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Abstract: Microvibrations, generally de� ned as low-amplitude vibrations at frequencies up to 1 kHz,
are of critical importance in a number of areas. It is now well known that, in general, the suppression
of such microvibrations to acceptable levels requires the use of active control techniques which, in
turn, require suf� ciently accurate and tractable models of the underlying dynamics on which to base
controller design and initial performance evaluation. Previous work has developed a systematic
procedure for obtaining a � nite-dimensional state-space model approximation of the underlying
dynamics from the de� ning equations of motion, which has then been shown to be a suitable basis for
robust controller design. In this paper, the experimental validation of this model prior to experimental
studies is described in order to determine the effectiveness of the designed controllers. This includes
details of the experimental rig and also the use of methods for assessing the safety of the resulting
structure against uncertain parameters.
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NOTATION

d piezoelectric constant
e electric � eld
E Young’s modulus
f column vector of forces
g safety margin
h thickness
M inert ia matrix
P probability
q generalized forces
s shape function vector
S shape functions
T kinetic energy
U potential energy
v voltage
V voltage vector
w out-of-� eld displacement

b safety index

e strain vector
r density
r stress vector
W modal coordinate vector

1 INTRODUCTION

‘Microvibrations’ is the term used to describe low-
amplitude vibrations that occur at frequencies up to
1 kHz and that have often been neglected in the past due
to the low levels of disturbances they induce. In recent
years, however, the need to suppress the effects of
microvibrations has become much more necessary. This
is especially true for spacecraft structures where, due to
the ever-increasing requirements to protect sensitive
payloads, such as optical instruments or microgravity
experiments, there is a pressing need to obtain a very
high level of microvibration-induced vibration suppres-
sion (see, for example, reference [1] for further back-
ground information). In effect, such vibrations on board
spacecraft are produced by the functioning of on-
board equipment such as reaction wheels, gyroscopes,
thrusters, electric motors, etc., which propagate
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through the satellite structure towards sensitive
equipment (receivers), thereby jeopardizing their correct
functioning.

From a practical standpoint, the reduction of the
vibration level at a sensitive location of a structure can
be attempted by action at the source(s), receiver(s) and
along the vibration path(s). At the source(s), this action
consists of attempting to minimize the amplitude(s) of
the vibration(s) by, for example, placing equipment on
appropriate mountings. The same approach is com-
monly attempted at the receiver(s) but with the basic
objective of sensitivity reduction. F inally, along the
vibration path(s), modi� cations of structural elements
or re-location of equipment is attempted with the aim of
reducing the mechanical coupling(s) between source(s)
and receiver(s).

All of the approaches described above can be based
on so-called passive damping technology and, for
routine applications, an appropriate combination of
them is often capable of producing the desired levels of
dynamic disturbance rejection. The use of active control
techniques in such cases would only be as a last resort to
achieve the desired performance.

The requirements of the new generation of satellite-
based instruments are such that only active control can
be expected to provide the required levels of micro-
vibration suppression. To investigate the use of active
control to suppress such vibrations in a structure,
computationally feasible models that retain the core
features of the underlying dynamics are clearly required.
The most obvious approach to the development of such
models is to use � nite element methods (FEMs) (see, for
example, reference [2]) due to the accuracy available
with a suf� ciently � ne mesh. The only dif� culties with
this approach are the computational intensity of the
models and the fact that they are not in a form directly
compatible with feedback control systems design. They
can, however, be used, as in this work, to verify that the
modelling strategy employed produces ‘realistic’ models
on which to base controller design and evaluation.

Alternatives to FEMs can be classi� ed as elastic wave
methods, variational methods and mechanical impe-
dance based methods respectively. A detailed study of
the advantages and disadvantages of these methods,
together with background references on each of them,
can be found in references [3] and [4]. Based on this
study, a Lagrange–Rayleigh–Ritz (LRR) method has
been developed (again see references [3] and [4]) to
produce state-space models on which to base controller
design.

In this paper, the use of this modelling technique in
controller design and initial evaluation is � rst illu-
strated. The focus is on the design of controllers based
on linear quadratic optimal control theory for mass-
loaded panels, which are widely recognized as an
acceptable compromise between problem complexity
and the need to gain useful insights into the bene� ts

(and limitations) of active control schemes in this
general area. Of course, the model is not a complete
representation of the system dynamics and prior to
actual implementation studies it is essential to
compare the actual quality of the model predictions
against measured data; clearly the open-loop case
needs to be studied � rst.

This last requirement forms a major part of this
paper, where the design of an experimental rig to
accurately represent a mass-loaded actively controlled
panel is detailed. Comparison of the predicted and
measured results then enable the sources of any
signi� cant errors to be determined. Also it is shown
that this modelling approach enables probabilistic-based
studies of the effects of uncertainties in the system’s
properties to be undertaken. This yields estimates of the
probability of an unstable plant and statistical measures
of expected performance. In the next section a summary
gives the necessary background on mathematical
modelling.

2 SYSTEM DESCRIPTION AND MODELLING

2.1 Mass-loaded panel

The mass-loaded panel arrangement considered here is
shown schematically in Fig. 1, where the equipment
mounted on the panel is modelled as lumped masses and
the disturbances as point forces. The sensors and
actuators employed are twin patches of piezoelectric
material bonded on to opposite faces of the panel. The
bending vibrations of the panel produce stretching and
shrinking of the patches depending on whether they are
on the top or the bottom of it (see Fig. 2a). Due to the
piezoelectric effect, these deformations induce an electric
� eld perpendicular to the panel, which is detected by
the electrodes of the patches. The outer electrodes of
the patches are electrically connected together and the
panel, which is grounded, is used as the other electrode
for both patches of the pair when acting as a sensor. The
same con� guration is used for an actuator, but in this
case the electric � eld is applied externally to produce
contraction or expansion of the patch, which then
induces a curvature of the panel.

The LRR based procedure used to model this system
is based on Lagrange’s equations of motion, which in
the general case take the form

d
dt

qT

q _qqi

³ ´
¡ qT

qqi
‡ qU

qqi
ˆ Qi …1†

Here T and U are the kinetic and potential energies of
the system and qi and Qi are the ith generalized
coordinate and force respectively. For the particular
case considered here, the kinetic and potential energies
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(elastic and electric) can be expressed as

T ˆ T pl ‡ T lm ‡ Tpz, U ˆ Upl ‡ Upz …2†

where T pl, T lm and T pz denote the kinetic energies of the
panel, lumped masses and piezoelectric patches respec-
tively. The terms Upl and Upz denote the potential
energies stored in the panel and the piezoelectric patches
respectively.

The displacement � eld (out-of-plane displacement w)
is described by a superposition of shape functions S m, n

(consisting of the � rst N ˆ Nm6N n modes of the bare
panel) multiplied by the time-dependent modal coordi-
nates cm, n, i.e.

w…x , y, t† ˆ
XNm

mˆ1

XN n

nˆ1

Sm, n…x , y†cm, n…t† ˆ sTW …3†

where the N 61 column vectors s and W contain the
shape functions and modal coordinates respectively. In
this work, a simply supported boundary condition is
considered and therefore the mode shapes are simply
sine functions.

As explained below, the full set of generalized
coordinates qi, which appears in equation (1), consists
of W together with the voltages at the piezoelectric
patches. The external excitation consists of N f point

forces Fj acting on the plate at arbitrary locations.
Hence the generalized forces are of the form

Qi ˆ
XN f

jˆ1

Fj
qwj

qci
…4†

or

Q ˆ Sf f …5†

where f is the N f 61 column vector of forces and Sf is a
compatibly dimensioned matrix whose columns are
given by the model shape vector s evaluated at the
corresponding force locations.

It is now necessary to compute each of the terms in
equation (2), starting with the kinetic energies. Each of
these terms can be calculated using the standard formula

T ˆ 1
2

………

Vol

r _ww dx dy dz …6†

where r denotes the material density and Vol denotes
the volume. Here it is only necessary to give the � nal
forms, with full details being found in reference [3]. In
the case of the transversely vibrating panel, application
of equation (6) yields

Fig. 1 Mass-loaded panel

Fig. 2 (a) Cross-section of a piezoelectric patch bonded on the panel during deformation (P, poling direction
of the piezoelectric material; e, induced electric � eld). (b) Strain distribution through a piezoelectric
patch/panel section
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Tpl ˆ 1
2

_WWTMpl
_WW , T pz ˆ 1

2
_WWTMpz

_WW …7†

Here Mpl is the (diagonal) inertia matrix of the panel
and the inertia matrix of the patches Mpz is fully
populated, where the off-diagonal entries denote the
couplings between the modal coordinates.

Suppose now that there are N l lumped masses on the
panel and let slmi , 1 4 i 4 N l, denote the shape vector
function at lumped mass i. Then the total kinetic energy
associated with the lumped masses is given by

T lm ˆ 1
2

_CCTM lm
_CC, Mlm ˆ

XN l

iˆ1

Mlmi slmi s
T
lmi

…8†

The potential energy of the system is stored as the
elastic energy of the panel and the elastic/electric energy
of the piezoelectric patches. The elastic energies are
directly calculated from the expression

U ˆ 1
2

………

Vol

eTr dx dy dz …9†

where r and e are the stress and strain vectors
respectively. Also by assuming a plane stress condition
(see reference [4]) for the panel,

Upl ˆ 1
2W

TKplW …10†

where Kpl is the panel stiffness matrix. For the piezo-
electric patches, the potential energy can be written as
the sum of three energy components, i.e.

Upz ˆ Upzelast
‡ Upzelastelect

‡ Upzelect
…11†

where Upzelast
is the energy stored due to the elasticity of

the material, Upzelastelect
represents the additional energy

due to the voltage-driven piezoelectric effect and Upzelect

is the electric energy stored due to the dielectric
characteristics of the piezoelectric material employed.
To compute the elastic energy in this case, an appro-
priate model for the stress–strain pattern in the piezo-
electric patches must be selected, and here the following
assumptions are made in this respect:

1. The electrodes attached to the piezoelectric patches
have negligible mass and stiffness.

2. The thickness of the layer of adhesive that connects
each of the patches to the panel is negligible
compared to that of the patches and is able to
transfer all of the shear strain.

3. The natural boundary conditions at the edges of each
patch (i.e. s ˆ 0) are not enforced and a compatible
strain distribution, as illustrated in F ig. 2b, is
assumed through the whole patch.

This last assumption is particularly appropriate if, as
here, the patches employed are ‘very thin’ and ‘relatively
wide’. Given these assumptions, the same procedure as

employed for the panel can be used to write

Upzelast
ˆ 1

2W
TKpzelast

W …12†

where the stiffness matrix Kpzelast
is fully populated.

Suppose now that a patch to be used has a constant
thickness hpz that is thin enough to prevent fringe effects
and has a voltage v applied at its electrodes. Then a
constant electric � eld e ˆ v=hpz can be assumed across
the patch and the further stress due to the applied
voltages is given by

relect ˆ rx elect

ryelect

³ ´
ˆ Epz

1 ¡ v2

dxz ‡ vdyz

dyz ‡ vdxz

³ ´
e …13†

Here dxz and dyz are the piezoelectric constants of the
material, which is assumed to have a polling direction z
perpendicular to the plate. Hence Upzelastelect

can be
calculated as

Upzelastelect
ˆ 1

2

………

pz

rT
electedx dy dz …14†

In the case of N p patches, the electric � eld in patch i
can be written in the form ei…t† ˆ V …t†Tpi, where V …t† is
the N p61 vector whose entries are the patch voltages
…vi† and the N p61 vector pi has zero entries except for
entry i, which is equal to 1=hpzi

. Also, by assuming that
dxz ˆ dyz ˆ dz and substituting the assumed form of
relect in equation (13) into equation (14), it is possible to
write the elastoelectric energy stored in the N p patches as

Upzelastelect
ˆ V TKpzelastelect

W …15†

The electrical energy stored in the piezoelectric
material can be expressed as

Upzelect
ˆ 1

2

………

pz

ed dx dy dz …16†

where e is the electric � eld and d is the electric
displacement (charge/area). For each patch, the electric
displacement is

di ˆ epzi
pT

i vi …17†

where epzi
is the dielectric constant of the piezoelectric

material which forms the ith patch. Hence an equivalent
expression for the stored electric energy is

Upzelect
ˆ 1

2V
TKpzelect

V …18†

where the elements of the matrix Kpzelect
are the

capacitances of the piezoelectric patches.
At this stage, all of the energy terms are available as

functions of the generalized coordinates, i.e. the modal
coordinates and the voltages at the patches written in
column vector form as W and V respectively. Hence
straightforward application of Lagrange’s equations of
motion (1) yields the second-order matrix differential

G S AGLIETTI, R S LANGLEY, E ROGERS AND S B GABRIEL392

Proc. Instn Mech. Engrs Vol. 218 Part C: J. Mechanical Engineering Science C07103 # IMechE 2004



equation model

…Mpl ‡ Mpz ‡ Mlm† �WW ‡ …Kpl ‡ Kpzelast
†W ‡ KT

pzelastelect
V

ˆ Q

Kpzelastelect
W ‡ Kpzelect

V ˆ 0

…19†

The � rst equation in (19) results from � rst differentiat-
ing the energy terms with respect to the modal
coordinates and writing the results in terms of the
column vectors W and V and the second from an
identical set of operations but with differentiation with
respect to the patch voltages. These operations assume
that all modal coordinates and voltages are degrees of
freedom (DOFs) of the system.

In the case when all patches act as actuators, their
voltages are externally driven and hence the second
equation in (19) is redundant. If all patches are to be used
as sensors, the second equation in (19) can be used to
obtain an expression for the voltages as a function of the
modal coordinates. This expression can then be sub-
stituted into the � rst equation in (19) to give a complete
set of equations in the unknown modal coordinates.

The most general case arises when some of the patches
act as actuators and others as sensors. In such a case it is
necessary to partition the matrix Kpzelastelect

to separate out
actuator and sensor contributions. To do this, let va and
vs be the subvectors of the voltages at the actuators and
sensors respectively, and partition Kpzelastelect

conformally
as Kpzelastelect

ˆ ‰Kpzaelastelect
, Kpzselastelect

Š. Then the � rst equa-
tion in (19) can be rewritten as

M �WW ‡ Cs
_WW ‡ …Kelast ‡ Kpzs†W

ˆ ¡ KT
pzaelastelect

va ‡ sT
f f …20†

where all inertia elements are included in the matrix M
and all stiffness elements in the matrix Kelast . Also,

Kpzs ˆ ¡ KT
pzselastelect

K¡ 1
pzselect

Kpzselastelect
…21†

represents the contribution to the stiffness from the
piezoelectric energy stored in the patches acting as
sensors, where Kpzselect

is the submatrix of Kpzelect
corre-

sponding to the sensors. In addition, structural damping
has been added to the system by including the term Cs

_WW .
All the necessary matrices in this model can be

computed directly given the relevant data (dimensions,
material properties, patch positions, etc.). Also, the
model of equation (20) can easily be written in state-
space form as

_xx ˆ Ax ‡ Bvva ‡ Bf f

vs ˆ Cvx

wout ˆ Cwx

…22†

where

x ˆ
W

_WW

µ ¶
, A ˆ

0 I

¡ M¡ 1K ¡ M¡ 1Cs

µ ¶
…23†

Bv ˆ
0

M¡ 1KT
pzaelastelect

" #

, Bf ˆ
0

M¡ 1sT
f

µ ¶

Cv ˆ ¡ K¡ 1
pzselect

Kpzselastelect
0

h i
, Cw ˆ sT

out 0
£ ¤

…24†

Here wout is the output displacement at the particular
locations speci� ed by the mode shape vectors sout and K
denotes the total stiffness matrix de� ned from equation
(21) …K ˆ Kelast ‡ Kpzs†.

Using this state-space description, it is possible to
begin in-depth investigations of the potential (or
otherwise) of active control schemes in this general
area. To be practically relevant, however, it is clearly
essential that the model to be used for controller design
adequately represents the underlying plant dynamics. In
the next section of this paper the development of an
experimental rig for this purpose is described.

3 EXPERIMENTAL RIG AND TESTING

A test rig for the simply supported panel (see Table 1 for
all details subsequently used in this paper) con� guration
described in the previous section has been built in order
to verify the results produced by the mathematical
models. One of the main problem areas was the
realization of the simple supports along the edge of
the panel. This problem, also addressed in detail by
Aglietti and Cunningham [5], was solved by suspending
the panel horizontally using shims. This set-up produces
a negligible rotational stiffness along the edge of the
panel due to the high bending � exibility of the shim. At
the same time, the high in-plane stiffness of the shim,
which is clamped along its upper and lower edges,

Table 1 Dimensions and material properties of the simply
supported panel

Panel a ˆ 304:3 mm E ˆ 716109 Pa
b ˆ 203:2 mm r ˆ 2705kg=m3

h ˆ 1:453 mm n ˆ 0:33

Lumped mass x ˆ 50:8 mm m ˆ 38 g
y ˆ 152:4 mm

Actuator x a1 ˆ 50:8 mm E ˆ 636109 Pa
x a2 ˆ 101:6 mm r ˆ 7650kg=m3

ya1 ˆ 25:4 mm n ˆ 0:3
ya2 ˆ 76:2 mm d ˆ 1:66610¡10 m=V
hpz ˆ 0:19 mm e ˆ 1700 e¯

Sensor xS1 ˆ 76:2 mm E ˆ 636109 Pa
xS2 ˆ 127 mm r ˆ 7650kg=m3

yS1 ˆ 101:6 mm n ˆ 0:3
yS2 ˆ 152:4 mm d ˆ 1:66610¡10 m=V
hpz ˆ 0:19 mm e ˆ 1700 e¯
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restrains the out-of-plane (vertical) movements of the
edge of the panel.

Figure 3 shows the practical implementation of this
support, and more details can be found in Aglietti and
Cunningham [5]. The corner pieces (L-cross-section
segments of steel beam) on to which the shims are
constrained are then bolted to a rigid frame. Another
advantage of this type of support is that the out-of-plane
� exibility of the shims allows expansion or contraction
of the panel (due to temperature changes) without
inducing large in-plane pre-stresses in the panel.

The corner pieces (L-sections) that support the shims
were bolted on to a frame composed of a steel plate,
with a rectangular cut-out machined in the centre of the
plate to the dimensions of the aluminium alloy panel
and four steel U-section beams welded under the plate

to increase its stiffness The cut-out in the plate is
necessary in order to avoid standing acoustic waves that
otherwise would be produced in the gap (cavity)
between the aluminium panel and the steel plate. The
four L-section steel beams were machined with a
channel to produce a gap behind the shims.

The piezoelectric patches were bonded to the panel
using epoxy. The complete test rig was suspended in a
frame using four tension springs to provide freely
supported boundary conditions to the supporting
structure. The reason for having the frame ‘� oating’
was that any attempt to constrain the frame to the
ground resulted in � exible modes of the frame being
introduced in the frequency range under investigation.
This was arbitrarily chosen as 1–500 Hz to include the
� rst � ve modes of the panel. Finally, the lumped mass
was bonded to the panel. This mass consists of two small
solid steel cylinders bonded on to the opposite faces of
the panel at the same location. This arrangement was
used in order to maintain symmetry with respect to the
panel middle surface and to keep the centre of mass of
the lumped mass on the middle surface of the panel so
that the moments of inertia of the lumped mass
arrangement were minimized. F igure 4 shows the
experimental arrangement.

3.1 FE model

3.1.1 Panel with piezoelectric patches

A � nite element (FE) model (F ig. 5) of the assembly has
been constructed using the commercial software pack-
age ANSYS. The model was composed of layered shell
elements (Shell91), with the areas of the piezoelectric

Fig. 3 Detail of the panel support

Fig. 4 Piezoelectric actuated mass-loaded panel
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patches modelled using three layers (piezoelectric
material upper patch/aluminium/piezoelectric material
lower patch). For the rest of the panel a single layer of
aluminium was used. In the FE model, the driving force
produced by the contraction/expansion of the piezo-
electric patches used as actuators, when the input
voltage is applied, was produced by applying moments
along the edges of the piezoelectric patch.

This was done in order to keep the FE model as
simple as possible without adding further degrees of
freedom (DOFs) such as voltages or temperatures to
produce shrinking/expansion of the patches. The
moment applied to the edge of the patch is based on
that originally developed and tested for beams by
Brennan et al. [6].

3.2 Complete rig

In the FE model of the whole assembly (i.e. the panel
and supporting structure), the L-section beams that
support the shims and the metal strips clamping the
shims have been modelled using solid elements while the
supporting plate and the U-channels welded underneath
were modelled using shell elements. The L-sections were
coupled to the frame by merging the nodes in the areas
where the connecting bolts between these elements were
located. The modes of vibration and the associated
natural frequencies were � rst calculated with the whole
assembly freely supported.

4 TESTS AND DISCUSSION OF RESULTS

Before testing, the size and material properties of the
aluminium panel were experimentally veri� ed in order
to con� rm the input data to be used in the mathematical
models. Using the experimental set-up described pre-
viously, the four transfer functions characterizing this
plant (i.e. input actuator signal-output sensor signal,
input actuator signal-output displacement on the panel,
input disturbance force-output sensor signal, input
disturbance force-output displacement on the panel)
were retrieved experimentally.

To reproduce the input disturbance force, the panel
was tapped using an Endevco impact hammer with an
Isotron force transducer. The panel was tapped at the
location x ˆ 254 mm and y ˆ 51 mm. The response of
the panel was retrieved using a miniature accelerometer
at x ˆ 254 mm and y ˆ 152 mm. The weight of the
accelerometer was 0.6 g and therefore its impact on the
dynamics of the panel was neglected. The voltage
produced at the electrodes of the piezoelectric patch
was acquired using a Signal Processing Limited four-
channel data acquisition suite connected to a personal
computer which operated using Matlab software.

As an example, Fig. 6 shows a comparison between
the experimentally measured transfer function input
actuator signal-output sensor signal and the results
obtained using the LRR model. The comparison
between experimental data and the theoretical predic-
tions of the LRR model has con� rmed the quality of the
LRR modelling technique. The data here are limited to
between 50 and 500Hz, the reason being that beyond
approximately 500 Hz the frame used to support the
panel in the experiments starts to deform and has

Fig. 5 FE model of the experimental rig (the front L-section beam is removed for clarity)

Fig. 6 Transfer function between the input at the actuator
and sensor output (dotted line, experimental results;
dashed line, FEM; continuous line, LRRM)
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resonances that interfere with the panel dynamics.
Similarly, at low frequency (say a few Hz) the panel
plus frame (supported by soft springs) exhibit rigid-
body modes, which are not included in the theoretical
models.

Also, the FE model produced excellent results, but it
must be noted that the FE model had approximately
3500 DOFs while the LRR model only considers the
� rst 6 by 6 mode shapes (36 DOFs). In addition, the
good comparison between FE model results and
experimental data con� rms that the method used to
simulate the effect of the patches with line moments
along the edges is accurate. The voltage at the electrodes
of the patch in the FE model is obtained from the
average strain in the patch multiplied by the piezo-
electric constant.

5 CONTROLLER DESIGN

Given the state-space model of equations (22) to (24), it
is possible to design a controller whose objective is to
minimize the displacement at a speci� ed point on the
panel in the presence of point force disturbances acting
at other location(s). This can be undertaken by any of
the currently available controller design tools. Here (for
illustrative purposes only) linear quadratic optimal
control is used, where the aim of the controller is the
minimization of the performance index:

J ˆ 1
2

…?

0
…wT

outQwout ‡ vT
a Rva† dt …25†

where Q (positive semi-de� nite) and R (positive de� nite)
are weighting matrices of compatible dimensions to be
selected by the designer. Appropriate selection of the
entries in the weighting matrices Q and R allows a
balance between the minimization of the output of the
plant wout (which is our main objective) and the
minimization of the control effort. A sample design is
shown in F ig. 7 in the form of frequency response data.

6 UNCERTAINTY ANALYSIS

In structural and mechanical design it is clearly essential
to allow for the fact that uncertainties can exist in the
properties of the designed system and in the applied
loading. The traditional means of dealing with this has
been through the use of factors of safety, which are
developed and re� ned on the basis of experience and
historical evidence. For systems where ef� cient design is
of the utmost importance [and this is clearly the case in
the (eventual) applications area considered here], it
could easily be the case that the traditional safety factors
may be too conservative and hence optimal ef� ciency
cannot be achieved.

The most direct approach to a theoretical reliability
assessment is to attempt to derive the statistics of the
system response (and the failure probability) from a
knowledge of the statistical properties of the system and
the applied loads. In the case of complex systems,
however, two major problems can arise with this
approach. These are that the evaluation of the response
statistics can present severe mathematical and numerical
dif� culties and also the statistical properties of the

Fig. 7 Frequency response to a 1 N input disturbance force for nominal plant with and without active
control
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system and loading may not be known in any detail.
This has led to the development of a number of
approximate analytical methods and, in particular,
asymptotic reliability analysis, FORM (� rst-order
reliability method) and SORM (second-order reliability
method) (see, for example, reference [7]), and commer-
cial software codes are now available for application of
the latter two methods to FE models [8].

The key feature of FORM is that it linearizes the limit
state surface about the ‘design point’ . This point is
chosen to make this approximation as accurate as
possible. If the limit state surface is actually linear then
the analysis is trivial and a closed solution for the
reliability can be derived. For the non-linear case,
FORM is an approximate numerical method speci� cally
developed to deal with non-linear failure surfaces.

In this paper, as an example, the use of FORM is used
for the particular structures considered. The numerical
results given here demonstrate that the FORM prob-
ability agrees with the Monte Carlo result and this
approach gives a good approximation for the class of
structures. Next the relevant background results are
given (with full details in, for example, reference [9] and
the relevant cited references). Note also that alternatives
to the FORM method exist. These include the normal
tail approximation [10] and the weighted fractile
approximation [11]. A clear area of further work would
obviously be to compare these approaches against the
results obtained here by the FORM method.

If a number of properties of an engineering structure
are taken to be random, then the response to applied
loading (of either deterministic or random magnitude)
will also be random. Here the random variables that
describe the structure and the applied loading are taken
to form a vector x of dimension n, and hence the
statistics of the system are fully described by the joint
probability density function r…x†. For a given x, the
structure will either fail under the applied loading or
exhibit safe behaviour. Hence the condition of the
structure can be described by a safety margin g…x† so
that the structure has failed if g…x† 4 0 and is safe if
g…x† > 0. It then follows that the probability of failure
can be written in the form

PF ˆ
…

g…x† 4 0
r…x† dx …26†

To proceed, it is convenient to express r…x† in the
form

r…x† ˆ e¡f …x† …27†

where f …x† ˆ ¡ l…x† and l…x† is termed the log likelihood
function. Also it can be shown [9] that PF can be
approximated by

PF &…2p†N =2jX j¡1=2r…x̂x† eb2=2F…¡ b† …28†

where

X ij ˆ q2f
qx i qx j

‡ jHf j
jHgj

³ ´
q2g

qx i qx j

b ˆ jHf j
jHgj

³ ´
s

…29†

with

s2 ˆ
XN

iˆ1

XN

jˆ1

…X ¡1†ij
qg

qx i

qg

qx j
…30†

and all the terms in equations (28) to (30) are to be
evaluated at x̂x, which is de� ned such that

minf f …x† : g…x† ˆ 0g ˆ f …x̂x† …31†

This last equation states that x̂x is found by minimizing
the function f …x† [or equivalently maximizing the log
likelihood function l…x†] subject to the constraint
g…x† ˆ 0. The gradients and curvatures of the functions
f and g computed at x̂x then lead to an estimate of the
failure probability via equations (28) to (30). Next this
result is specialized to obtain the FORM method as one
special case.

The random variables that form the vector x in the
above analysis are taken as Gaussian. Here Gaussian
variables have been chosen as a default in the absence of
any other information; the central limit theorem implies
that variables tend to be Gaussian unless there is a good
reason for them not to be. In case they are not Gaussian
it is always possible to transform them to a set of
Gaussian uncorrelated random variables using, for
example, the transformation of reference [12].

In the applications considered here, g…x† can be taken
to be the negative of the least stable pole and the ‘exact’
probability of failure is given by the integral of the joint
probability density function of X over the failure region.
In general, the resulting integral can be a very dif� cult
quantity to compute since X can have ‘very high’
dimensions and g…x† can have a complex geometry. The
FORM approach sets out to obtain an approximate
probability of failure by transforming the set of
variables in x to a set of uncorrelated Gaussian variables
Z , each member of which has zero mean and unit
standard deviation. The probability of failure is then
estimated using

PF ˆ F…¡ b† …32†

where

b2 ˆ minfZ TZ : g…x† ˆ 0g …33†

and F is the cumulative normal distribution function.
Geometrically, b is the shortest distance between g…Z †
and the origin. Equation (32) is exact if the safety
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margin g…Z † is a linear function; otherwise the result is
an approximation which is based on linearizing the
safety margin about the point of closest approach to the
origin. Equation (33) is a constrained optimization
problem which can be solved numerically provided g…x†
can be evaluated for a speci� ed value of x; the LRR
modelling approach used here provides an ef� cient way
of completing this task.

As an illustrative example, consider again the case for
which F ig. 7 is a candidate design. Suppose now that the
dimensions of the panel are uncertain and taken to be
Gaussian random variables with standard deviations of
0.33, 0.33 and 0.066 mm for length, breadth and
thickness respectively. The damping is also assumed to
be random with a standard deviation of 3 per cent of the
nominal value (all other parameters and the linear
quadratic optimal control based controller used can be
found in reference [3]). Note also that the relatively large
variation in the panel dimensions is intended to make
allowance for uncertainties in both the boundary
conditions and the actual dimensions themselves.

In a representative result from the Monte Carlo
simulations, an ensemble of 1700 plants gave 20 that
were unstable and hence a probability of failure of
0.0018. The open- and closed-loop poles obtained from
a sample of 550 of ensemble are shown in F ig. 8, which
shows that the poles of the closed-loop system have a
very high degree of variability. For example, pole 18
becomes unstable for some of the perturbed plants.

The FORM analysis in this case yielded b ˆ 2:27,
which corresponds to a probability failure of approxi-
mately 0.012. Also, the failure point, i.e. the point
satisfying equation (33), lies on the portion of g…x† that
is associated with pole 18 and hence both the probability
of a failure and the mode of failure are in good
agreement with the Monte Carlo results. This analysis
also required a small fraction of the computer time
needed for the Monte Carlo simulations [typically 30 to
60 calls to the function g…x†]. In this case, the run-time is
reduced by a factor of 30 in comparison to using the
Monte Carlo approach alone. Hence the combination of
the FORM and the LRR modelling technique is a very
ef� cient method of studying the robustness properties of
the actively controlled system.

7 CONCLUSIONS

The requirement to suppress microvibrations usually
entails the use of an active control scheme. This, in turn,
requires a suitable mathematical model on which to base
controller design and initial performance predictions
prior to experimental implementation for those control
laws for which the simulation-based predictions are
satisfactory. In this paper, one such mathematical
modelling technique developed in previous work has
� rst been summarized. A particular advantage of this
method is that it directly permits control system design
by any of the currently available linear analysis based
methods; here, for illustrative purposes, linear quadratic
optimal control has been used.

Given that any model is never a perfect model of the
system dynamics, it is essential that the actual quality of
the model predictions against measured data is available
(if the quality is judged to be ‘poor’ then clearly
predicted behaviour under control action is extremely
unlikely to be close enough to the speci� cations to
enable the design exercise to proceed and a ‘better’
model must be sought). The � rst signi� cant contribution
of this paper is the design and construction of an
experimental rig for this model validation task in the
form of a mass-loaded panel. The second novel
contribution lies in showing that this set-up (mathe-
matical modelling plus the experimental rig) enables
probablistic-based studies of the effects of uncertainties
in the panel dimensions/materials to be undertaken with
little extra preparatory work.
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