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Abstract. Distributed reference counting is a general purpose tech-
nique, which may be used, e.g., to detect termination of distributed
programs or to implement distributed garbage collection. We present
a distributed reference counting algorithm and a mechanical proof
of correctness carried out using the proof assistant Coq. The algo-
rithm is formalised by an abstract machine, and its correctness has
two different facets. The safety property ensures that if there exists
a reference to a resource, then its reference counter will be strictly
positive. Liveness guarantees that if all references to a resource are
deleted, its reference counter will eventually become null.

1 Introduction

Reference counting is a general purpose technique that is able to
count the number of references to a given resource. Collins [5] was
the first to use it in order to determine when list cells were no longer
needed. Operating systems rely on this technique in order to decide
when files may be deleted or when file descriptors may be closed.
Reference counting is also a method for implementing garbage collec-
tion, a memory management technique that automatically determines
when objects may be deallocated. We refer the reader to Jones and
Lins’ book [19, section 2.1] for a discussion of the pro and cons of this
technique for garbage collection purpose.

Distributed reference counting is an extension of reference count-
ing where a resource and its users may be located at different posi-
tions. The difficulty of a distributed environment is that the decision
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of whether a resource is used can no longer be taken locally, but must
involve a collaboration with the different locations participating in
the computation. Distributed reference counting may be used to im-
plement distributed garbage collection; a variant of this technique is
in particular used in Java and RMI [27,18]. Even though distributed
reference counting is not able to deal with distributed cycles, it has
been a popular implementation technique of distributed garbage col-
lection because it is simple to implement and can nicely be integrated
with sequential garbage collectors [3,27,32,41]. More generally, it may
be used for tracking references to resources [15]. A possible use is to
detect termination of distributed programs [40]; reference counting
may be used for such an application because processes form a hier-
archy. Groups [31] also have a hierarchical organisation and can be
reference counted.

The first author recently published a new algorithm for distributed
reference counting [27]. It has the property that all references may be
found at any time, which can be useful when the owner of a resource
wishes to propagate information to the resource users. In fact, this
algorithm describes a family of implementations, according to the
policy adopted to propagate messages. In particular, Piquer’s Indirect
Reference Counting [32] can be seen as a particular instance of our
algorithm.

The purpose of this paper is to present this algorithm and to prove
its correctness. The correctness of a reference counting algorithm has
two different facets. Safety guarantees that if there exists a refer-
ence to a resource, then its reference counter will be strictly positive.
Liveness guarantees that if all references to a resource are deleted, its
reference counter will eventually become null.

The contribution of this paper is the description of a mechanical
proof that has been carried out using the calculus of inductive con-
structions and the proof assistant Coq [1]. We have also studied some
optimisations and have considered two algorithm variants. In partic-
ular, we present reference listing, which is a variant of the algorithm
that not only counts references to a resource, but also remembers
where those references were passed. Reference listing is a useful tech-
nique to assist in building a fault tolerant version of the algorithm
[4].

The motivation for this work is threefold. First, even with the
best intentions, it is easy to skip reasoning steps in paper proofs, or
to overlook non-trivial properties. Parallel and distributed algorithms
are by nature difficult to verify, and we felt that a mechanical proof
would help us in understanding the algorithm deeply. Second, the
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proof assistant Coq requires constructive proofs, which forced us not
only to state properties, but also to provide a mechanical way to
derive them. Such an exercise has proved to be successful because
we managed to specify very precisely the notions of alternate queue
and diffusion tree, which are central to the proof of safety. Third, we
see this work as part of a larger activity aiming to certify distributed
software systems; the hope is that our formalisation may be reused
as a module for more complex systems.

The source code for the proof in Coq is available from [30]. The
proof is about 13000 lines long, plus an extra 3000 lines for algorithm
variants. We present here a selection of definitions, lemmas and the-
orems, in a notation that is very close to the one in our Coq proof.
For the sake of conciseness, proofs are only sketched, but complete
proof details may be obtained from [30].

This paper is organised as follows. First, we set the context in
which the algorithm was developed and present its intuition (Section
2). The algorithm is then formally described as an abstract machine,
which we call the DRC-machine (Section 3). General properties of
the machine are defined, including some basic invariants and a no-
tion of diffusion tree that represents the path by which references are
propagated in a computation (Section 4). Correctness is established,
involving both safety and liveness aspects (Section 6). Then, optimi-
sations and algorithm variants are investigated (Sections 6 and 7).
Finally, we conclude the paper with related work.

2 The Algorithm: Informal Presentation

The initial motivation for this work was the design and implemen-
tation of a distributed language [29], based on the message-passing
library Nexus [10]. This library essentially provides a notion of global
pointer (GP), which is a reference to a remote object, and a form
of remote procedure call, which allows the programmer to activate a
computation on an object pointed at by a GP; any data, including
global pointers, may be passed as argument to a remote procedure
call.

We assume that several locations participate to a computation
and we call them sites. During the course of a computation, G Ps are
created and communicated by remote procedure calls. The site where
a GP is initially created is called its owner; the owner contains some
data that a GP is referring to. Newly created global pointers must be
unique; in practice, a global pointer contains a unique address repre-
senting its host and a locally unique identifier. In this algorithm, we
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adopt the following failure assumptions: there exists a reliable mes-
sage delivery, i.e. messages cannot be lost, corrupted or duplicated;
machines never crash and are never taken out of service; there is trust
across the entire domain.

The purpose of distributed reference counting is to keep track of
the different G Ps. More precisely, each GP will be associated with a
reference counter. On a G P’s owner, a reference counter is expected to
be strictly positive whenever a copy of the G P is accessible remotely.

We use tables to maintain associations between counters and global
pointers that were sent to remote sites. We call these tables send-
tables as they are used whenever GPs are sent remotely. Each site
contains such a send-table.

I — . R& I —

Fig. 1 Copying and Deleting a Reference

Let us consider two sites s; and sz, some data on s, and a global
pointer GP pointing at this data. Initially, the counter of GP is set
to zero in the send-table of s;. Every time a GP is sent to a remote
site, its associated counter is incremented by one. The reader will
note that reference counters are used for counting references between
sites; other mechanisms may be used for counting references locally.

The middle picture in Figure 1 shows that copying GP has in-
creased its reference counter in the send-table of s;. To a first ap-
proximation, the send-table indicates the number of times a global
pointer was sent remotely. The middle picture indicates that a copy
of GP is accessible on sg and the send-table on s; is strictly positive.

Knowing that sending, propagating and receiving a message are
events that do not occur simultaneously, we adopt the following con-
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ventions. Each picture represents a snapshot of the system, at a given
point in time. A bold arrow from s; to ss indicates that a message
was sent by s; and received by so; the snapshot represents the state
of the system after the message has been received and processed.

In order to keep reference counters up to date, each site has to
be able to determine whether a GP has already been received. For
this purpose, each site maintains a second table, called receive-table®,
which contains the global pointers that have already been received.
By construction, a GP belongs to its owner’s receive table. According
to the middle picture of Figure 1, GP is in the receive-tables of both
s1 (its owner) and so.

In addition to reference counters, the distributed reference count-
ing algorithm uses control messages, whose purpose is to update
counters. A decrement message is aimed at a site and contains a
global pointer GP. When the destination site receives such a mes-
sage, it decrements the counter associated with GP in its send-table;
if the counter reaches 0, the object associated with the pointer is then
unreferenced by remote sites.

We use decrement messages in two different situations. First, when
a G'P is no longer needed by a site, GP is removed from the receive
table and a decrement message is sent to GP’s owner. In Figure 1,
as soon as G P is unneeded on sg, a decrement message is sent to sy,
which in the present case has the effect of resetting its counter in the
send-table of s1. A GP can be declared unneeded on a site if it is not
required by the local computation and its associated counter in the
send-table is null.

Second, when a G'P is received by a site that already owns a copy
of the GP (as indicated by its receive table), a decrement message has
to be sent back to the emitter so as to maintain accurate reference
counters. Now, we can refine the counter description: a counter in a
send-table represents the number of different remote copies of a GP
plus the number of messages related to it in transit.

Let us now consider three sites. Figure 2 illustrates a scenario that
follows the middle picture of Figure 1, where G P has been copied from
s9 to s3. Using the same principle, the counter for GP on s; and sg
has a value 1, and the GP is also in the receive-tables of so and s3.

In fact, the mechanism we describe here bears some resemblance
with Indirect Reference Counting [32], where the sum of reference

! We call our tables send and receive because they are used when sending or
receiving global pointers, respectively. Other names may be found in the literature:
entry and exit items [21,33], scions and stubs [34], or Incoming and Outgoing
reference tables [9].
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Fig. 2 Three Sites

counters across the diffusion tree of a GP is the number of its re-
mote copies. The analogy does not extend further because decrement
messages are used differently.

Let us recall that, when a GP is no longer needed, a message is
sent to its owner. This design decision is motivated by the fact that a
Nexus G'P only refers to its owner site, and has no information about
the sites it transited by. Unfortunately, untimely decrement messages
may be the consequence as illustrated in Figure 3. If s3, which re-
ceived GP, deletes its reference to GP, then s3 sends a decrement
message to s1, that is, the GP’s owner. The effect of the decrement
message is to reset the reference counter on s;. This clearly results in
an inconsistent situation as GP may still be active on so, while the
reference counter on sy is null.

Besides the incorrectness related to the decrement message, such
an indirect reference counter technique may keep some pointers ac-
tive longer than expected; in other words, this results in a form of
memory leak. Indeed, GP remains needed by so in Figure 2 because
the counter for GP in ss send-table is not null, even if the local
computation does not use this pointer any longer.

Our solution to both the untimely arrival of messages and mem-
ory leaks involves a new type of message, called increment-decrement,
written inc_dec. An increment-decrement message involves three dif-
ferent sites: si,s9, s3, respectively, the owner, the emitter and the
receiver of a GP. When GP reaches the receiver for the first time, an
increment-decrement message is sent to its owner. When the owner
s1 receives an increment-decrement message, it increments G P’s ref-
erence counter, and then sends a decrement message to the emitter sy
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Fig. 3 Untimely Decrement

concerning GP (Figures 4 and 5). The increment-decrement message
can be seen as a form of registration, which has to be performed the
first time a GP is received; as a consequence, this allows the owner
to be aware of all the sites that have received copies of a GP.

SendoT | | ]
—  [1]

GP GP

inc.dec(G P, s5)

Senar | T |
= [2]

Fig. 4 Diffusion Tree Reorganisation (1)

Introducing the increment-decrement message is not sufficient to
avoid untimely message arrivals. The increment-decrement message
from the receiver s3 should arrive at the owner s; before any decre-
ment message from the receiver s3 about the same GP. This can be
enforced by adding a further constraint, in the form of FIFO trans-
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Fig. 5 Diffusion Tree Reorganisation (2)

mission of messages. We therefore assume in-order message delivery
of messages between any pair of sites (in Sections 6 and 7, we discuss
how such a constraint may be partially relaxed).

In Figure 5, we can observe that if GP is no longer needed on so,
its owner s; may be informed by a dec message. Such a property is
particularly important in the presence of mobile computations jump-
ing from sites to sites. The diffusion tree reorganisation provided by
the increment-decrement message prevents the formation of chains of
pointers abandoned by mobile computations.

Remark We have presented distributed reference counting as
a general purpose technique. It may be used to implement a
distributed garbage collector. The send-table must be defined
as a root of the local garbage collector. A GP will be entered in
a send-table only if its counter is strictly positive. As a result,
by its presence in the send-table, GP remains reachable from
the local collector roots, which ensures that the space used by
the data referenced by GP cannot be reclaimed. As soon as a
reference counter reaches zero, its entry may safely be removed
from the send-table. In contrast, the receive table must not be
defined as a root of local collector.

3 The Algorithm: The DRC-Machine

Let us now present the algorithm, following our encoding in the Coq
proof assistant [30]. (A tutorial is available from [16].) The algorithm
is formalised by an abstract machine, called the DRC-machine, whose
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state space is displayed in Figure 6. In the DRC-machine, we only
model messages exchanged by the distributed reference counting al-
gorithm, and we do not model any form of computation which it
would be used in.

S = {50,51,...,5n,} (Set of Sites)
G = {gpo,gp1,..-,9Pn,} (Set of Global Pointers)
M=copy:G—-+M | dec: G-+ M (Set of Messages)
| incdec:G xS -+ M

K =8 x8 — Queue(M) (Set of Message Queues)
ST=8xG—Z (Set of Send Tables)
RT =8 x G — Bool (Set of Receive Tables)
C=S8T xRT xK (Set of Configurations)

Characteristic variables:

s€eS, GPegG, meM, keK, send Te€ST, recTeRT, ceC

Fig. 6 State Space of the DRC-machine

A finite number of sites are involved in a DRC-machine, and we
consider a finite number of global pointers. The set of messages is
defined by an inductive type, whose three constructors are named
according to the messages presented in Section 2, namely copy, dec
and inc_dec. Communication channels are represented by queues of
messages between pairs of sites. We use the following notations and
operations on queues:

q,q1,...: denote queues;

0 : the empty queue;

first(q) : head of a non-empty queue g;

tail(q) : non-empty queue g except its head;

q § {m} : queue ¢ after adding a message m at its tail;
q1 § g2 : queue obtained after concatenating ¢; and gs.

Send and Receive Tables are represented by functions associating sites
and global pointers with numbers or booleans, respectively. Counters
are represented by integers; we shall establish that counters are always
positive or null. A DRC-configuration is given by a tuple of send
tables, receive tables, and message queues. This abstract machine
is a suitable abstraction of a distributed system as send-tables and
receive-tables may easily be distributed across several sites.

We assume that each GP has been created on a site (and associ-
ated with some local data). This site is called the GP’s owner. We
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define a function
owner : GP — Site,

which maps each global pointer onto its owner site.

The distributed reference counting algorithm itself is encoded by
transitions of the DRC-machine displayed in Figure 7. Transitions
are defined as inductive types, whose constructors are make_copy,
receive_copy, receive_inc_dec, receive_dec and delete. A transition func-
tion maps a configuration ¢ and a transition ¢ to a new configuration
c:

et
where ¢ is any of the five permitted transitions. In a concise form, Fig-
ure 7 displays the definitions of transitions and the transition func-
tion. We used some notations such as post, receive or table updates,
which give an imperative look to the algorithm, and whose definitions
are as follows.

- sendT(s,GP) := V denotes (send T’ ,recT,k), such that
send T'(s,GP) =V and send.T'(s, GP') = send-T(s,GP') for
any GP' # GP.

- recT(s,GP) :=V is similar.

- post(sy, s2,m) denotes (send T,rec.T k'), with k£'(s1,s0) =
k(51752)§{m}7 and k’(Si,Sj) = k(Si,Sj), V(Siasj) # (51752)'

- receive(sy, s2) denotes (send T,rec.T,k'), with k'(s1,s2) =
tail(k(sla's?))a and k,(SZ',Sj) = k(SZ',Sj), V(SZ',SJ') # (SlaSQ)'

In each rule of Figure 7, the conditions that appear to the left
hand side of an arrow are guards that must be satisfied in order to
perform the transition. The right-hand side denotes the configuration
that is reached after transition.

The first transition denotes the transition that is performed when
a GP is copied from s; to so. We assume here that the two sites
are different. Furthermore, it is a requirement for s; to “have ac-
cess” to GP, otherwise sending GP to sy would be impossible; such
a condition is modeled by GP’s presence in the receive-table of s;.
The resulting configuration sees the send-table of s; increased and a
message copy sent between s; and ss.

The second transition is concerned with so handling an incoming
copy(GP) message from s;. The following cases are possible: (i)
If so has access to the global pointer GP, i.e. GP is present in s
receive-table, then a dec message is sent back to the emitter s;. (i)
Otherwise, s receive table is set to true; furthermore, if s; and so
are different from the owner, then an inc_dec message should be sent
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Given a configuration ¢ = (send_T,rec_T, k), five transitions are per-
mitted:

make_copy(s1, s2, GP) :
s1# s9 A recT(s1,GP)
— { sendT(s1,GP) := send T(s;,GP) +1
post(sy, s2,copy(GP)) }

receive_copy(s1, s2, GP) :
first(k(s1,s2)) = copy(GP)
— { receive(sy, s2)
if rec.T'(s9, GP) then
{ post(sz, s1,dec(GP)) }
else
{rec.T(s2, GP) := true
post(se, owner(GP),inc_dec(GP, s1)) if s1,s2 # owner(GP)}}

receive_inc_dec(sy, so, GP, s3) :
first(k(s1,s2)) = inc_.dec(GP, s3)
— { receive(sy, s2)
send T (sg, GP) := send T (s2, GP) + 1
post(sz, s3,dec(GP)) }

receive_dec(s1, $2, GP) :
first(k(s1,s2)) = dec(GP)
— { receive(sy, s2)
send_T(s2, GP) := sendT(s9,GP) — 1 }

delete(s, GP) :
send_T(s,GP) =0, rec.T(s,GP),owner(GP) # s
— {rec.T(s,GP) := false
post(s,owner(GP),dec(GP)) }

Fig. 7 Transitions of the DRC-Machine
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to the owner as displayed in Figure 4. Consequently, a necessary
condition to send an inc_dec message is to have received a GP that is
not locally accessible?. Let us note that the received message has been
“consumed” and is no longer present in the resulting configuration.

The third transition deals with an incoming inc_dec(G P, s3) mes-
sage: the send-table is increased and a dec message is sent to site s3.
The fourth transition reacts to an incoming dec message by decreas-
ing the send-table for the concerned global pointer.

Deciding when a reference is lost is application dependent. For
instance, a distributed garbage collector may use a local garbage col-
lector to detect such an event; in distributed termination [40], the lost
of a reference is triggered by the end of a local computation. As a
result, we cannot model such criteria, but we can establish the condi-
tions that must hold in the distributed reference counting algorithm
when a reference is deleted, as formalised by the fifth transition. This
transition is typically fired when the application decides to release a
reference. It can only be fired if the site is not the GP’s owner, if
the send-table is null and if the receive-table contains the GP. The
transition sets the receive table to false and sends a dec message as
in the right-hand side of Figure 1.

The initial configuration is defined as follows. Receive-tables con-
tain false entries except for GP owners; Send-tables are set to 0; Com-
munication channels are empty. Formally, the initial configuration ¢;
is defined by the tuple (rec_T;, send_T;, K;).

recT; = AsAGP. if (s = owner(GP)) then true else false
send_T; = As1Aso AGP.0

ICi = )\81)\82.@

A configuration c is said to be legal if there is a sequence of tran-
sitions t1,%9,...,t, such that c is reachable from the initial configu-
ration:

C; e c1 12 co ... =i e

4 Algorithm Properties

Our goal is to prove the correctness of the distributed reference count-
ing algorithm, which has two different facets. Safety is the property

2 Note that the decision of sending an inc_dec message is based on the acces-
sibility of the GP at the time a copy message is received, independently of the
previous history. A site, different from the owner, may therefore receive a first
copy of a GP, delete the reference, and then receive a second copy, which may be
followed by an inc_dec message.
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according to which the reference counter of a GP on its owner is guar-
anteed to be strictly positive whenever a copy of the GP is available
on a remote site. Liveness is the property that guarantees that if all
references to a global pointer are deleted, the owner’s send-table will
eventually become null.

These properties will be established in Section 5, but beforehand
we present some general properties of the algorithm. First, we estab-
lish some invariants relating send-tables, receive-tables and messages
in transit. Second, we analyse the use of inc_dec messages, which are
only found on channels aimed at a GP’s owner; we show that these
channels have a regular structure. Third, we investigate the notion
of diffusion tree, which is, we previously claimed, reorganised by the
inc_dec message.

4.1 Invariants

Messages may be assigned a weight, as a measure of their overall
absolute effect on reference counters. We assign 1 to dec and copy
messages because their effect is respectively to decrease or increase
counters. On the other hand, we assign a null weight to an inc_dec
message, because it increases the owner’s send-table, but it is followed
by a dec message which decreases another counter.

Weight(dec(GP))
Weight(copy (GP))
Weight(inc_dec(GP, s))

1
1
0

Similarly, we can convert the boolean value stored in a receive table
into an integer.

INT (true) =1
INT(false) =0

The first invariant establishes that the counters stored in send-
tables are directly linked to receive table values and the weight of
messages in transit.

Lemma 1. Let ¢ = (send_T,recT,k) be a legal configuration. The
following equality holds. For any GP € G:

Z send_T'(s;, GP) = Z INT (rec.T(s;,GP)) —1
$; €S si€S

+ Z Weight(m),
meKLGP
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where m € K | GP denotes the set of messages in K that are related
to GP.

Proof. The detailed proof appears in file invariantl.v. It uses an
induction on legal transitions and a case analysis on the different
types of transitions. 0O

owner

copy(GP)

dec(GP)

inc_dec(GP, s2) S2

dec(GP)

copy(GP)

51

Fig. 8 Messages Under Control of s>

The second invariant defines the value of reference counters on
sites that differ from the owner. In Figure 8, we identify messages
that update the send-tables of sa, or which result from a change in
the send-table of ss. Indeed, the send-table of so is increased every
time a copy (G P) message is sent to a remote site; such a copy message
may be followed by a dec message or an inc_dec message (towards the
owner); the latter is followed by a dec message back to so. In reality,
we have to consider all sites s; to which ss sends such copy messages.

Definition 1. Let k be o set of queues of a DRC-machine configura-
tion. Let s; be a site of S. The set of messages under control of s;,
written control(GP, s;), is defined as:

control(GP,s;) ={ m| m = copy(GP),m € k(s;,s;)
m = dec(GP),m € k(sj,s;) or
m = inc.dec(G P, s;), m € k(sg,s;)
for any s;, s}
The second lemma is stated as follows: the value of a send-table

on a site s; that differs from the owner is given by the number of
messages under control of s;.
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Lemma 2. Let (send_T,rec.T, k) be a legal DRC configuration. The
following property holds. For any GP € G, for any s; € S such that
s; # owner(GP):

send_T'(s;, GP) = #(control(GP, s;)),
where # denotes the cardinality of a set.

Proof. The equality is initially true and is preserved by each transi-
tion. The case analysis is available in file invariant2.v. O

Both invariants may be combined together in order to obtain the
value of the owner’s send-table in terms of the messages in transit
and receive-tables. We will then be able to derive the safety property
by proving that the owner’s send-table is positive whenever a global
pointer is accessible remotely. However, we need to establish further
properties about contents of messages queues with inc_dec messages
and the notion of diffusion tree.

4.2 Alternate Queues

A message inc_dec is sent if a site s receives a message copy(GP) and
the receive table for the GP is empty on s. Site s will send again an
inc_dec message only after it has performed a delete transition, which
cleared the receive-table for that GP. Consequently, we can find two
messages inc_dec(GP, s;) and inc_dec(G P, s;) in a same queue only if
there is (at least) one dec message between them.

We characterise such a behaviour by the notion of alternate queue,
which specifies how inc_dec and dec messages must be interleaved.

Definition 2 (Alternate). An alternate queue for a given GP is
defined inductively as follows:

—q 1s alternate for GP if it does not contain messages related to
GP;

—q § {inc_dec(GP,s)} is alternate for GP if q does not contain
messages related to GP;

—if q is alternate for GP, so is q§{m} provided that m is not an
inc_dec message related to GP;

— if q is alternate for GP, sois q § {dec(GP)} § q1 § {inc_dec(GP, s)},
provided that g1 is a queue of messages not related to GP.

We can prove that any queue of messages between a site and a
G P’s owner is alternate.



16 Luc Moreau, Jean Duprat

Lemma 3. Let (sendT,rec.T, k) be a legal DRC-configuration. For
any GP € G and for any s € S,  k(s,owner(GP)) is alternate for
GP.

Proof. The proof appears in file invariant5.v and proceeds by in-
duction on the legal transitions, and by a case analysis of the different
transitions. 0O

4.3 Diffusion Tree

In a distributed application, global pointers are exchanged between
sites taking part in the computation. Such operations are modeled
by copy messages in the DRC-machine. One can easily derive a graph
structure whose nodes are sites and edges represent the presence of
a copy message between two sites.

However, our motivation is not so much about understanding
where copy messages are sent to, which is application-specific, but to
investigate the role of inc_dec messages in the algorithm. An inc_dec
message indicates that a site s has received o new global pointer, i.e.
s has received a global pointer that was not accessible on s. From
this idea, we can derive a notion of diffusion tree, which formalises
the path taken by global pointers to reach new sites.

We define the root of the diffusion tree as the owner of a global
pointer. A direct child is a site that receives a new global pointer G P,
directly from its owner. An indirect child is a site that receives a new
GP from a site different from its owner. According to the algorithm,
as soon as an indirect child receives a new G P, an inc_dec message is
posted to its owner.

We can therefore define a relation diffuse(c, GP, sy, s2), read as
s1 has diffused GP to sy in configuration ¢, indicating that s has
received the new GP from s;.

Definition 3 (Diffuse). Given a configuration ¢ and o GP,
diffuse(c, GP, s1, s2) holds if rec_T (s, GP) = true and the last inc_dec
message related to GP in the queue between sy and owner(GP) is

inc_dec(GP, s1).

Let us note that we could find several inc_dec messages for a given
GP in a given queue, but the diffuse relation is defined by the most
recent inc_dec message for the GP that was posted in that queue. The
relation diffuse changes over time as inc_dec messages are processed
or new inc_dec messages are generated. We can now formally define
direct and indirect children.
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Definition 4 (Indirect Child). Given a configuration c, a global
pointer GP, a site so is an indirect child if there is a site s1 such
that diffuse(c, GP, s1,s2) holds.

Definition 5 (Direct Child). A site s that has access to a GP is
a direct child if there is no s; such that diffuse(c, GP,s;,s) holds.

We define an ancestor as the transitive closure of the relation
diffuse. An important property of the ancestor relation is its non-
reflexivity, which ensures that this relation may be used to define a
tree, and will not result in a graph.

Lemma 4 (Not Reflexive). For any legal configuration c, for any
global pointer GP, and for any sites s1, s2, if ancestor(c, GP, s1, s2),
then s1 # so.

Proof. The proof, available in invariant6.v, proceeds by induction
on the legal transitions and by case analysis on the different kinds of
transitions. 0O

owner(GP
o ( ) oowner(GP)

inc_dec(GP, s1) \ | s2

B Indirect Child
® Direct Child

- diffuse relation

Fig. 9 Diffusion Tree Reorganisation

In the left-hand side of Figure 9, GP was diffused from s; to so,
as visualised by the inc_dec message towards the GP’s owner. The
effect of an inc_dec message is to “register” a site that has received a
new GP. As soon as the inc_dec message is received by the owner, s9
becomes a direct child, as described in the right-hand side of Figure 9.
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When all inc_dec messages have been processed, all sites will be direct
children. The effect of the inc_dec message is therefore to flatten the
diffusion tree.

More importantly for our proof, we can prove that for any site,
one can find an ancestor that is a direct child.

Lemma 5. For any legal configuration c, any global pointer GP, and
any site s, if s is an indirect child of GP’s owner, then there exists
a site s1 such that sy is a direct child and s1 is an ancestor of s.

Proof. This is a long proof by induction on the legal transitions and
by case on the possible transitions. In particular, the transitions that
produce or consume inc_dec messages have the ability to change the
diffusion tree; they need a careful case analysis. The proof also relies
on Lemma 4 to guarantee that we deal with a tree and not a graph.
g

Intuitively this Lemma specifies that if a site s receives a new
GP from a site that is not the owner, this global pointer had to be
propagated from a site s; that is a direct child of the owner.

5 Correctness

We are now ready to establish the safety and liveness of the algorithm.

5.1 Safety

The safety property guarantees that the reference counter of a GP
on its owner is strictly positive if GP is accessible remotely. A GP is
said to be accessible on a site if it is present in a site’s receive-table
or if it is present in a copy message in transit.

It is now rather straightforward to derive the safety property. Sub-
stituting Lemma 2 into Lemma 1, we obtain the value of the owner’s
send-table.

Lemma 6. Let (send T, rec_T,k) be a legal DRC-configuration. The
following property holds:

send T (owner(GP),GP) = Z site_weight(s;, GP)
s;€8,s;#owner(GP)

with site_weight defined as:
site_weight(s;, GP)
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= {INT(rec.T(s;, GP))
+ #({m | m = copy(GP), m € k(owner(GP),s;)})
+ #({m | m = dec(GP), m € k(s;,owner(GP))})
— #({m | m =inc.dec(GP,s;), m € k(sj,owner(GP)), Vs;}) }.

Proof. The proof can be found in file invariant4.v. It is immediately
derived from Lemmas 1 and 2. O

We can see that the owner’s send-table depends on the number of
remote sites that have access to the pointer, on the number of copy
messages leaving the owner, on the number of dec messages aimed to
the owner, and on the number of inc_dec messages in transit.

Lemma 3 established that every queue k(s;, owner(GP)) is alter-
nate for GP. It follows that the owner send-table is always positive
or null.

Lemma 7. Let (sendT,rec.T, k) be a legal DRC-configuration. For
any global pointer GP, send T (owner(GP),GP) > 0.

Proof. The proof appears in file invariant5.v. Lemma 6 defines the
owner’s send-table value as a sum, for which we prove here that each
summand is positive or null. Using Lemma 3, we can derive that the
number of inc_dec messages in a queue k(s;, owner(GP)) is at most
equal to the number of dec messages plus 1. Furthermore, it is at most
equal to the number of dec messages when rec_T'(s;, GP) is false. We
therefore conclude that site_weight is always positive or null. 0O

We are now ready to establish the safety property.

Theorem 1 (Safety). Let (send_T,recT,k) be a legal DRC-confi-
guration.

VY GP € G,let s = owner(GP),Vs; # s,
if recT(s;, GP), then sendT(s,GP) > 0.

Proof. The proof of this theorem may be found in file invariant8.v.
First, site_weight(s;, GP) > 0 for any site s; that is a direct child;
indeed, by definition, the receive-table of a direct child is true and
there is no inc_dec message in the queue k(s;, owner(GP)) of a direct
child s;. From Lemma 7, we know that site_weight is always positive
or null. We therefore have to prove that, if there is a site s; such
that rec_T'(s;, GP), then there exists at least one site that is a direct
child. Using Lemma 5, we know that if s; is an indirect child, there
is a direct child, which concludes the proof. O
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The purpose of the safety property is to guarantee that the owner’s
send-table is strictly positive when a reference is available in the
distributed system. Theorem 1 proved such a property when a GP
is explicitly present in a site’s receive-table. We still have to consider
the case where the reference is in transit in a copy message.

Theorem 2 (Safety 2). Let (send T, rec_T, k) be a legal DRC-confi-
guration.

VYV GP € g,VSi,Sj €S,
if copy(GP) € k(si,s;), then sendT(owner(GP),GP) > 0.

Proof. The proof of this theorem may be found in file invariant8.v.
We can prove that if a copy message is in transit between two sites
s; and sj, then the send-table of s; is strictly positive, which implies
that its receive table is also true. Using Theorem 1, we conclude that
the owner’s send table is strictly positive. 0O

5.2 Liveness

Liveness guarantees that if all references to a GP are deleted, its
owner’s send table will eventually become null. In order to establish
liveness, we first show that whenever there is a message in a queue,
a transition may be fired to consume this message.

Lemma 8. Let ¢ be a legal configuration (send T, recT, k), such that
k(s1,s2) = {m}8q, for some m,s1,so and q. Then, there ezxist a
transition t and a configuration ¢ = (send T',rec. T', k') such that
ctd, with K'(s1,s92) = q.

Proof. The proof appears in file liveness.v. It proceeds by case
analysis on the type of the message m known to be in a queue. O

Lemma 8 ensures that the algorithm itself does not prevent the
processing of messages.

Our next step is to prove that the distributed reference counting
activity generates a finite number of transitions. We however need
to be very clear about what we mean by distributed reference count-
ing activity. The transition make_copy is initiated by the application,
which is beyond this algorithm. So, we show that there can only
be a finite number of transitions that do not involve a transition
make_copy.

For this purpose, we introduce a new measure, called termina-
tion measure, which gives an indication of how far the DRC-machine
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is from terminating its transitions related to distributed reference
counting. The termination measure is defined in terms of a measure
of the receive table and a measure of messages.

Definition 6 (Termination Measure). The termination measure
of a configuration ¢ = (send_T,rec T, k) is defined as:

termination_measure(c) = Z Z rt_measure(recT (s, GP))
GP seS

+ Z Z Z msg_measure(m),

$i€S s;€S8 mek(si,s5)
with
msg-measure(copy(GP)) =5  rtomeasure(true) = 2
2

msg-measure(inc_dec(GP, s)) rt-measure(false) =0
msg-measure(dec(GP)) =1

Intuitively, a copy message can update a receive table and create a
new inc_dec message, which itself may create a new dec message. The
termination measure of these events was designed in such a way that
the measure of an event is bigger that the cumulative measure of
causally dependent events.

Lemma 9. For any legal configurations c,c and for any transition
t, such that ¢ —' ', and t # make_copy(s1,s2, GP), the following
inequality holds:

. . ! . .
0 < termination_measure(c') < termination_measure(c).

Proof. The proof can be found in file liveness.v. It proceeds by an
analysis of the different possible cases for transition t. O

Knowing that the termination measure is positive or null, and
having proved that it decreases for every non make_copy transition,
we can derive the following termination Lemma.

Theorem 3 (Termination). For any legal configuration, all transi-
tion paths that do not involve make_copy transitions terminate.

Proof. The proof appears in file 1iveness.v. Let us define a relation
successor on the set of legal configurations; lco is a successor of [c; if
lco is obtained from [c; by a transition that differs from make_copy.
Using the termination measure (Definition 6) and the fact that it
decreases (Lemma 9), we can establish that the successor relation is
well-founded. Therefore, we can derive that, for any legal configura-
tion, there exists a configuration without successor, fixed point of the
successor relation, which concludes the proof. 0O



22 Luc Moreau, Jean Duprat

Let us consider a given global pointer GP. Using Theorem 3 and
Lemma 6, a terminal state of the DRC-machine does not contain any
message related to GP, which implies that the owner’s send-table
value is equal to the number of remote sites that have a receive-table
set to true. In addition, if all sites have fired the delete transition,
because the global pointer was no longer needed, the owner’s send-
table becomes zero. Consequently, if we assume fairness [26] of mes-
sage delivery, and if all references to a GP are lost, then its owner’s
send-table becomes null, which proves liveness of our algorithm.

6 Local Optimisations

In this section, we present two local optimisations, which give new
insights to the algorithm. The first optimisation relaxes the FIFO
constraint for copy messages, whereas the second optimisation shows
that our algorithm describes a family of distributed reference count-
ing, including Piquer’s Indirect Reference Counting [32].

6.1 Unordered Copy Messages

The distributed reference counting algorithm was formalised by an
abstract machine, which assumes FIFO communication queues be-
tween any pair of sites. We relied on such a property to characterise
the regular structure of a queue between a site and a GP’s owner
(Definition 2). In addition, we know that if dec messages were al-
lowed to overtake inc_dec messages, send-tables may prematurely be
decremented, which would break the safety property.

However, copy messages have a different nature than dec and
inc_dec messages. A copy message represents the application activity
which communicates references to remote sites, for instance through
remote procedure call, whereas the latter messages represent real dis-
tributed reference counting activity.

Depending on the specific need of the application, it may be of
primary importance to process application messages faster than dis-
tributed reference counting messages. For instance, it is generally
admitted that garbage collection activity should not slow down the
mandatory application.

The FIFO handling of messages forces the distributed reference
counting activity to proceed synchronously with the application. As
such a behaviour may not be acceptable to some applications, we
investigate here the possibility of decoupling copy messages from the
rest of the reference counting activity. We could re-design the abstract



A Construction of Distributed Reference Counting 23

machine and introduce queues whose specific purpose is to transport
copy messages. Instead, we prefer to introduce a new rule that allows
any copy message to be propagated individually by any strategy.

propagate_copy(sl, 52, G-Pa q1,492,43, q4) :
k(s1,s2) = q1 § {copy(GP)} § 2 A q18g2 = @38
— { k(s1,52) :=q3 § {copy(GP)} § q4 }

Rule propagate_copy should be read as follows. If there is a copy
message between two sites s; and so with ¢; and ¢o the sequences
of messages respectively preceding and following the copy message,
the message copy may be positioned at any location in the queue
between s; and ss9; the concatenation of g3 and ¢4, the sequences of
messages respectively preceding and following the copy message in
the transformed queue, must be equal to the concatenation of ¢; and
qz-

Rule propagate_copy allows any copy message appearing in a queue
to be put at any other position in that queue, provided the order of
the other messages remains unchanged. Such a transition allows copy
messages to be processed at a different speed than other messages.
Note that this transition is not intended to be easily implementable,
but its purpose is to specify a range of possible behaviours for copy
messages.

After adding a new transition to the abstract machine, all proofs
that use an induction on the type of transition had to be extended to
support the new case. No major difficulty was encountered, except for
the alternate queues (Definition 2). The definition had to be revised
so that copy messages may be allowed at any position.

Definition 7 (Alternate 2). An alternate queue is defined induc-
tively as follows:

—q 1s alternate for GP if it does not contain messages related to
GP;

— if q 1is alternate for GP, so is q§{m} provided that m is not an
inc_dec message related to GP;

— if q is alternate for GP, so is q § {inc_dec(GP,s)}, provided that
there is a dec(GP) message after the last occurrence of an inc_dec
message related to GP in q, if any.

We conjecture that other similar local optimisations may be proved.
For instance, inc_dec messages are allowed to overtake any message,
or messages related to different G Ps may be safely swapped.
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6.2 Indirect Reference Counting

Let us consider a scenario where a copy message was received by
s1 from s, followed by s; posting an inc_dec message to the owner;
shortly afterwards, let us assume that s; deleted the global pointer
reference, which resulted in an dec message from s; to the owner,
immediately following the inc_dec message. There is room for a local
optimisation in such circumstances. Indeed, according to the current
algorithm, the inc_dec message would be delivered, would increase the
owner’s send-table, would be followed by a dec message that would
decrease the send-table on ss; on the other hand, the other dec mes-
sage would decrease the owner’s send-table. In other words, the net
effect of these three messages is to decrease the send-table of ss.

A similar effect may be achieved by a single dec message from s; to
so directly. This optimisation may be formalised by a new transition
rule.

redirect_inc(sy, s2, GP,q1) :
k(s1,owner(GP)) = q1 § {inc.dec(GP,s2)} § {dec(GP)}
— { k(s1,owner(GP)) := q;
k(s1,s2) := k(s1,s2) §{dec(GP)} }

The new rule satisfies the invariants formalised in Lemmas 1 and
2; furthermore, it is also safe because the safety Theorems 1 and 2
are still valid. However, this innocent change in surface had quite a
deep repercussion on the proof. Indeed, rule redirect_inc potentially
changes the diffusion tree as it consumes the last inc_dec message of a
queue. Rule redirect_inc is unique in the algorithm because it extracts
messages from the end of the queue and not its beginning.

In particular, Lemma 4, and consequently Lemma 5, could not be
derived immediately in presence of the new rule. We had to generalise
Definition 3 and introduce a notion of multiple diffusion.

Definition 8 (Multiple Diffusion). Given a legal configuration c
and a GP, the predicate multiple_diffuse(c, GP,s1,s2) holds if
rec.T(so, GP) = true and there is a message inc_.dec(GP,s1) in the
queue k(s2, owner(GP)).

Definition 8 differs from Definition 3 because it regards all inc_dec
messages as indicators of the diffuse relationship, as opposed to the
last one only. We define an multiple_ancestor as the transitive closure
of the relation multiple_diffuse. The multiple_ancestor relation is also
non reflexive.
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Lemma 10 (Not Reflexive 2). For any legal configuration ¢, for
any sites s1, 82, if multiple_ancestor(c, GP, s1, s2), then s1 # so.

Proof. Proof appears in file invariant6.v and proceeds by induction
on the legal transitions and by case on the possible transitions. O

The multiple ancestor relation is a superset of the ancestor rela-
tion. Therefore, from Lemma 10, we can derive that Lemma, 4 is still
valid in the presence of rule redirect_inc.

Let us observe again that redirect_inc is not intended to be eas-
ily implementable, but its purpose is to specify a new behaviour of
the abstract machine. Indeed, in terms of implementation, it seems
difficult to redirect messages that were already sent.

More realistically, this rule may be implemented as follows. Instead
of sending an inc_dec message when a new GP is received, one can
associate the GP with a “redirecting information”, containing the
site that sent it. When a dec message has to be sent to the owner, it
has to be redirected if some redirecting information is available.

In reality, such a systematic avoidance of inc_dec messages is Pi-
quer’s Indirect Reference Counting algorithm [32]. We can see our
algorithm as an abstract specification of a family of distributed ref-
erence counting algorithms. At one end of the spectrum, we find Pi-
quer’s Indirect Reference Counting (IRC) that does not use inc_dec
messages at all. At the other end of the spectrum, we find an al-
gorithm that eagerly sends inc_dec messages in order to flatten the
diffusion tree. In between those extremes, there is a range of im-
plementation strategies, which combine both IRC and diffusion tree
flattening.

Indirect Reference Counting forces each parent to maintain a send-
table entry for each global pointer passed to its children, until children
have completely released the references to this pointer. This may
result in “zombie pointers” [33], where the pointer is only kept live
on a site because it is needed in a send-table. This in fact results in a
form of memory leak, which may be avoided by the use of the inc_dec
message.

7 Algorithm Variants

In this Section, we consider two variants of the algorithm. (i) The
first one handles messages to the owner differently, so that dec mes-
sages do not have to be sent back to the emitters. It is not an local
optimisation as the ones described in Section 6, because it changes
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some fundamental properties of the algorithm, which we discuss here.
(77 ) The second variant of the algorithm uses reference listing, which
not only counts the number of times references are copied to remote
sites, but also remembers the sites where the references were copied.
Reference listing is a technique that is useful to assist in defining a
fault-tolerant version of the algorithm.

7.1 No Copy to the OQwner

A make_copy transition increases the emitter’s send-table. If the copy
message is emitted to the owner, it will be followed by a dec message
back to the emitter, which will decrease its send-table. This scenario
could be optimised: if we do not increment the send-table before
sending a copy-message to the owner, we can avoid sending a dec
message back to the emitter.

We have investigated this approach, which requires an extra pre-
condition in the guard of rule make_copy.

make_copy(s1, s2, GP) :
s1 # s2 A sg # owner(GP) A rec.T(s1,GP)
— { sendT(s1,GP) := send-T(s1,GP) + 1
post(sy, s2,copy(GP)) }

Rule make_copy may be fired only when s5 is different than the owner.
Let us observe that this rule is more radical than the description we
just gave. Indeed, in this algorithm, we no longer send copy messages
to the owner at all. Let us remember that copy messages represent
the information that must be communicated to our algorithm when
references are copied between sites. The absence of copy messages
to the owner does not prevent an implementation from performing
remote procedure calls to the owner, but it simply indicates that no
information has to be passed to the distributed reference counting
module in such circumstances. We decided to adopt such a rule be-
cause it facilitates the proof; if we had accepted copy-messages to the
owner without increasing the send-table, we would have had to in-
troduce a null weight for these messages, which would have required
longer case analyses in the proofs.

The invariant Lemmas 1 and 2 and the safety Theorems 1 and 2
are all valid for this algorithm, without any major difference in the
proofs themselves.

Now that copy messages have disappeared from queues to the
owner, rule propagate_copy will no longer be applicable for such queues.
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However, propagate_copy indicated that application messages carrying
references did not have to be synchronised with distributed reference
counting messages. This property is no longer valid with the current
algorithm, and we give a counter example.

Let us consider two sites: the owner of a GP and s. Let us assume
that the send-table of s is null. Site s sends a copy GP with a remote
procedure call to the owner, and immediately afterwards deletes its
reference of GP, which generates a dec message to the owner. If the
remote procedure call is delayed, the dec message can decrease the
owner’s send-table, which becomes null, whereas a reference is still in
transit. Such a scenario would have been impossible in the original
algorithm, because s had to increase its send table when sending the
copy message, which prevented s to fire the delete transition.

It does not imply that this variant of the algorithm is less use-
ful than the previous one. FIFO order must be strictly followed in
order to preserve safety, and the application will dictate if such a con-
straint is acceptable. We conjecture that some asynchronism is still
permitted: it is always safe to process a copy message early, because
it increases reference counters; symmetrically, dec messages may be
processed later.

7.2 Reference Listing

In order to define a fault tolerant version of the algorithm, it is con-
venient to maintain not only a counter representing the number of
times references were copied, but also the sites to which they were
sent.

The state space has to be changed accordingly. Send-tables require
an extra argument representing the site where a global pointer is sent
to. In addition, dec and inc_dec message constructors take one more
argument, which is the site-entry of a send-table they operate on.

M=copy:G—>M | dec:G xS — M (Set of Messages)
| incdec:GxS xS+ M
ST=8xGxS—Z (Set of Send Tables)

Figure 10 displays the transitions. Rule make_copy updates the
table on site sj, for an entry identified by GP and sy. Similarly,
rules receive_inc_dec and receive_dec update the entry of a send-table
indexed by the new site contained in the received message. Other
changes are similar.

Lemma 2 may be refined for the reference listing algorithm, which
requires us to update Definition 1.
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Given a configuration ¢ = (send_T,rec_T, k), five transitions are per-
mitted:

make_copy(s1, s2, GP) :
s1 # s2 A recT(s1,GP)
— { send_T(s1,GP,s2) := sendT(s1,GP, s2) + 1
post(sy, s2,copy(GP)) }

receive_copy(sy, s2, GP) :
first(k(s1,s2)) = copy(GP)
— { receive(sy, s2)
if rec.T'(s2, GP) then
{ post(sa,s1,dec(GP,s2)) }
else
{rec.T (s, GP) := true
post(sz, owner(GP),inc_dec(GP, sy, $2))
if s1,s2 # owner(GP) } }

receive_inc_dec(s1, s2, GP, 83, 54) :
first(k(s1,s2)) = inc.dec(GP, s3, s4)
— { receive(sy, s2)
send T(s2, GP, s4) := send_T(s2, GP,s4) + 1
post(sz, s3,dec(GP,s4)) }

receive_dec(sy, so, GP, s3) :
first(k(s1,s2)) = dec(GP, s3)
— { receive(sy, s2)
send_T'(s2,GP, s3) := send T (s2,GP,s3) — 1 }

delete(s, GP) :
Vs;, sendT(s,GP,s;) =0, recT(s,GP),owner(GP) # s
— {recT(s,GP) := false
post(s,owner(GP),dec(GP,s)) }

Fig. 10 Reference Listing Variant of the DRC-Machine
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Definition 9. Let k be o set of queues of a DRC-machine configura-
tion. Let s;, 55 be two site of S. The set of messages under control of
s; via sj, written control(GP, s;, s;), is defined as:

control(GP, si, sj)

={m| m=copy(GP),m € k(s;,s;),
m = dec(GP,s;),m € k(sg,s;) or
m = inc_dec(GP, s4,5;), m € k(si, owner(GP))
for any si}.

The number of messages under control of s; via s; is precisely the
value of the send-table of s;, for messages sent to s;.

Lemma 11. Let (send T, rec_T, k) be a legal DRC configuration. The
following property holds. For any global pointer GP € G, for any sites
Siy S5 € S:

send T'(s;, GP, s;) = #(control(GP, s, s;)).

Proof. The equality is initially true and is preserved by each transi-
tion. The case analysis is available in invariant2.v. O

Other properties such as safety and liveness still hold for this al-
gorithm. The algorithm presented here combines reference counters
and reference listing. By using reference listing, Birrel et al. [4] and
Plainfossé and Shapiro [34] made messages idempotent and therefore
resistent to message failure.

8 Related Work
8.1 Comparison with Other Related Mechanical Proofs

Jackson [17] has verified the correctness of a garbage collection algo-
rithm using the PVS theorem prover. The algorithm that was studied
is a stop-and-collect, non copying collector. It uses Dijkstra, Lamport,
Martin, Scholten, and Steffens’ [7] tricolour marking scheme, but no
concurrency (or distribution) was allowed in the algorithm. The algo-
rithm was formalised as a labelled transition system. An embedding
of linear temporal logic in PVS was used for reasoning. Safety and
liveness properties, similar to ours, were derived for his algorithm.

Goguen, Brooksby and Burstall [11] present an abstract formu-
lation of memory management based on a graph-theoretic represen-
tation of memory and related operations. They also formalised Dijk-
stra and Lamport’s three-colour tracing algorithm and its correctness.
Their proof has been encoded in Coq.
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Russinoff [36] used the Boyer-Moore theorem prover to verify the
safety and liveness property of Ben-Ari’s [2] mark-and-sweep garbage
collection algorithm. Ben-Ari’s algorithm is a two colour solution
to Dijktra et al’s initial problem. He proves that a state predicate
remains invariant, i.e. true for all reachable states. Havelund and
Shankar [14] use refinement techniques to prove the safety of Ben-
Ari’s algorithm, in PVS.

Gonthier and Doligez [8,13] proved the safety of a concurrent
garbage collector used in Caml-light. The proof was carried out with
the Larch Prover.

8.2 Reference Counting Algorithms for Garbage Collection

Reference-counting garbage collection was initially developed for uni-
processor systems [5]. Its principle is as follows: every time a pointer
is copied or deleted, a reference counter is respectively incremented
or decremented. It might seem that this algorithm can be extended
straightforwardly to distribution by using two types of messages. A
decrement message is sent to GP’s owner when GP is discarded; an
increment message is sent to GP’s owner when GP is duplicated.
However, this naive extension fails to behave properly because non-
causal [20] message delivery may reset the counter even though re-
mote references may still be active.

Numerous solutions to this problem have been proposed. The most
famous are weighted reference counting [3,41,9] and its optimised
version [6], generational reference counting [12], or Piquer’s Indirect
Reference Counting [32], which we have already discussed in Section
6.2. However, Lermen and Maurer’s [23,40] and Birrel’s [4] solutions
are the closest to our work; we present them in the next two para-
graphs.

In Lermen and Maurer’s algorithm [23,40], when a GP is dupli-
cated, a create message is sent to its owner. The owner then sends
an acknowledgement to the GP’s receiver. When a G P is discarded a
decrement message is sent only after the acknowledgement has been
received for this pointer. Lermen and Maurer’s technique also in-
volves three sites (emitter, receiver, and owner), but it differs from
ours: (i) The owner is involved every time the emitter duplicates
a GP to the receiver in Lermen and Maurer’s algorithm, whereas it
is involved only if the GP is not accessible on the receiver in our
algorithm. (4i) Lermen and Maurer’s schema requires the receiver to
maintain a count of both the number of copies made and the number
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of acknowledgements received. Decrement messages can only be sent
when both are equal.

Birrel et al. [4] present network objects, a distributed object-based
language with a garbage collector. The owner of an object maintains
a “dirty” set, which contains identifiers for all the processes that
have G Ps to the object. When a client first receives a GP, it makes
a dirty call to the owner. When the GP is no longer reachable, as
determined by the client’s local gc, the client makes a clean call and
deletes GP. With the dirty calls, Birrel et al. reinstate the equivalent
of an increment message. In order to avoid conflicts between dirty
and clean calls, an acknowledgement message from the receiver of a
GP to its emitter guarantees the impossibility of freeing the pointer
on the emitter; the actual implementation prevents the method call
from terminating on the emitter till the acknolwedgement is received.

In Birrel’s algorithm, distributed reference counting activity is
synchronous with the application. In particular, unmarshalling may
be suspended by dirty calls. Furthermore, the emitter of a GP is only
allowed to free its reference after the method invocation has termi-
nated on the receiver: this may potentially create a zombie pointer
for the duration of the computation. Our algorithm requires less syn-
chronisations with the application; it is more flexible since, fully lazy,
it behaves as indirect reference counting, and fully eager it behaves
more like Birrel’s; the only difference is that our acknowledgement is
sent by the owner in the form of a decrement message and not by the
recipient of the reference.

The distributed variant of the Train GC [15] is also able to collect
cycles; it combines a reference-counting style pointer-tracking mech-
anism with a substitution protocol. The latter algorithm bears some
resemblance with Birrel’s but minimizes the number of exchanged
messages: as a consequence, the owner of a GP may not be able to
find (directly or indirectly) all the sites that have a copy of the GP.

Our algorithm has a major benefit as it is able to reorganise diffu-
sion trees: when GC messages are all processed, the diffusion tree is
completely flattened, and every site owning a GP directly “depends”
from its owner. In the presence of mobile computations jumping from
site to site, this allows sites to reclaim the space that was occupied by
a mobile program, hereby avoiding zombie references as in indirect
reference counting [32]. To the best of our knowledge, Shapiro, Gruber
and Plainfossé [39], and subsequently Shapiro, Dickman, and Plain-
fossé [37,38,34] were the first to address the issue of short-cutting
chains of pointers. They introduce the notion of SSP chains. A chain
starts its existence by a single SSP (Scion/Stub pair); it increases



32 Luc Moreau, Jean Duprat

when sending the reference of a local object, or when migrating an
object to some other site. In addition, they propose a technique to
short-cut SSP-chains, hereby avoiding the equivalent of zombie refer-
ences. They regard migration as a primitive notion to be supported
by the GC; in this paper, we do not deal with migration, however,
we have showed that support for mobility could be added as an extra
layer, like a library, on top of the our garbage collection algorithm
[27]. In Shapiro’s algorithm, chains of pointers are collapsed in a safe
fashion by side-effect on remote invocations; specifically, piggyback-
ing new location information onto invocation results, and location
exception raising are used to this end. Garbage collection takes care
of cleaning obsolete indirect chains.

Weighted reference counting (WRC) [3,41,9] associates a weight
with each object and pointer. It maintains the invariant that the
weight of an object is equal to the sum of weights of pointers pointing
to it. When a pointer is copied, its weight is (equally) divided between
the two copies. When the weight of a pointer reaches one, several
solutions are possible. (i) An indirection cell may be introduced, but
it behaves as a “zombie pointer” as in Piquer’s IRC. (ii) A message
may be sent to the owner in order to request for more weight. Such
a message may be regarded as a form of inc_dec message, and we
could see Weighted Reference Counting as a systematic method to
decide when inc_dec messages must be sent. Whenever a pointer is
deleted, the object weight must be updated, which involves sending
a “decrement” message to the owner.

Mancini and Shrivastava [25] investigate a fault-tolerant version of
distributed reference counting. They also consider a triangular pro-
tocol, between the owner, the sender and the receiver of a reference,
which differs from ours. It is an open question whether their fault-
tolerant extension are applicable to our algorithm.

In [28], we investigate the scalability of reference listing in the pres-
ence of massively distributed computations. The size of send-tables
is proportional to the number of sites participating to the computa-
tion. In order to reduce the burden on individual sites, we present a
hierarchical organisation of the reference listing algorithm by which
we are able to give a bound to the size of send-tables.

JAVA Remote Method Invocation comes with a distributed garbage
collector [18]. It extends Birrel’s reference listing technique with a new
approach to fault tolerance, where remote pointers are leased for a
period of time. Sites having pointer copies must regularly renew their
lease. Our approach can be extended without problem to reference
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listing so that send-tables contain the sites to which GPs were sent,
and a similar lease technique could also be adopted.

Reference counting garbage collection is only able to reclaim acyclic
data structures. Several authors have combined distributed reference
counting with other algorithms to provide cyclic garbage collection;
for instance, Le Fessant, Piumarta, and Shapiro [22], Rodrigues and
Jones [35], Lins and Jones [24], Lang, Queinnec and Piquer’s [21], or
Hudson et al’s Distributed Train GC [15].

9 Conclusion

We have presented an algorithm for distributed reference counting
and its proof of correctness, which involves both safety and liveness.
We used the Coq proof assistant to formalise this proof. This work
was a major undertaking, but gave valuable insights to the proof,
which had been overlooked in the first place, during the paper proof.

A number of related issues are worth considering now. Support
for mobile objects in conjunction with distributed reference counting
would provide an excellent specification that could be used to certify
mobile agents. Extending the reference listing algorithm with times-
tamps would make the algorithm resilient to faults. Finally, proving
the hierarchical variant of the algorithm would be a useful exercise in
order to build correct massively distributed computing environments.
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