
Towards Motivation-Based Decisions for Worth Goals

Steve J Munroe1, Michael Luck1, Mark d’Inverno2

1 Electronics and Computer Science University of Southampton, Southampton, UK
{sjm01r, mml}@ecs.soton.ac.uk

2 Computer Science, University of Westminster, London, UK
dinverm@wmin.ac.uk

Abstract. In this paper we present a motivational mechanism to generate and
determine the worth of goals and to represent various constraints involved in sat-
isfying a goal. The work builds on the SMART agent framework and adds to the
growing body of work that is attempting to extend the abilities of autonomous
agents past the constraints of the traditional symbolic approaches to AI. The pa-
per represents a first step in increasing an agent’s autonomy in the domain of e-
commerce, specifically enabling the agent to dynamically set issue parameters in
relation to the importance of the issue and the effects of any existing constraints.

1 Introduction
Overcoming the limitations of symbolically based representations as used in intelli-
gent agents, to cope with more realistic domains, is an area growing in size. Work
from robotic control [14], design to criteria scheduling [19] and cognitive appraisal the-
ory [16] all pertain to extending the abilities of computational agents into continuous,
worth-oriented domains. Trading-off the satisfaction of multiple issues or goals in the
context of conflicting constraints however, has had little attention as yet in the field of
autonomous deliberative agents (cf. [17]), though work relevant to this exists in auctions
in the case of multiple-issues (eg. [2]) and robotic control in the case of synthesising
behaviour in the face of multiple constraints (eg. [14]). Traditional deliberative agent
architectures (eg. [11]) tend to employ a static representation of preferences that an
agent must try to satisfy with little or no room for adjusting them in the light of new
information. Often it is not possible however, to fully satisfy existing goals in a par-
ticular environment and, lacking any way to relax goals, they are therefore likely to be
dropped, and the associated utility gain lost.

Within the field of electronic commerce, recent advances in agents are allowing au-
tomation of many activities usually performed by humans. Agents are now able to use
simple negotiation strategies in order to purchase a good or a service under conditions
that best satisfy a user’s preferences (eg. [8]). The dominant approach to the worth-
oriented nature of such a domain is to use utility-based, selfish maximising agents (eg,
[5]). However, take up of these new systems is generally limited to simple purchases
over one issue such as price, in which user preferences are rigidly encoded, offering lit-
tle opportunity for flexible yet robust adaptation to prevailing circumstances. It would
be desirable to be able to combine both approaches to see how to increase an agent’s
autonomy with respect to making purchasing decisions in the face of dynamic environ-
ments and changing contexts.

Consider the task of keeping an inventory stocked with various items; the inventory
keeper needs to decide how much of each good to buy whilst trying to satisfy certain
constraints such as cost, urgency and demand for each item. All of these constraints
should be factors in the final decision and the inventory keeper needs to discover the
feasible goals available given the constraints. The problems in this situation consist
of how to use information about the domain in order to dynamically set parameters
associated with the preferences inside the agent, how to discover when one issue under
consideration is more important than another and, finally, how to combine the varying
importance of each issue under consideration into a coherent decision about what to
do. There are many kinds of domains in which this may be done but, in this paper we
focus on domains in which the agent needs to reason over quantities of a particular
item though this can easily be reinterpreted as reasoning over levels of quality for say,
service provision.

In this paper our approach uses the concept of motivation to combine the tradi-
tional notion of goals as state descriptions with the notion of the worth or utility of a
goal. This allows us to give a different worth to a goal state depending on the current
context and constraints. We describe a motivational mechanism capable of generating
multiple goals, representing their worth in relation to each other and determining their
parameters based on a number of constraints (also modelled as motivation). We begin
by describing the basic underlying framework upon which this work is based, before
describing the motivational mechanisms in detail. Then we begin a discussion on as-
signing worth to goals and constraints, its relation to motivation and the setting of goal
parameters. After that we provide a worked example. The paper ends with a discussion
of the approach.

2 Motivated Agents
In this work we adopt the SMART agent framework described in [4]. We also adopt the
Z notation [15] which is based on set-theory and first order logic. Though we assume
some familiarity with Z, the meaning should be clear. The arguments for Z are well-
rehearsed (ie.[3]), and we omit further discussion.

We start by defining four primitives: attributes, actions, goals and motivations,
which are used as the basis for development of the SMART agent framework. Formally,
these primitives are specified as given sets, which means that we say nothing about how
they might be represented for any particular system. Attributes are simply features of
the world, and are the only characteristics that are manifest. Actions are operations that
can add or remove attributes, goals are descriptions of states in terms of attributes that
the agent would like to bring about and, finally, motivation is any desire or preference
that can lead to the generation and adoption of goals and that affects the outcome of the
reasoning or behavioural task intended to satisfy those goals [4].

[Attribute,Action,Goal ,Motivation]

An agent is defined to be an entity with a set of attributes that describes its characteris-
tics, a set of actions called capabilities that can be used to change the world and a set
of goals that the agent wants to bring about, all of which are non-empty sets.

Agent

attributes : P Attribute; capabilities : P Action

goals : P Goal ; motivations : P Motivation

attributes 6= ∅ ∧ capabilities 6= ∅ ∧ goals 6= ∅

An autonomous agent is an agent with the additional constraint of a non-empty set
of motivations.

Autonomousagent = [Agent | motivations 6= ∅]

Some of an autonomous agent’s capabilities are perceptual capabilities by which at-
tributes in the environment can be captured in the agent’s view of the world which is
defined as a set of attributes.

View == P Attribute

We present the agent’s perceptual capabilities in the schema, AutonomousAgentPerception

below.

AutonomousAgentPerception

View : P Attribute

The kinds of domains we are interested in are worth-oriented domains [13], where
it is possible to assign a worth value to all possible states in relation to a goal. A worth
goal is defined in a similar fashion to traditional AI state goals but we need to develop
methods that can extract the extra information needed to reason about such domains.
We thus define a worth goal (WGoal) to be the same as a state goal, i.e. in terms of
state.

WGoal == State

3 Motivation
The notion of motivation is increasingly being used as the basis for control of au-
tonomous agents. Indeed, motivation has already been investigated in terms of goal
generation [4], proactive behaviour [10] and information processing [9]. Perhaps the
predominant view is that of motivation as a means to enable agents to generate goals
within, rather than adopt them from other agents [4]. Goals are generated from motiva-
tions, higher-level non-derivative components that characterise the nature of an agent.
They can also be considered as the desires or preferences that affect the outcome of a
given reasoning or behavioural task. In a computational context, we can imagine a robot
that normally explores its environment in an effort to construct a map, but must some-
times recharge its batteries. These motivations of ‘curiosity’ and ‘hunger’ lead to the
generation of specific goals at different times, with a changing balance of importance
as time passes.

Like the traditional notion of utility, motivation places value on actions and world
states, but is a more wide-ranging concept than utility. In the traditional view, an agent

examines its options and chooses one with the highest utility. Whilst also performing
this task, motivation is involved more intimately with the agent’s decision-making pro-
cess. A motivated agent has a dynamically changing internal environment, provided by
motivations, that can influence its decisions. For example, in the presence of food, an
agent may or may not choose to eat depending on the state of its internal environment
(specifically its hunger motivation). In many systems, the utility for a given action or
state is calculated in advance by the designer, but motivated agents can calculate utility
on-the-fly based on weightings provided by their current motivational state.

We argue that the motivational approach offers a way to design more flexible agents
that are able to act responsively within their sphere of concerns. More specifically, mo-
tivation offers a quantitative way for an agent to order a set of resource-conflicting
goals in terms of importance within a given context. The actual ordering is therefore
context-specific and changes with different sets of circumstances.
3.1 Intensity and Cues
In order to develop a computational model for motivation that can be manipulated and
used in the way suggested above, we adopt the foundational work of d’Inverno and
Luck [4] and Griffiths [6]. Much of what follows is based on this.

Motivation can be considered to be a dynamic control process [1], and the influ-
ence of a given motivation over an agent’s decision-making can increase or decrease
in response to changes in the environment or changes in the state of other motivations.
We use the notion of intensity to capture this dynamic property. Intensity is here repre-
sented as a real valued number in the range [0,1] where 0 represents no intensity and 1
represents maximum intensity. The more intense a motivation, the more influence that
motivation will exert over the decision-making process.

Thus, at any given time, each of an agent’s motivations is characterised by an in-
tensity that provides some indication of the motivation’s appropriateness in the current
environment. That is to say that when a motivation has high intensity, any goals gen-
erated should be highly relevant for the agent in the current environment. In order to
achieve this, however, there must be some way of assessing the current environment
in terms of relevance to motivations. The simplest way to achieve this is by attaching
a set of cues to a motivation that determine when, and by how much, the motivation’s
intensity should be updated. These cues are similar to the invocation conditions of plans
in BDI architectures [12].

In this way, a cue represents a condition which, when satisfied, results in a moti-
vation’s intensity being updated by some amount. This amount can either be fixed, or
depend on some measurement of the environment. Each of these update methods calls
for a different type of cue, called respectively discrete and continuous. In some cases,
all an agent needs to know about a given world state in order to update its motivations
is whether or not some proposition about the world state is true or false. Discrete cues
provide this information to the agent. For example, a particular motivation may update
its associated intensity by a fixed amount. Discrete cues represent sets of attributes and,
as such, we can define them to contain a referent of type attribute:

DiscreteCue == P
1
Attribute

In the case of continuous cues an agent alters the intensity of its motivations in pro-
portion to some measurement it takes from the environment. For example, an inventory

agent may update its motivation to keep the inventory well stocked by an amount pro-
portional to the amount by which a stock item has been depleted. Here, a continuous
cue might return the current amount remaining associated with the cue referent. We
define continuous cues similarly to discrete cues, but consider further effects later on.

ContinuousCue == P
1
Attribute

Thus, the set of cues attached to a motivation can be a combination of both types of
cues and as such we define cues to be either discrete or continuous cues.

Cue ::= dcue〈〈DiscreteCue〉〉 | ccue〈〈ContinuousCue〉〉

Motivation is considered to have seven basic components: a unique identifier; a
current and maximum intensity value; a set of goals that can be used to mitigate the
motivation; a set of cues that lead to updating motivational intensity; and a discrete
effect function and a continuous effect function. In order to define motivation we also
need to define [RAT 1

0
] as the rationals between 0 and 1, assuming basic arithmetic

operations are applicable [18]. The schema below provides a formal definition.

WMotivation

name : MotiveSym; currentintensity ,maxintensity :RAT 1

0

goals : P Goal ; cues : P Cue

discrete effect : Cue →RAT 1

0

continuous effect : Cue → View →RAT 1

0

dom discrete effect ⊆ ran dcue dom continuous effect ⊆
ran ccuemaxintensity ≤ 1currentintensity ≤ maxintensity

3.2 Updating Motivations
In order to update a motivation it is necessary to define update functions for both types
of cue introduced above. Discrete cues are used in an update method called discrete
update similar to Griffiths in [6], while continuous cues return update values that depend
on measurements of the environment recorded through an agent’s sensory processes; we
refer to this update method as measured update. We explain each in turn below.

An agent’s perceptual system forms a view of the environment that is composed of
attributes. These attributes are checked against the cues attached to the agent’s motiva-
tions to see if any cues are satisfied and, if so, the associated motivation is placed in the
set of active motivations. To represent this formally, we define the function selectActive,
which takes a state and set of motivations, and returns a set of motivations whose cues
are satisfied.

selectActive : View → P WMotivation → P WMotivation

∀ v : View ; ms : P WMotivation • selectActive v ms =
{m : ms | (∃ cs : Cue • cs ∈ m.cues ∧
(
⋃
{m : m.cues • (dcue ∪ ccue)−1m} ⊆ v)) • m}

We present discrete update as an axiomatic definition dUpdate. It takes a discrete
cue of a motivation and increases its intensity to the minimum of either the maximum

allowed intensity or the updated intensity of the motivation as determined by the value
of its cue.

dUpdate : Cue → WMotivation → WMotivation

∀m : WMotivation; c : Cue | c ∈ (ran dcue) ∧ c ∈ m.cues •
dUpdate c m = (µnew : WMotivation | new .currentintensity =
min (m.maxintensity ,m.currentintensity + m.discrete effect c) ∧
new .goals = m.goals ∧ new .discrete effect = m.discrete effect ∧
new .continuous effect = m.continuous effect ∧ new .cues = m.cues ∧
new .name = m.name)

We define the continuous update function similarly, though we leave out the predi-
cate as it is similar to that for discrete update.

cUpdate : Cue → View → WMotivation → WMotivation

Next, we state what happens when a discrete cue is processed. A cue is input and the
agent’s perception is changed indicated by the delta prefix to the AutonomousAgentPerception

schema, the motivation associated with the cue is put into the class of active motivations
using the selectActive function and is then updated using dUpdate function.

ProcessDiscreteCue

cue? : Cue

∆AutonomousAgentPerception

wmotivations,wmotivations ′ : P WMotivation

activatedmot ,newmot : P WMotivation

cue? ∈ (ran dcue)
activatedmot = selectActive (dcue−1cue?)
wmotivations newmot = {m : activatedmot • dUpdate cue? m}
wmotivations ′ = wmotivations \ activatedmot ∪ newmot

Continuous cues are treated similarly but with a modified third predicate. Here the mo-
tivation is updated using the cUpdate function.

wmotivations newmot = {m : activatedmot • cUpdate cue? view m}

4 Worth-Goals and Motivation
Now that we have a more detailed understanding and model of motivation, we can
return to a consideration of goal parameters, and investigate how they are related to
motivations. In our work we use the concept of worth in two ways. First, we propose
a mechanism by which the worth of a goal is dynamically set as a function of the
intensity of the underlying motivation. In this way, the worth of a goal provides a way
of choosing between competing goals. Second, we determine the worth of any state in
relation to a goal through the use of a metric by which we can measure the proximity
of an environmental state to a goal. In this way, it is possible to make judgements about
the relative satisfaction an environmental state offers in satisfying a goal.

For example, an agent that is highly motivated to eat (i.e. its hunger motivation has
high intensity) would assign high worth to any generated goals which, when satisfied,

would mitigate its hunger. However, the very same goals would be assigned low worth
if the hunger motivation of the agent was at low intensity. Thus the value or worth of a
goal depends crucially on the underlying motivational intensity. Similarly, as the world
state approximates the goal state (i.e of having eaten), it would receive a higher worth
value. Below we show the signature of a function that calculates a goal’s worth but omit
details for space considerations.

Goalworth : WMotivation → WGoal → State →RAT 1

0

In the above example however, the agent must also have a means to discover how much
to eat. We refer to this as a goal parameter, and their values are also determined by the
underlying motivation. Specifically, there must be some relation from the motivational
intensity to the value placed on a goal parameter. For example, if an agent’s hunger
motivation was of high intensity then a parameter associated with a goal to eat could
state that the agent eats a quantity close to the agent’s eating capacity (we assume that
parameters have a pre-defined range of acceptable values). Now, suppose that it is not
possible to bring about the exact state defined by a goal, but only some approximation
of it. How should one go about evaluating this state? The concept of a worth-oriented
domain [13] allows for the development of a notion of state-to-state proximity, which
can be represented by various metrics, depending on the scenario under consideration.
For example, the proximity of the current state to the goal state above could be defined
as the difference between the agent’s current measure of satiation and the level defined
in the goal’s parameter.

By measuring the proximity of the current state to a goal state, we can assign a worth
value to all states in relation to the goal. The effect of any given state on an underlying
motivation is given by a mitigation function, which takes a goal, the associated motiva-
tion and the current world state defined as an agents current view of the environment,
and returns a value that is used to mitigate the intensity of the underlying motivation.
States that completely match those defined by a goal should maximally satisfy, or miti-
gate, the associated motivation. Below we show the signature of the mitigation function
but again omit details due to space considerations.

mitigate : WGoal → View → Motivation →RAT 1

0

Of course, to achieve this it must be possible to determine suitable metrics within the
domain over which such characteristics as goal parameters, and state-to-state proximity
can be defined. For example, in describing the inventory scenario we need to represent
the sets of items that are used to stock the inventory, such as batteries, transistors, etc.
One of the goals of an agent could specify the amount of one type of item to buy, say
batteries = 500. This numerical value is a goal parameter, and represents the ideal pa-
rameter value, but this is likely to be adjusted in the face of currently active constraints.
By constructing environments with metrics of suitable granularity, it becomes possible
to calculate the proximity of one state to another and, consequently, to calculate the
worth of an environmental state in relation to a goal state in terms of their proximity.
Thus, as well as specifying a goal as a collection of attributes with certain relations, it
is necessary to define certain goal parameters which represent ideal values for a partic-
ular attribute defined in the goal. For example, an ideal value could simply refer to the

quantity of some product, such as 300 transistors, or the position of some object, such
as object a at location 20x , 30y . Alternatively, an ideal value could be defined over a
collection of attributes, such as the amount paid for both batteries and transistors.

5 A Worked Example
Here we describe in detail the inventory example introduced above. An agent must
keep track of the number of items in the inventory and purchase appropriate amounts of
each as they are consumed. For simplicity we consider only two types of stock items,
transistors and batteries. The maximum quantity of transistors and batteries is 100 each.
The agent also values each transistor at $20 and each battery at $10.

The agent also has a number of constraints. The amount of stock stored can never
exceed the maximum available space. There is also a maximum monthly budget for
purchasing stock, and a current budget, which must never exceed the maximum. Over
time, stock will be consumed and the inventory will become depleted. Suppose the agent
has three motivations, one for economy me (a constraint motivation), which represents
a concern over money spent; one for time mt (another constraint motivation), which is
related to how full the inventory is (the more empty the inventory is the more urgent is
the need to restock it) and finally one to ensure that the inventory is kept well stocked,
mr (a re-stock motivation).

Each motivation has appropriate cues: me has a continuous cue whose referent is
the state of the purchasing budget, where lower budget values bring about higher inten-
sity levels. Conversely, the intensity of mt is increased the more empty the inventory
becomes, while mr increases in proportion to the declining levels of each stock type
remaining in the inventory. At a specified time the agent checks each of the stock types
in the inventory, and their current level of depletion changes the intensity of mr . In this
example, the depletion of each type of stock has a simple additive effect, but it is easy
to imagine that different types of item could have different intensity effects depending
on the relative need for those products.

For example, at the start of the month the agent checks its inventory and sees that
transistors and batteries have dropped below their respective maximum amounts. As a
result the agent updates its motivation to restock each of the stock items. The motiva-
tions for economy and urgency are also updated. First, the quantity of stock left in the
inventory is used to update the intensity of mr . Let us suppose that the effect of the
stock depletion leaves mr with an intensity value of 0.3, and that to bring the stocks
back up to quota the agent must buy 10 transistors and 5 batteries (where the values
represent the goal parameters). Next, the available budget ($100) causes the me moti-
vation to have an intensity of 0.2. Finally, mt is updated by measuring the space left in
the inventory. The store room has 10 m2 of space left. The more space there is available
the more urgent is the need to restock (as larger amounts take longer to process and
install in the warehouse). Assume that the agent has only 10 hours in which to take de-
livery and install the required goods into the warehouse. Batteries take 1 hour per unit
to process and transistors take 2 hours. Imagine that the intensity of mt after calculating
the space remaining is 0.5.

The cues determine the parameters of the agent’s goals and the values taken on by
the constraints. That is, exactly 10 batteries and 5 transistors are needed, but the total
amount of time allocated for delivery of both batteries and transistors must not exceed

10 hours, and the total cost must not exceed $100. It may not be the case, however, that
the ideal values attached to the goal parameters can be satisfied given the constraints.
Indeed, if the agent were to re-stock on all the batteries and transistors it needed, the
processing time would reach 20 hours and the total cost would be $250. Thus we need to
discover the feasible goal parameter values given the constraints. However, we need to
be certain to respect each motivation’s relative importance. One way to proceed is first
to order the concerns in terms of the intensity of their underlying motivations (which
determines their importance), then satisfy the most important concern and then satisfy
successively less important concerns, whilst at the same time not degrading the solution
found in the preceding step. The time motivation has the highest intensity of 0.5 and
thus its constraint is given the highest priority, followed by the re-stocking motivation,
which has intensity of 0.33. Finally, the economy motivation has the lowest intensity,
0.2, and its associated constraint is thus given the lowest priority. Mathematically, we
can represent the problem as follows:

c1 : x1 + 2x2 ≤ 10
g1 : x1 = 10
g2 : x2 = 5
c2 : 20x1 + 10x2 ≤ 100

We can now take these values and pass them to a goal programming (GP) algorithm
(a form of mathematical programming, see [7]) which will return the best values for
each of the concerns, where best refers to values that first satisfy the requirements of the
highest priority concern and then lower priority concerns. In this case, the GP algorithm
gives us the values of transistors (x1) and batteries (x2) as both 3. This result satisfies
constraints c1 and c2 whilst minimally deviating from goals g1 and g2. The GP returns
the values that at best satisfy the ideal values of each concern, or at worst minimally
deviates from those values.

6 Discussion
This work adds to the growing body of work (eg. [1], [9], [14], [19]) that is attempting
to extend the abilities of autonomous agents past the constraints of traditional symbolic
approaches characteristic of most work on intelligent agents. The paper represents a
first step in increasing an agent’s autonomy in the domain of e-commerce, specifically
in determining both a goal’s worth and the effects of constraints on the parameters of a
goal.

A motivational mechanism was presented that enables an agent to reason about and
make decisions concerning multiple concerns in a worth-oriented domain. It describes
a technique for updating motivational intensity levels using a continuous measure of
the environment. The mechanism also enables an agent to more flexibly respond to the
prevailing context by varying the importance of a given goal in relation to other active
goals. The mechanism also gives the agent the ability to discover optimal goal parame-
ters such as ideal target value in the face of multiple constraints. The example presented

3 As stated above, we do not specify any difference in importance between batteries and transis-
tors, so we prioritise the attached goals arbitrarily, but such a priority is possible (and indeed
desirable) to accommodate.

in this paper has been implemented and we have shown that an agent with this mecha-
nism can effectively deal with a number of resource conflicting goals. Future work will
involve extensive empirical experimentation and evaluation. Limitations of this work
include the inability of the model to deal with agent-to-agent interaction and the sim-
plistic domain example. As such, we intend to extend the motivational mechanism to
include social motivations and to improve the model to cope with the dynamic on-line
determination of a variety of negotiation parameters.

References

1. S. Allen. Concern Processing in Autonomous Agents, PhD Thesis, University of Birming-
ham, 2001.

2. David, E and Azoulay-Schwartz, R and Kraus S. Protocols and Strategies for Automated
Multi-Attribute Auctions, ICMAS-2002 Fourth International Conference on MultiAgent Sys-
tems, 2002.

3. M. d’Inverno and M. Fisher and A. Lomuscio and M. Luck and M. de Rijke and M. Ryan
and M. Wooldridge. Formalisms for Multi-Agent Systems. KER, 12:3, 1997.

4. M. d’Inverno and M. Luck. Understanding Agent Systems. Springer-Verlag, 2001.
5. P. Faratin and C. Sierra and N. R. Jennings. Negotiation Decision Functions for Autonomous

Agents. Journal of Robotics and Autonomous Systems, 24:3-4, 159–182, 1998.
6. Griffiths, N. Motivated Cooperation. PhD Thesis, University of Warwick, 2000.
7. Ignizio, J.P. Goal Programming and Extensions. Lexington Books, 1976.
8. N. R. Jennings and M. Wooldridge. Applications of Agent Technology. N. R. Jennings and

M. Wooldridge (eds.), 1998.
9. D. Moffat and N. Frijda. Where there’s a will there’s an agent. M. Wooldridge and N. R.

Jennings (eds.) Intelligent Agents: Theories, Architectures, and Languages, LNAI Volume
890, 245–260, 1995.

10. T. J. Norman and D. Long Goal creation in motivated agents. M. Wooldridge and N. R.
Jennings (eds.) Intelligent Agents: Theories, Architectures, and Languages LNAI Volume
890, 277–290, 1995.

11. Anand S. Rao AgentSpeak(L): BDI Agents Speak Out in a Logical Computable Language.
W. van der Velde and J. W. Perram (eds.) Agents Breaking Away LNAI 1038, 42–55, 1996.

12. Anand S. Rao and Michael P. Georgeff. BDI Agents: from theory to practice. 312–319.
Proceedings of the First International Conference on Multi-Agent Systems ICMAS’95, 1995.

13. Rosenschein, J.S. and Zlotkin, G. Rules of Encounter: Designing Conventions for Automated
Negotiation among Computers MIT Press, 1994.

14. E. Spier and D. McFarland. A Finer-Grained Motivational Model of Behaviour Sequencing.
In From Animals to Animats 4: Proceedings of SAB96, 1996.

15. Spivey, M. The Z Notiation, 2nd ed. Prentice Hall, Hemel Hempstead, 1992.
16. A. Staller and P. Petta. Towards a tractable appraisal-based architecture In Ca namero,

D.; Numaoka, C.; and Petta, P., eds., Workshop: Grounding Emotions in Adaptive Systems,
56–61. SAB’98: From Animals to Animats, 1998.

17. Wagner T. Toward Quantified, Organizationally Centered, Decision Making and Coordina-
tion. PhD Thesis, University of Massac, 2000.

18. Valentine, S.H. Bowen, J.P., Nicholls, J.E. (eds.) Putting Numbers into the mathematical
toolkit. Z User Workshop, London 1992, Workshops in Computing. Berlin, 1993.

19. T. Wagner and V. Lesser. Design-to-Criteria Scheduling: Real-Time Agent Control. Pro-
ceedings of AAAI 2000 Spring Symposium on Real-Time Autonomous Systems. 89-96, 2000.

