GP ,dire
tly from its owner. An indire
t 
hild is a site that re
eives a newGP from a site di�erent from its owner. A

ording to the algorithm,as soon as an indire
t 
hild re
eives a new GP , an in
 de
 message isposted to its owner.We 
an therefore de�ne a relation di�use(
;GP; s1; s2), read ass1 has di�used GP to s2 in 
on�guration 
, indi
ating that s2 hasre
eived the new GP from s1.De�nition 3 (Di�use). Given a 
on�guration 
 and a GP ,di�use(
;GP; s1; s2) holds if re
 T (s2; GP ) = true and the last in
 de
message related to GP in the queue between s2 and owner(GP ) isin
 de
(GP; s1).Let us note that we 
ould �nd several in
 de
 messages for a givenGP in a given queue, but the di�use relation is de�ned by the mostre
ent in
 de
 message for the GP that was posted in that queue. Therelation di�use 
hanges over time as in
 de
 messages are pro
essedor new in
 de
 messages are generated. We 
an now formally de�nedire
t and indire
t 
hildren.
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e Counting 17De�nition 4 (Indire
t Child). Given a 
on�guration 
, a globalpointer GP , a site s2 is an indire
t 
hild if there is a site s1 su
hthat di�use(
;GP; s1; s2) holds.De�nition 5 (Dire
t Child). A site s that has a

ess to a GP isa dire
t 
hild if there is no si su
h that di�use(
;GP; si; s) holds.We de�ne an an
estor as the transitive 
losure of the relationdi�use. An important property of the an
estor relation is its non-re
exivity, whi
h ensures that this relation may be used to de�ne atree, and will not result in a graph.Lemma 4 (Not Re
exive). For any legal 
on�guration 
, for anyglobal pointer GP , and for any sites s1; s2, if an
estor(
;GP; s1; s2),then s1 6= s2.Proof. The proof, available in invariant6.v, pro
eeds by indu
tionon the legal transitions and by 
ase analysis on the di�erent kinds oftransitions. ut
s1owner(GP )

s2s1s2in
 de
(GP; s1)
Indire
t ChildDire
t Childdi�use relation

owner(GP )

Fig. 9 Di�usion Tree ReorganisationIn the left-hand side of Figure 9, GP was di�used from s1 to s2,as visualised by the in
 de
 message towards the GP 's owner. Thee�e
t of an in
 de
 message is to \register" a site that has re
eived anew GP . As soon as the in
 de
 message is re
eived by the owner, s2be
omes a dire
t 
hild, as des
ribed in the right-hand side of Figure 9.
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 de
 messages have been pro
essed, all sites will be dire
t
hildren. The e�e
t of the in
 de
 message is therefore to 
atten thedi�usion tree.More importantly for our proof, we 
an prove that for any site,one 
an �nd an an
estor that is a dire
t 
hild.Lemma 5. For any legal 
on�guration 
, any global pointer GP , andany site s, if s is an indire
t 
hild of GP 's owner, then there existsa site s1 su
h that s1 is a dire
t 
hild and s1 is an an
estor of s.Proof. This is a long proof by indu
tion on the legal transitions andby 
ase on the possible transitions. In parti
ular, the transitions thatprodu
e or 
onsume in
 de
 messages have the ability to 
hange thedi�usion tree; they need a 
areful 
ase analysis. The proof also relieson Lemma 4 to guarantee that we deal with a tree and not a graph.ut Intuitively this Lemma spe
i�es that if a site s re
eives a newGP from a site that is not the owner, this global pointer had to bepropagated from a site s1 that is a dire
t 
hild of the owner.5 Corre
tnessWe are now ready to establish the safety and liveness of the algorithm.5.1 SafetyThe safety property guarantees that the referen
e 
ounter of a GPon its owner is stri
tly positive if GP is a

essible remotely. A GP issaid to be a

essible on a site if it is present in a site's re
eive-tableor if it is present in a 
opy message in transit.It is now rather straightforward to derive the safety property. Sub-stituting Lemma 2 into Lemma 1, we obtain the value of the owner'ssend-table.Lemma 6. Let hsend T; re
 T; ki be a legal DRC-
on�guration. Thefollowing property holds:send T (owner(GP ); GP ) = Xsi2S;si 6=owner(GP ) site weight(si; GP )with site weight de�ned as:site weight(si; GP )
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e Counting 19= fINT (re
 T (si; GP ))+ #(fm j m = 
opy(GP ); m 2 k(owner(GP ); si)g)+ #(fm j m = de
(GP ); m 2 k(si; owner(GP ))g)� #(fm j m = in
 de
(GP; si); m 2 k(sj ; owner(GP )); 8sjg) g:Proof. The proof 
an be found in �le invariant4.v. It is immediatelyderived from Lemmas 1 and 2. utWe 
an see that the owner's send-table depends on the number ofremote sites that have a

ess to the pointer, on the number of 
opymessages leaving the owner, on the number of de
 messages aimed tothe owner, and on the number of in
 de
 messages in transit.Lemma 3 established that every queue k(si; owner(GP )) is alter-nate for GP . It follows that the owner send-table is always positiveor null.Lemma 7. Let hsend T; re
 T; ki be a legal DRC-
on�guration. Forany global pointer GP , send T (owner(GP ); GP ) � 0.Proof. The proof appears in �le invariant5.v. Lemma 6 de�nes theowner's send-table value as a sum, for whi
h we prove here that ea
hsummand is positive or null. Using Lemma 3, we 
an derive that thenumber of in
 de
 messages in a queue k(si; owner(GP )) is at mostequal to the number of de
 messages plus 1. Furthermore, it is at mostequal to the number of de
 messages when re
 T (si; GP ) is false. Wetherefore 
on
lude that site weight is always positive or null. utWe are now ready to establish the safety property.Theorem 1 (Safety). Let hsend T; re
 T; ki be a legal DRC-
on�-guration. 8 GP 2 G; let s = owner(GP );8si 6= s;if re
 T (si; GP ); then send T (s;GP ) > 0:Proof. The proof of this theorem may be found in �le invariant8.v.First, site weight(si; GP ) > 0 for any site si that is a dire
t 
hild;indeed, by de�nition, the re
eive-table of a dire
t 
hild is true andthere is no in
 de
 message in the queue k(si; owner(GP )) of a dire
t
hild si. From Lemma 7, we know that site weight is always positiveor null. We therefore have to prove that, if there is a site si su
hthat re
 T (si; GP ), then there exists at least one site that is a dire
t
hild. Using Lemma 5, we know that if si is an indire
t 
hild, thereis a dire
t 
hild, whi
h 
on
ludes the proof. ut
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tly positive when a referen
e is available in thedistributed system. Theorem 1 proved su
h a property when a GPis expli
itly present in a site's re
eive-table. We still have to 
onsiderthe 
ase where the referen
e is in transit in a 
opy message.Theorem 2 (Safety 2). Let hsend T; re
 T; ki be a legal DRC-
on�-guration.8 GP 2 G;8si; sj 2 S;if 
opy(GP ) 2 k(si; sj); then send T (owner(GP ); GP ) > 0:Proof. The proof of this theorem may be found in �le invariant8.v.We 
an prove that if a 
opy message is in transit between two sitessi and sj, then the send-table of si is stri
tly positive, whi
h impliesthat its re
eive table is also true. Using Theorem 1, we 
on
lude thatthe owner's send table is stri
tly positive. ut5.2 LivenessLiveness guarantees that if all referen
es to a GP are deleted, itsowner's send table will eventually be
ome null. In order to establishliveness, we �rst show that whenever there is a message in a queue,a transition may be �red to 
onsume this message.Lemma 8. Let 
 be a legal 
on�guration hsend T; re
 T; ki, su
h thatk(s1; s2) = fmgxq, for some m; s1; s2 and q. Then, there exist atransition t and a 
on�guration 
0 = hsend T 0; re
 T 0; k0i su
h that
 7!t 
0, with k0(s1; s2) = q.Proof. The proof appears in �le liveness.v. It pro
eeds by 
aseanalysis on the type of the message m known to be in a queue. utLemma 8 ensures that the algorithm itself does not prevent thepro
essing of messages.Our next step is to prove that the distributed referen
e 
ountinga
tivity generates a �nite number of transitions. We however needto be very 
lear about what we mean by distributed referen
e 
ount-ing a
tivity. The transition make 
opy is initiated by the appli
ation,whi
h is beyond this algorithm. So, we show that there 
an onlybe a �nite number of transitions that do not involve a transitionmake 
opy.For this purpose, we introdu
e a new measure, 
alled termina-tion measure, whi
h gives an indi
ation of how far the DRC-ma
hine
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e Counting 21is from terminating its transitions related to distributed referen
e
ounting. The termination measure is de�ned in terms of a measureof the re
eive table and a measure of messages.De�nition 6 (Termination Measure). The termination measureof a 
on�guration 
 = hsend T; re
 T; ki is de�ned as:termination measure(
) =XGPXs2S rt measure(re
 T (s;GP ))+Xsi2S Xsj2S Xm2k(si;sj)msg measure(m);with msg measure(
opy(GP )) = 5msg measure(in
 de
(GP; s)) = 2msg measure(de
(GP )) = 1 rt measure(true) = 2rt measure(false) = 0Intuitively, a 
opy message 
an update a re
eive table and 
reate anew in
 de
 message, whi
h itself may 
reate a new de
 message. Thetermination measure of these events was designed in su
h a way thatthe measure of an event is bigger that the 
umulative measure of
ausally dependent events.Lemma 9. For any legal 
on�gurations 
; 
0 and for any transitiont, su
h that 
 7!t 
0, and t 6= make 
opy(s1; s2; GP ), the followinginequality holds:0 � termination measure(
0) < termination measure(
):Proof. The proof 
an be found in �le liveness.v. It pro
eeds by ananalysis of the di�erent possible 
ases for transition t. utKnowing that the termination measure is positive or null, andhaving proved that it de
reases for every non make 
opy transition,we 
an derive the following termination Lemma.Theorem 3 (Termination). For any legal 
on�guration, all transi-tion paths that do not involve make 
opy transitions terminate.Proof. The proof appears in �le liveness.v. Let us de�ne a relationsu

essor on the set of legal 
on�gurations; l
2 is a su

essor of l
1 ifl
2 is obtained from l
1 by a transition that di�ers from make 
opy.Using the termination measure (De�nition 6) and the fa
t that itde
reases (Lemma 9), we 
an establish that the su

essor relation iswell-founded. Therefore, we 
an derive that, for any legal 
on�gura-tion, there exists a 
on�guration without su

essor, �xed point of thesu

essor relation, whi
h 
on
ludes the proof. ut
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onsider a given global pointer GP . Using Theorem 3 andLemma 6, a terminal state of the DRC-ma
hine does not 
ontain anymessage related to GP , whi
h implies that the owner's send-tablevalue is equal to the number of remote sites that have a re
eive-tableset to true. In addition, if all sites have �red the delete transition,be
ause the global pointer was no longer needed, the owner's send-table be
omes zero. Consequently, if we assume fairness [26℄ of mes-sage delivery, and if all referen
es to a GP are lost, then its owner'ssend-table be
omes null, whi
h proves liveness of our algorithm.6 Lo
al OptimisationsIn this se
tion, we present two lo
al optimisations, whi
h give newinsights to the algorithm. The �rst optimisation relaxes the FIFO
onstraint for 
opy messages, whereas the se
ond optimisation showsthat our algorithm des
ribes a family of distributed referen
e 
ount-ing, in
luding Piquer's Indire
t Referen
e Counting [32℄.6.1 Unordered Copy MessagesThe distributed referen
e 
ounting algorithm was formalised by anabstra
t ma
hine, whi
h assumes FIFO 
ommuni
ation queues be-tween any pair of sites. We relied on su
h a property to 
hara
terisethe regular stru
ture of a queue between a site and a GP 's owner(De�nition 2). In addition, we know that if de
 messages were al-lowed to overtake in
 de
 messages, send-tables may prematurely bede
remented, whi
h would break the safety property.However, 
opy messages have a di�erent nature than de
 andin
 de
 messages. A 
opy message represents the appli
ation a
tivitywhi
h 
ommuni
ates referen
es to remote sites, for instan
e throughremote pro
edure 
all, whereas the latter messages represent real dis-tributed referen
e 
ounting a
tivity.Depending on the spe
i�
 need of the appli
ation, it may be ofprimary importan
e to pro
ess appli
ation messages faster than dis-tributed referen
e 
ounting messages. For instan
e, it is generallyadmitted that garbage 
olle
tion a
tivity should not slow down themandatory appli
ation.The FIFO handling of messages for
es the distributed referen
e
ounting a
tivity to pro
eed syn
hronously with the appli
ation. Assu
h a behaviour may not be a

eptable to some appli
ations, weinvestigate here the possibility of de
oupling 
opy messages from therest of the referen
e 
ounting a
tivity. We 
ould re-design the abstra
t
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hine and introdu
e queues whose spe
i�
 purpose is to transport
opy messages. Instead, we prefer to introdu
e a new rule that allowsany 
opy message to be propagated individually by any strategy.propagate 
opy(s1; s2; GP; q1; q2; q3; q4) :k(s1; s2) = q1 x f
opy(GP )g x q2 ^ q1xq2 = q3xq4! f k(s1; s2) := q3 x f
opy(GP )g x q4 gRule propagate 
opy should be read as follows. If there is a 
opymessage between two sites s1 and s2 with q1 and q2 the sequen
esof messages respe
tively pre
eding and following the 
opy message,the message 
opy may be positioned at any lo
ation in the queuebetween s1 and s2; the 
on
atenation of q3 and q4, the sequen
es ofmessages respe
tively pre
eding and following the 
opy message inthe transformed queue, must be equal to the 
on
atenation of q1 andq2. Rule propagate 
opy allows any 
opy message appearing in a queueto be put at any other position in that queue, provided the order ofthe other messages remains un
hanged. Su
h a transition allows 
opymessages to be pro
essed at a di�erent speed than other messages.Note that this transition is not intended to be easily implementable,but its purpose is to spe
ify a range of possible behaviours for 
opymessages.After adding a new transition to the abstra
t ma
hine, all proofsthat use an indu
tion on the type of transition had to be extended tosupport the new 
ase. No major diÆ
ulty was en
ountered, ex
ept forthe alternate queues (De�nition 2). The de�nition had to be revisedso that 
opy messages may be allowed at any position.De�nition 7 (Alternate 2). An alternate queue is de�ned indu
-tively as follows:{ q is alternate for GP if it does not 
ontain messages related toGP ;{ if q is alternate for GP , so is qxfmg provided that m is not anin
 de
 message related to GP ;{ if q is alternate for GP , so is q x fin
 de
(GP; s)g, provided thatthere is a de
(GP ) message after the last o

urren
e of an in
 de
message related to GP in q, if any.We 
onje
ture that other similar lo
al optimisations may be proved.For instan
e, in
 de
 messages are allowed to overtake any message,or messages related to di�erent GP s may be safely swapped.
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t Referen
e CountingLet us 
onsider a s
enario where a 
opy message was re
eived bys1 from s2, followed by s1 posting an in
 de
 message to the owner;shortly afterwards, let us assume that s1 deleted the global pointerreferen
e, whi
h resulted in an de
 message from s1 to the owner,immediately following the in
 de
 message. There is room for a lo
aloptimisation in su
h 
ir
umstan
es. Indeed, a

ording to the 
urrentalgorithm, the in
 de
 message would be delivered, would in
rease theowner's send-table, would be followed by a de
 message that wouldde
rease the send-table on s2; on the other hand, the other de
 mes-sage would de
rease the owner's send-table. In other words, the nete�e
t of these three messages is to de
rease the send-table of s2.A similar e�e
t may be a
hieved by a single de
 message from s1 tos2 dire
tly . This optimisation may be formalised by a new transitionrule. redire
t in
(s1; s2; GP; q1) :k(s1; owner(GP )) = q1 x fin
 de
(GP; s2)g x fde
(GP )g! f k(s1; owner(GP )) := q1;k(s1; s2) := k(s1; s2) xfde
(GP )g gThe new rule satis�es the invariants formalised in Lemmas 1 and2; furthermore, it is also safe be
ause the safety Theorems 1 and 2are still valid. However, this inno
ent 
hange in surfa
e had quite adeep reper
ussion on the proof. Indeed, rule redire
t in
 potentially
hanges the di�usion tree as it 
onsumes the last in
 de
 message of aqueue. Rule redire
t in
 is unique in the algorithm be
ause it extra
tsmessages from the end of the queue and not its beginning.In parti
ular, Lemma 4, and 
onsequently Lemma 5, 
ould not bederived immediately in presen
e of the new rule. We had to generaliseDe�nition 3 and introdu
e a notion of multiple di�usion.De�nition 8 (Multiple Di�usion). Given a legal 
on�guration 
and a GP , the predi
ate multiple di�use(
;GP; s1; s2) holds ifre
 T (s2; GP ) = true and there is a message in
 de
(GP; s1) in thequeue k(s2; owner(GP )).De�nition 8 di�ers from De�nition 3 be
ause it regards all in
 de
messages as indi
ators of the di�use relationship, as opposed to thelast one only. We de�ne an multiple an
estor as the transitive 
losureof the relation multiple di�use. The multiple an
estor relation is alsonon re
exive.
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e Counting 25Lemma 10 (Not Re
exive 2). For any legal 
on�guration 
, forany sites s1; s2, if multiple an
estor(
;GP; s1; s2), then s1 6= s2.Proof. Proof appears in �le invariant6.v and pro
eeds by indu
tionon the legal transitions and by 
ase on the possible transitions. utThe multiple an
estor relation is a superset of the an
estor rela-tion. Therefore, from Lemma 10, we 
an derive that Lemma 4 is stillvalid in the presen
e of rule redire
t in
.Let us observe again that redire
t in
 is not intended to be eas-ily implementable, but its purpose is to spe
ify a new behaviour ofthe abstra
t ma
hine. Indeed, in terms of implementation, it seemsdiÆ
ult to redire
t messages that were already sent.More realisti
ally, this rule may be implemented as follows. Insteadof sending an in
 de
 message when a new GP is re
eived, one 
anasso
iate the GP with a \redire
ting information", 
ontaining thesite that sent it. When a de
 message has to be sent to the owner, ithas to be redire
ted if some redire
ting information is available.In reality, su
h a systemati
 avoidan
e of in
 de
 messages is Pi-quer's Indire
t Referen
e Counting algorithm [32℄. We 
an see ouralgorithm as an abstra
t spe
i�
ation of a family of distributed ref-eren
e 
ounting algorithms. At one end of the spe
trum, we �nd Pi-quer's Indire
t Referen
e Counting (IRC) that does not use in
 de
messages at all. At the other end of the spe
trum, we �nd an al-gorithm that eagerly sends in
 de
 messages in order to 
atten thedi�usion tree. In between those extremes, there is a range of im-plementation strategies, whi
h 
ombine both IRC and di�usion tree
attening.Indire
t Referen
e Counting for
es ea
h parent to maintain a send-table entry for ea
h global pointer passed to its 
hildren, until 
hildrenhave 
ompletely released the referen
es to this pointer. This mayresult in \zombie pointers" [33℄, where the pointer is only kept liveon a site be
ause it is needed in a send-table. This in fa
t results in aform of memory leak, whi
h may be avoided by the use of the in
 de
message.7 Algorithm VariantsIn this Se
tion, we 
onsider two variants of the algorithm. (i) The�rst one handles messages to the owner di�erently, so that de
 mes-sages do not have to be sent ba
k to the emitters. It is not an lo
aloptimisation as the ones des
ribed in Se
tion 6, be
ause it 
hanges
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h we dis
uss here.(ii) The se
ond variant of the algorithm uses referen
e listing , whi
hnot only 
ounts the number of times referen
es are 
opied to remotesites, but also remembers the sites where the referen
es were 
opied.Referen
e listing is a te
hnique that is useful to assist in de�ning afault-tolerant version of the algorithm.7.1 No Copy to the OwnerA make 
opy transition in
reases the emitter's send-table. If the 
opymessage is emitted to the owner, it will be followed by a de
 messageba
k to the emitter, whi
h will de
rease its send-table. This s
enario
ould be optimised: if we do not in
rement the send-table beforesending a 
opy-message to the owner, we 
an avoid sending a de
message ba
k to the emitter.We have investigated this approa
h, whi
h requires an extra pre-
ondition in the guard of rule make 
opy.make 
opy(s1; s2; GP ) :s1 6= s2 ^ s2 6= owner(GP ) ^ re
 T (s1; GP )! f send T (s1; GP ) := send T (s1; GP ) + 1post(s1; s2; 
opy(GP )) gRule make 
opy may be �red only when s2 is di�erent than the owner.Let us observe that this rule is more radi
al than the des
ription wejust gave. Indeed, in this algorithm, we no longer send 
opy messagesto the owner at all. Let us remember that 
opy messages representthe information that must be 
ommuni
ated to our algorithm whenreferen
es are 
opied between sites. The absen
e of 
opy messagesto the owner does not prevent an implementation from performingremote pro
edure 
alls to the owner, but it simply indi
ates that noinformation has to be passed to the distributed referen
e 
ountingmodule in su
h 
ir
umstan
es. We de
ided to adopt su
h a rule be-
ause it fa
ilitates the proof; if we had a

epted 
opy-messages to theowner without in
reasing the send-table, we would have had to in-trodu
e a null weight for these messages, whi
h would have requiredlonger 
ase analyses in the proofs.The invariant Lemmas 1 and 2 and the safety Theorems 1 and 2are all valid for this algorithm, without any major di�eren
e in theproofs themselves.Now that 
opy messages have disappeared from queues to theowner, rule propagate 
opy will no longer be appli
able for su
h queues.
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e Counting 27However, propagate 
opy indi
ated that appli
ation messages 
arryingreferen
es did not have to be syn
hronised with distributed referen
e
ounting messages. This property is no longer valid with the 
urrentalgorithm, and we give a 
ounter example.Let us 
onsider two sites: the owner of a GP and s. Let us assumethat the send-table of s is null. Site s sends a 
opy GP with a remotepro
edure 
all to the owner, and immediately afterwards deletes itsreferen
e of GP , whi
h generates a de
 message to the owner. If theremote pro
edure 
all is delayed, the de
 message 
an de
rease theowner's send-table, whi
h be
omes null, whereas a referen
e is still intransit. Su
h a s
enario would have been impossible in the originalalgorithm, be
ause s had to in
rease its send table when sending the
opy message, whi
h prevented s to �re the delete transition.It does not imply that this variant of the algorithm is less use-ful than the previous one. FIFO order must be stri
tly followed inorder to preserve safety, and the appli
ation will di
tate if su
h a 
on-straint is a

eptable. We 
onje
ture that some asyn
hronism is stillpermitted: it is always safe to pro
ess a 
opy message early, be
auseit in
reases referen
e 
ounters; symmetri
ally, de
 messages may bepro
essed later.7.2 Referen
e ListingIn order to de�ne a fault tolerant version of the algorithm, it is 
on-venient to maintain not only a 
ounter representing the number oftimes referen
es were 
opied, but also the sites to whi
h they weresent.The state spa
e has to be 
hanged a

ordingly. Send-tables requirean extra argument representing the site where a global pointer is sentto. In addition, de
 and in
 de
 message 
onstru
tors take one moreargument, whi
h is the site-entry of a send-table they operate on.M = 
opy : G !M j de
 : G � S !M (Set of Messages)j in
 de
 : G � S � S !MST = S � G � S ! Z (Set of Send Tables)Figure 10 displays the transitions. Rule make 
opy updates thetable on site s1, for an entry identi�ed by GP and s2. Similarly,rules re
eive in
 de
 and re
eive de
 update the entry of a send-tableindexed by the new site 
ontained in the re
eived message. Other
hanges are similar.Lemma 2 may be re�ned for the referen
e listing algorithm, whi
hrequires us to update De�nition 1.
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on�guration 
 = hsend T; re
 T; ki, �ve transitions are per-mitted:make 
opy(s1; s2; GP ) :s1 6= s2 ^ re
 T (s1; GP )! f send T (s1; GP; s2) := send T (s1; GP; s2) + 1post(s1; s2; 
opy(GP )) gre
eive 
opy(s1; s2; GP ) :first(k(s1; s2)) = 
opy(GP )! f re
eive(s1; s2)if re
 T (s2; GP ) thenf post(s2; s1; de
(GP; s2)) gelsefre
 T (s2; GP ) := truepost(s2; owner(GP ); in
 de
(GP; s1; s2))if s1; s2 6= owner(GP ) g gre
eive in
 de
(s1; s2; GP; s3; s4) :first(k(s1; s2)) = in
 de
(GP; s3; s4)! f re
eive(s1; s2)send T (s2; GP; s4) := send T (s2; GP; s4) + 1post(s2; s3; de
(GP; s4)) gre
eive de
(s1; s2; GP; s3) :first(k(s1; s2)) = de
(GP; s3)! f re
eive(s1; s2)send T (s2; GP; s3) := send T (s2; GP; s3)� 1 gdelete(s;GP ) :8sj; send T (s;GP; sj) = 0; re
 T (s;GP ); owner(GP ) 6= s! f re
 T (s;GP ) := falsepost(s; owner(GP ); de
(GP; s)) gFig. 10 Referen
e Listing Variant of the DRC-Ma
hine
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e Counting 29De�nition 9. Let k be a set of queues of a DRC-ma
hine 
on�gura-tion. Let si; sj be two site of S. The set of messages under 
ontrol ofsi via sj, written 
ontrol(GP; si; sj), is de�ned as:
ontrol(GP; si; sj)= f m j m = 
opy(GP );m 2 k(si; sj);m = de
(GP; sj);m 2 k(sk; si) orm = in
 de
(GP; si; sj); m 2 k(sk; owner(GP ))for any skg:The number of messages under 
ontrol of si via sj is pre
isely thevalue of the send-table of si, for messages sent to sj.Lemma 11. Let hsend T; re
 T; ki be a legal DRC 
on�guration. Thefollowing property holds. For any global pointer GP 2 G, for any sitessi; sj 2 S: send T (si; GP; sj) = #(
ontrol(GP; si; sj)):Proof. The equality is initially true and is preserved by ea
h transi-tion. The 
ase analysis is available in invariant2.v. utOther properties su
h as safety and liveness still hold for this al-gorithm. The algorithm presented here 
ombines referen
e 
ountersand referen
e listing. By using referen
e listing, Birrel et al. [4℄ andPlainfoss�e and Shapiro [34℄ made messages idempotent and thereforeresistent to message failure.8 Related Work8.1 Comparison with Other Related Me
hani
al ProofsJa
kson [17℄ has veri�ed the 
orre
tness of a garbage 
olle
tion algo-rithm using the PVS theorem prover. The algorithm that was studiedis a stop-and-
olle
t, non 
opying 
olle
tor. It uses Dijkstra, Lamport,Martin, S
holten, and Ste�ens' [7℄ tri
olour marking s
heme, but no
on
urren
y (or distribution) was allowed in the algorithm. The algo-rithm was formalised as a labelled transition system. An embeddingof linear temporal logi
 in PVS was used for reasoning. Safety andliveness properties, similar to ours, were derived for his algorithm.Goguen, Brooksby and Burstall [11℄ present an abstra
t formu-lation of memory management based on a graph-theoreti
 represen-tation of memory and related operations. They also formalised Dijk-stra and Lamport's three-
olour tra
ing algorithm and its 
orre
tness.Their proof has been en
oded in Coq.
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 Moreau, Jean DupratRussino� [36℄ used the Boyer-Moore theorem prover to verify thesafety and liveness property of Ben-Ari's [2℄ mark-and-sweep garbage
olle
tion algorithm. Ben-Ari's algorithm is a two 
olour solutionto Dijktra et al 's initial problem. He proves that a state predi
ateremains invariant, i.e. true for all rea
hable states. Havelund andShankar [14℄ use re�nement te
hniques to prove the safety of Ben-Ari's algorithm, in PVS.Gonthier and Doligez [8,13℄ proved the safety of a 
on
urrentgarbage 
olle
tor used in Caml-light. The proof was 
arried out withthe Lar
h Prover.8.2 Referen
e Counting Algorithms for Garbage Colle
tionReferen
e-
ounting garbage 
olle
tion was initially developed for uni-pro
essor systems [5℄. Its prin
iple is as follows: every time a pointeris 
opied or deleted, a referen
e 
ounter is respe
tively in
rementedor de
remented. It might seem that this algorithm 
an be extendedstraightforwardly to distribution by using two types of messages. Ade
rement message is sent to GP 's owner when GP is dis
arded; anin
rement message is sent to GP 's owner when GP is dupli
ated.However, this na��ve extension fails to behave properly be
ause non-
ausal [20℄ message delivery may reset the 
ounter even though re-mote referen
es may still be a
tive.Numerous solutions to this problem have been proposed. The mostfamous are weighted referen
e 
ounting [3,41,9℄ and its optimisedversion [6℄, generational referen
e 
ounting [12℄, or Piquer's Indire
tReferen
e Counting [32℄, whi
h we have already dis
ussed in Se
tion6.2. However, Lermen and Maurer's [23,40℄ and Birrel's [4℄ solutionsare the 
losest to our work; we present them in the next two para-graphs.In Lermen and Maurer's algorithm [23,40℄, when a GP is dupli-
ated, a 
reate message is sent to its owner. The owner then sendsan a
knowledgement to the GP 's re
eiver. When a GP is dis
arded ade
rement message is sent only after the a
knowledgement has beenre
eived for this pointer. Lermen and Maurer's te
hnique also in-volves three sites (emitter, re
eiver, and owner), but it di�ers fromours: (i) The owner is involved every time the emitter dupli
atesa GP to the re
eiver in Lermen and Maurer's algorithm, whereas itis involved only if the GP is not a

essible on the re
eiver in ouralgorithm. (ii) Lermen and Maurer's s
hema requires the re
eiver tomaintain a 
ount of both the number of 
opies made and the number
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e Counting 31of a
knowledgements re
eived. De
rement messages 
an only be sentwhen both are equal.Birrel et al. [4℄ present network obje
ts, a distributed obje
t-basedlanguage with a garbage 
olle
tor. The owner of an obje
t maintainsa \dirty" set, whi
h 
ontains identi�ers for all the pro
esses thathave GP s to the obje
t. When a 
lient �rst re
eives a GP , it makesa dirty 
all to the owner. When the GP is no longer rea
hable, asdetermined by the 
lient's lo
al g
, the 
lient makes a 
lean 
all anddeletes GP . With the dirty 
alls, Birrel et al. reinstate the equivalentof an in
rement message. In order to avoid 
on
i
ts between dirtyand 
lean 
alls, an a
knowledgement message from the re
eiver of aGP to its emitter guarantees the impossibility of freeing the pointeron the emitter; the a
tual implementation prevents the method 
allfrom terminating on the emitter till the a
knolwedgement is re
eived.In Birrel's algorithm, distributed referen
e 
ounting a
tivity issyn
hronous with the appli
ation. In parti
ular, unmarshalling maybe suspended by dirty 
alls. Furthermore, the emitter of a GP is onlyallowed to free its referen
e after the method invo
ation has termi-nated on the re
eiver: this may potentially 
reate a zombie pointerfor the duration of the 
omputation. Our algorithm requires less syn-
hronisations with the appli
ation; it is more 
exible sin
e, fully lazy,it behaves as indire
t referen
e 
ounting, and fully eager it behavesmore like Birrel's; the only di�eren
e is that our a
knowledgement issent by the owner in the form of a de
rement message and not by there
ipient of the referen
e.The distributed variant of the Train GC [15℄ is also able to 
olle
t
y
les; it 
ombines a referen
e-
ounting style pointer-tra
king me
h-anism with a substitution proto
ol. The latter algorithm bears someresemblan
e with Birrel's but minimizes the number of ex
hangedmessages: as a 
onsequen
e, the owner of a GP may not be able to�nd (dire
tly or indire
tly) all the sites that have a 
opy of the GP .Our algorithm has a major bene�t as it is able to reorganise di�u-sion trees: when GC messages are all pro
essed, the di�usion tree is
ompletely 
attened, and every site owning a GP dire
tly \depends"from its owner. In the presen
e of mobile 
omputations jumping fromsite to site, this allows sites to re
laim the spa
e that was o

upied bya mobile program, hereby avoiding zombie referen
es as in indire
treferen
e 
ounting [32℄. To the best of our knowledge, Shapiro, Gruberand Plainfoss�e [39℄, and subsequently Shapiro, Di
kman, and Plain-foss�e [37,38,34℄ were the �rst to address the issue of short-
utting
hains of pointers. They introdu
e the notion of SSP 
hains. A 
hainstarts its existen
e by a single SSP (S
ion/Stub pair); it in
reases
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 Moreau, Jean Dupratwhen sending the referen
e of a lo
al obje
t, or when migrating anobje
t to some other site. In addition, they propose a te
hnique toshort-
ut SSP-
hains, hereby avoiding the equivalent of zombie refer-en
es. They regard migration as a primitive notion to be supportedby the GC; in this paper, we do not deal with migration, however,we have showed that support for mobility 
ould be added as an extralayer, like a library, on top of the our garbage 
olle
tion algorithm[27℄. In Shapiro's algorithm, 
hains of pointers are 
ollapsed in a safefashion by side-e�e
t on remote invo
ations; spe
i�
ally, piggyba
k-ing new lo
ation information onto invo
ation results, and lo
ationex
eption raising are used to this end. Garbage 
olle
tion takes 
areof 
leaning obsolete indire
t 
hains.Weighted referen
e 
ounting (WRC) [3,41,9℄ asso
iates a weightwith ea
h obje
t and pointer. It maintains the invariant that theweight of an obje
t is equal to the sum of weights of pointers pointingto it. When a pointer is 
opied, its weight is (equally) divided betweenthe two 
opies. When the weight of a pointer rea
hes one, severalsolutions are possible. (i) An indire
tion 
ell may be introdu
ed, butit behaves as a \zombie pointer" as in Piquer's IRC. (ii) A messagemay be sent to the owner in order to request for more weight. Su
ha message may be regarded as a form of in
 de
 message, and we
ould see Weighted Referen
e Counting as a systemati
 method tode
ide when in
 de
 messages must be sent. Whenever a pointer isdeleted, the obje
t weight must be updated, whi
h involves sendinga \de
rement" message to the owner.Man
ini and Shrivastava [25℄ investigate a fault-tolerant version ofdistributed referen
e 
ounting. They also 
onsider a triangular pro-to
ol, between the owner, the sender and the re
eiver of a referen
e,whi
h di�ers from ours. It is an open question whether their fault-tolerant extension are appli
able to our algorithm.In [28℄, we investigate the s
alability of referen
e listing in the pres-en
e of massively distributed 
omputations. The size of send-tablesis proportional to the number of sites parti
ipating to the 
omputa-tion. In order to redu
e the burden on individual sites, we present ahierar
hi
al organisation of the referen
e listing algorithm by whi
hwe are able to give a bound to the size of send-tables.JAVA Remote Method Invo
ation 
omes with a distributed garbage
olle
tor [18℄. It extends Birrel's referen
e listing te
hnique with a newapproa
h to fault toleran
e, where remote pointers are leased for aperiod of time. Sites having pointer 
opies must regularly renew theirlease. Our approa
h 
an be extended without problem to referen
e
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e Counting 33listing so that send-tables 
ontain the sites to whi
h GP s were sent,and a similar lease te
hnique 
ould also be adopted.Referen
e 
ounting garbage 
olle
tion is only able to re
laim a
y
li
data stru
tures. Several authors have 
ombined distributed referen
e
ounting with other algorithms to provide 
y
li
 garbage 
olle
tion;for instan
e, Le Fessant, Piumarta, and Shapiro [22℄, Rodrigues andJones [35℄, Lins and Jones [24℄, Lang, Queinne
 and Piquer's [21℄, orHudson et al 's Distributed Train GC [15℄.9 Con
lusionWe have presented an algorithm for distributed referen
e 
ountingand its proof of 
orre
tness, whi
h involves both safety and liveness.We used the Coq proof assistant to formalise this proof. This workwas a major undertaking, but gave valuable insights to the proof,whi
h had been overlooked in the �rst pla
e, during the paper proof.A number of related issues are worth 
onsidering now. Supportfor mobile obje
ts in 
onjun
tion with distributed referen
e 
ountingwould provide an ex
ellent spe
i�
ation that 
ould be used to 
ertifymobile agents. Extending the referen
e listing algorithm with times-tamps would make the algorithm resilient to faults. Finally, provingthe hierar
hi
al variant of the algorithm would be a useful exer
ise inorder to build 
orre
t massively distributed 
omputing environments.A
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