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Volodya Vovk, Alex Gammerman, Craig SaundersComputer Learning Research Centre and Department of Computer ScienceRoyal Holloway, University of London, Egham, Surrey TW20 0EX, Englandfvovk,alex,craigg@dcs.rhbnc.ac.ukAbstractMost machine learning algorithms share thefollowing drawback: they only output barepredictions but not the con�dence in thosepredictions. In the 1960s algorithmic infor-mation theory supplied universal measuresof con�dence but these are, unfortunately,non-computable. In this paper we combinethe ideas of algorithmic information theorywith the theory of Support Vector machinesto obtain practicable approximations to uni-versal measures of con�dence. We show thatin some standard problems of pattern recog-nition our approximations work well.1 INTRODUCTIONTwo important di�erences of most modern methods ofmachine learning (such as statistical learning theory,see Vapnik [21], 1998, or PAC theory) from classicalstatistical methods are that:� machine learning methods produce bare predic-tions, without estimating con�dence in those pre-dictions (unlike, eg, prediction of future obser-vations in traditional statistics (Guttman [5],1970));� many machine learning methods are designed towork (and their performance is analysed) un-der the general iid assumption (unlike the clas-sical parametric statistics) and they are able todeal with extremely high-dimensional hypothesisspaces; cf Vapnik [21] (1998).In this paper we will further develop the approach ofGammerman et al [4] (1998) and Saunders et al [17]

Figure 1: If the training set only contains clear 2s and7s, we would like to attach much lower con�dence tothe middle image than to the right and left ones(1999), where the goal is to obtain con�dences forpredictions under the general iid assumption in high-dimensional situations. Figure 1 demonstrates the de-sirability of con�dences. The main contribution of thispaper is embedding the approaches of Gammerman etal [4] (1998) and Saunders et al [17] (1999) into a gen-eral scheme based on the notion of algorithmic ran-domness.As will become clear later, the problem of assigningcon�dences to predictions is closely connected to theproblem of de�ning random sequences. The latterproblem was solved by Kolmogorov [8] (1965), whobased his de�nition on the existence of the Univer-sal Turing Machine (though it became clear that Kol-mogorov's de�nition does solve the problem of de�ningrandom sequences only after Martin-L�of's paper [15],1966); Kolmogorov's de�nition moved the notion ofrandomness from the grey area surrounding probabil-ity theory and statistics to mathematical computer sci-ence.Kolmogorov believed his notion of randomness to bea suitable basis for applications of probability. Unfor-tunately, the fate of this idea was di�erent from Kol-mogorov's 1933 axioms (Kolmogorov [7], 1933), which



are universally accepted as the basis for the theory ofprobability. The algorithmic notion of randomness hasmainly remained of a purely mathematical interest andhas not become the leading paradigm in statistics ormachine learning. Some of the reasons why this hap-pened are:� algorithmic measures of randomness are non-computable;� little work has been done on computable approxi-mations to Kolmogorov's randomness (one of theexceptions is Longpr�e [14], 1992);� the algorithmic theory of randomness has beenmainly concerned with the case of binary se-quences, which is far too restrictive for any prac-tical applications.Remark 1 It is interesting that the situation withthe notion of Kolmogorov complexity is somewhatdi�erent, despite the fact that the notions of Kol-mogorov complexity and randomness are extremelyclosely connected1: despite being non-computable,Kolmogorov complexity inspired the MDL and MMLprinciples [16, 26] (and their generalization, Complex-ity Approximation Principle [24]), which have manypractical applications. (It should be noted, however,that algorithmic randomness has been used in the dis-cussions of the MDL principle; see Li and Vitanyi [13],1997, and [12], 1995.)The main advantage of Kolmogorov's notion of ran-domness in comparison with the earlier de�nitions (eg,von Mises's) is that it is applicable to �nite sequencesand that it provides degrees of randomness; this is itscrucial feature which makes practical applications pos-sible. Later Kolmogorov's de�nition was developedby, among others, Martin-L�of [15] (1966), Levin [11](1973) and G�acs [2] (1980).The main goal of this paper is to study computableapproximations to algorithmic randomness and to ap-ply those approximations to some benchmark datasets.The main technical tool will be Vapnik's [21] (1998)theory of Support Vector machines, but in principle itis possible to �nd useful approximations based on othertechniques, such as ridge regression (see, eg, Saunderset al [18], 1998). The approach of the algorithmic the-ory of randomness, as presented in this paper, provides1For example, one of the de�nitions of randomness de-�ciency of a �nite binary sequence is the length of thissequence minus its Kolmogorov complexity.

a uni�ed view of the results in Gammerman et al [4](1998) and Saunders et al [17] (1999).For excellent reviews of algorithmic information the-ory, see V'yugin [25] (1994) and Li and Vitanyi [13](1997).2 ALGORITHMIC THEORY OFRANDOMNESSTypically we will be interested in randomness of a se-quence z = (z1; : : : ; zn) of elements zi 2 Z of somesample space Z. (In the traditional algorithmic infor-mation theory zi 2 f0; 1g; in our typical applicationsz is a sequence(x1; y1); : : : ; (xl; yl); (xl+1; y1+1); : : : ; (xl+k; yl+k)containing the training classi�ed examples and the testexamples with their provisional classi�cations; l is thenumber of training examples and k is the number oftest examples.) We will assume that Z is equippedwith some computability structure which allows us tospeak of, say, computable functions on Z (but we donot assume that Z is, say, discrete).We will consider two kinds of randomness de�ciency,which we call Martin-L�of de�ciency (this is a universalversion of the standard statistical notion of p-values)and Levin de�ciency (which is close to being a univer-sal version of Bayes factors). Let P = P1;P2; : : : bea sequence of statistical models such that, for everyn = 1; 2; : : :, Pn is a set of probability distributions inZn. In this paper we will only be interested in spe-ci�c P (namely, the iid models and exchangeabilitymodels) which are computable, and our de�nitions ofrandomness de�ciency will only make intuitive sensefor computable P .We say that a function t : Z� ! N (where N is theset N = f0; 1; : : :g of nonnegative integers extendedby adding the in�nity 1) is a Martin-L�of test for P-randomness if1. for all n 2 N and m 2 N and all P 2 Pn,Pfz 2 Zn : t(z) � mg � 2�m;2. t is semicomputable from below, in the sense thatthere exists a computable sequence of computablefunctions ti : Z� ! N, i = 1; 2; : : :, such thatt(z) = supi ti(z) for all z 2 Z�.Intuitively, a test for randomness is a device for �ndingunusual features in the data z 2 Zn. Item 1 says that



the amount of unusual features is measured in bits(and every extra bit halves the amount of sequencesexhibiting the unusual features); item 2 says that thedevice should be implementable on a computer (we areinterested in universal tests for randomness, which �ndall unusual features in our data; therefore, our tests forrandomness are allowed to work forever, all the time�nding new regularities in the data; technically, theyare only required to be semicomputable from belowrather than computable).A useful modi�cation of the previous de�nition iswhere item 1 is strengthened as follows. We say that afunction t : Z� ! Z (where Z is the set of all integersZ extended by adding the in�nity 1) is a Levin testfor P-randomness if1. for all n 2 N and all P 2 Pn,ZZn 2t(z)P (dz) � 1;2. t is semicomputable from below.(To see that item 1 of this de�nition implies item 1 ofthe previous de�nition, apply Markov's inequality.)We will say that a Martin-L�of test for P-randomnessT is universal if it is largest to within an additiveconstant, in the sense that for any other Martin-L�oftest for P-randomness t there exists a constant C suchthat, for all z 2 Z�, T (z) � t(z) � C. Analogously,a largest to within an additive constant Levin test forP-randomness will also be called universal.Lemma 1 (Kolmogorov, Martin-L�of, Levin) IfP is computable, there exist a universal Martin-L�oftest for P-randomness and a universal Levin test forP-randomness.For every computable P we will �x some univer-sal Martin-L�of test for P-randomness dMLP and someuniversal Levin test for P-randomness dLP ; the valuedMLP (z) will be called the Martin-L�of P-randomnessde�ciency of z and the value dLP(z) will be called theLevin P-randomness de�ciency of z.The standard notions of the algorithmic theory of ran-domness use the \logarithmic scale" (in which random-ness de�ciency is de�ned to within an additive con-stant). In applications, it is often more convenient touse the \direct scale". Now we will reformulate someof the previous de�nitions in the \direct scale".We say that a function t : Z� ! [0; 1] is a p-valuefunction wr to P if

1. for all n 2 N, all r 2 [0; 1] and all P 2 Pn,Pfz 2 Zn : t(z) � rg � r;2. t is semicomputable from above, in the sense thatthere exists a computable sequence of computablefunctions ti : Z� ! [0; 1], i = 1; 2; : : :, such thatt(z) = inf i ti(z) for all z 2 Z�.This de�nition is practically equivalent to the standardstatistical notion: in practice, item 2 is completely ir-relevant, since the p-value functions of any interest inapplications of statistics are always computable.Notice that:� if t is a Martin-L�of test for P-randomness, 2�t isa p-value function wr to P ;� if t is a p-value function wr to P , b� log tc (in thispaper, log always stands for the base 2 logarithm)is a Martin-L�of test for P-randomness.We will call the function 2�dMLP the Martin-L�of P-randomness level ; this function is a smallest, to withina constant factor, p-value function wr to P .We say that a function t : Z� ! [0;1] is a P-lotteryif 1. for all n 2 N and all P 2 Pn,ZZn t(z)P (dz) � 1;2. t is semicomputable from below.The connection with the notion of Levin test of P-randomness is obvious. We will call the function 2�dLPthe Levin P-randomness level ; the inverse 2dLP of thisfunction is a largest, to within a constant factor, P-lottery.Remark 2 The di�erence between Martin-L�of andLevin randomness levels is analogous to the di�er-ence between Bayes factors and p-values. The latteris discussed in, eg, Schervish [19] (Section 4.6.2) andVovk [23]. It is always possible (though not advisablein practice) to use Levin randomness level as Martin-L�of randomness level.Since randomness de�ciencies are de�ned to within anadditive constant and randomness levels are de�nedto within a constant factor, the following notation will



turn out to be very useful: =+, �+ and �+ standfor the equality and inequalities to within an additiveconstant; =�, �� and �� stand for the equality andinequalities to within a constant factor.It turns out that Levin and Martin-L�of de�ciencies areclosely connected (cf the relation between plain andpre�x complexity (3.4) in Li and Vitanyi [13], 1997):Theorem 1 For any computable P and z rangingover Z�, dMLP (z) =+ dLP(z j dMLP (z)):(This theorem involves \conditional" variants of ran-domness de�ciency; such variants are de�ned in a nat-ural way.) This immediately impliesCorollary 1 Levin and Martin-L�of randomness de�-ciency coincide to within log.Remark 3 Our de�nition of randomness is not theonly possible: we can de�ne \uniform randomness de-�ciency" and de�ne, eg, the iid de�ciency as the min-imum of the de�ciencies over all iid measures. Thedi�erence is not big when the sample space Z is com-pact; this follows from the following elaboration ofLevin's [11] (1973) result: for any compact class Pof probability measures,dLP(x) =+ infP2P dLP (x) (1)and dMLP (x) =+ infP2P dMLP (x): (2)However, in applications P is often not compact (al-though it is always \constructively closed"). It is animportant problem to study whether (1) and (2) holdtrue for the iid distributions; intuitively, we would ex-pect that a sequence is iid random if and only if it israndom wr to some iid distribution.3 THE IDEAL PREDICTION INTHE IID CASEIn this paper we will be mostly interested in P =(P1;P2; : : :) for which Pn is the set of all distributionsPn, P ranging over all probability distributions in Z.This P will be called the iid model and P-randomnessde�ciency will be called iid de�ciency and denoted diid(with upper index ML or L). From this point on wewill be mainly interested in the iid de�ciency and wewill also use the less awkward expression \random-ness de�ciency" in place of \iid de�ciency" (retaining

the lower index \iid" in diid). This terminology agreeswith that accepted in nonparametric statistics (see, eg,Fraser [1], 1957).Remark 4 An important alternative to the iid modelis the stationarity model. In this paper, however, wewill restrict our attention to the iid assumption, whichis more widely used in machine learning.Suppose for a minute that the randomness de�ciency(either Martin-L�of or Levin) is computable. Then ourprediction problem will become trivial (if we acceptthe iid assumption and ignore computation time). As-suming we have training set (x1; y1); : : : ; (xl; yl) andtest set xl+1; : : : ; xl+k and our goal is to predict theclassi�cations yl+1; : : : ; yl+k for xl+1; : : : ; xl+k , we canact as follows:1. Consider all possible values Y1; : : : ; Yk for labelsyl+1; : : : ; yl+k and compute (in practice, approx-imate from above) the randomness level of everypossible completion(x1; y1); : : : ; (xl; yl); (xl+1; Y1); : : : ; (xl+k ; Yk):2. Predict the set Y1; : : : ; Yk corresponding to thecompletion with the largest randomness level.3. Output as the con�dence in this prediction oneminus the second largest randomness level.4. Output as the credibility the randomness level ofthe output prediction Y1; : : : ; Yk (ie, the largestrandomness level for all possible predictions).To understand the intuition behind con�dence, let ustentatively choose a conventional \signi�cance level"such as 1%. If the con�dence in our prediction exceeds99% and the prediction is wrong, the actual data se-quence belongs to an a priori chosen set of probabilityless than 1% (namely, the set of all data sequenceswith randomness level less than 1%).Intuitively, low credibility means that either the train-ing set is non-random or the test examples are notrepresentative of the training set (say, in the trainingset we have images of digits and in the test set we havethose of letters).Remark 5 A common belief in algorithmic informa-tion theory is that terms of order O(logn) are not im-portant in inequalities between complexities or ran-domness de�ciencies for sequences of length n. It isinteresting that, under our approach to prediction un-der the iid assumption, randomness de�ciency of the



order of magnitude logn becomes the best we can re-alistically hope for in the problem of pattern recogni-tion with one unclassi�ed example. Indeed, supposewe have a training set(x1; y1); : : : ; (xl; yl); yi 2 f�1; 1gand a new unclassi�ed example xl+1; we want to pre-dict the label yl+1 2 f�1; 1g of xl+1. Claim: If thetrue sample(x1; y1); : : : ; (xl; yl); (xl+1; yl+1)is random, the maximum randomness de�ciency of thewrong sample(x1; y1); : : : ; (xl; yl); (xl+1;�yl+1)is log(l+1) (as usual, up to an additive constant). Tosee why this is true, notice that if the true sample israndom with respect to some iid distribution Pn, thewrong sample will have randomness de�ciency at mostlog(l+1) wr to Pn corrupted by changing the label ofevery example with probability 1=(l+1). It is easy tosee that this upper bound, log(l+1), is precise: if thereis a very simple algorithm for �nding yi from xi, thelast example will be the \strangest" one in the wrongsample, and so the randomness de�ciency of the wrongsample will jump to log(l + 1).4 PERMUTATION DEFICIENCYIn this section we consider a fundamental lower boundon randomness de�ciency, which we call permutationde�ciency. In practice we will only be able to �nda lower bound on the randomness de�ciency of somesequence z by �rst �nding a lower bound L on thepermutation de�ciency of z and then using L as a lowerbound on the randomness de�ciency of z. We willsee that the di�erence between permutation de�ciencyand randomness de�ciency can be quite big, and itremains an open problem whether one can �nd easilycomputable and natural lower bounds for randomnessde�ciency that are not simultaneously lower boundsfor permutation de�ciency.First we will de�ne the exchangeability model (which isvery popular in the foundations of Bayesian statistics;see, eg, Schervish [19], 1995). We say that a measureP on a product set Zn is exchangeable if the distribu-tion of the vector z1 : : : zn under P equals the distri-bution of the vector z�(1) : : : z�(z) for any permutation� on the set f1; : : : ; ng (here z1; : : : ; zn are the coor-dinate random variables). The exchangeability model

is de�ned to be the sequence P1;P2; : : : of the follow-ing statistical models: every Pn is the set of all ex-changeable distributions on Zn. The P-randomnessde�ciency, where P is the exchangeability model, willbe called the permutation de�ciency. The followingtheorem will give a more explicit representation of per-mutation de�ciency, but before we can state it we willneed several de�nitions. A bag is a set to each ele-ment of which is assigned a nonnegative integer calledits arity (intuitively, how many times this element oc-curs in the bag). The size jbj of a bag b is the sumof the arities of its elements. The con�guration of asequence z = z1 : : : zn is the bag which consists of alldistinct elements in z, the arity of each element beingthe number of times it occurs in the sequence. For anysequence z, conf(z) stands for the con�guration of zand �(z) stands for the set of all sequences of the samelength and with the same con�guration as z. If K ispre�x complexity and C is plain Kolmogorov complex-ity (see Li and Vitanyi [13], 1997), the Martin-L�of andLevin de�ciency of randomness of an element z of aset A can be de�ned asdMLA (z) = log jAj�C(z jA); dLA(z) = log jAj�K(z jA);respectively.Theorem 2 If z ranges over Z�, dMLexch(z)=+ dML�(z)(z)and dLexch(z) =+ dL�(z)(z):This theorem shows that Kolmogorov's [9] (1968)\Bernoulli sequences" are exactly the sequences witha small permutation de�ciency in the binary case.To establish a relation between randomness de�ciencyand permutation de�ciency we will use the notion ofrandomness de�ciency of a bag. Let P be the iidmodel. We will say that a test for P-randomness (ei-ther Martin-L�of or Levin) is bag-invariant if it takesthe same value for any two sequences with the samecon�guration. There exists a universal bag-invarianttest which will be called randomness de�ciency (forbags) and denoted diid(conf(z)) with a suitable upperindex.The following theorem generalizes Theorem 1 inVovk [22] (1986):Theorem 3 The randomness de�ciency of a sequenceequals the sum of its permutation de�ciency and therandomness de�ciency of its con�guration:dLiid(z) =+ dLiid(conf(z)) + dLexch �z j dLiid(conf(z))� :Theorem 2 in Vovk [22] (1986) gives a simple charac-terization of Levin randomness de�ciency for bags in



terms of pre�x complexity in the binary case. Thatresult shows that in the binary case the randomnessde�ciency of bags of size n is at most logn. Unfor-tunately, in the case of in�nite sample space the ran-domness de�ciency of bags of size n can be as large asn:Theorem 4 If the sample space is constructively in-�nite (meaning that it contains an in�nite computablesequence of distinct elements),supjbj=n dMLiid (b) �+ supjbj=n dLiid(b) �+ n log e� 12 logn;where n ranges over the positive integers and b rangesover the bags.Remark 6 Kolmogorov ([9], 1968) believed that, inthe binary case, Bernoulli sequences should be de-�ned as sequences with small permutation de�ciencyrather than sequences with small randomness de�-ciency. Note [22] (Vovk, 1986) was written in anattempt to understand the di�erence between Kol-mogorov's de�nition and the de�nition accepted in thispaper. The main result of [22] is that, in the binarycase, these two de�nitions are close but di�erent.Remark 7 In the case of in�nite sequences, deFinetti's theorem (see, eg, Schervish [19], 1995) saysthat the two models of iid and exchangeability areequivalent; therefore, for the in�nite sequences, diid=+dexch: There are �nite variants of de Finetti's theorem(see, eg, Schervish [19], 1995, Theorem 1.70 due toDiaconis and Freedman); similarly to the results ofVovk [22] (1986) (but contrary to Theorems 3 and 4above) they say that the iid and exchangeability mod-els are close.5 PRACTICABLEAPPROXIMATIONSLet us concentrate on the problem of pattern recogni-tion, in which the set Y of possible labels is f�1; 1g,and the case where k = 1 (there is only one test ex-ample). Following Vapnik [21] (1998), we consider thequadratic optimization problem�(w; �) = 12(w � w) + C  l+1Xi=1 �i!! min (3)�w 2 H; � = (�1; : : : ; �l+1) 2 Rl+1� ;where C is an a priori �xed positive constant, subjectto the constraintsyi ((w � F (xi)) + b) � 1� �i; i = 1; : : : ; l+ 1; (4)

�i � 0; i = 1; : : : ; l+ 1; (5)where F is some (typically non-linear) transformationapplied to the data and taking values in a Hilbert spaceH .Using Lagrange multipliers �i corresponding to con-straints (4) we can approximate from below both dMLand dL. The latter was done in Gammerman et al [4](1998) and the former was done in the recent paperSaunders et al [17] (1999). The approach of Gam-merman et al [4] (1998) su�ered from the \distortionphenomenon" (see Subsection 8.2 of that paper); thesolution suggested (implicitly) in [4] was to use thefunctionp(z1; : : : ; zl+1) = f(�1) + � � �+ f(�l+1)f(�l+1)(l + 1) ; (6)where f is some monotonic non-decreasing functionwith f(0) = 0, as an upper bound for the Levin per-mutation level. The speci�c function f(�) suggested inGammerman et al [4] (1998) was f(�) = sign� (thatis, f(0) = 0 and f(�) = 1 when � > 0). The resultsreported in [4] correspond to using the SV method forprediction and using function (6) for estimating con-�dence and credibility. Those results are reproducedhere as Figure 2. In that �gure (and in the �gures be-low) it is easy to identify two clusters; one of the clus-ters contains those examples which are support vectorsin both \pictures" (in the terminology of Gammermanet al [4]; in other words, which are support vectors andremain support vectors when the classi�cation of thelast example is changed), and the other cluster con-tains those examples which are support vectors in onlyone \picture".Those experiments and all experiments described inthis paper are done for a simple pattern recogni-tion problem of identifying handwritten digits using adatabase of US postal data of 9300 digits, where eachdigit is a 16�16 vector (cf LeCun et al [10], 1990). Theexperiments are conducted for a subset of these data(a training set of 400 examples and 100 test sets of 1example each), and include a construction of two-classclassi�er to separate digit \2" from digit \7". Theconstant C in (3) was set to 1 (we felt that this waywe would obtain good approximations to randomnessde�ciency); therefore, we actually solved the quadraticoptimization problem12(w �w) ! min �w 2 H; � = (�1; : : : ; �l+1) 2 Rl+1� ;subject to the constraintsyi ((w � F (xi)) + b) � 1; i = 1; : : : ; l + 1: (7)
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(It is clear that a similar inequality holds for Martin-L�of de�ciency as well.) Inequality (9) shows that wecannot exclude the wrong classi�cation if the data se-quence is random and the time n is also random: thewrong sequence (8) also has a random continuation.6.2 DENSITY ESTIMATIONAccording to Vapnik [20] (1995) (see also Vapnik [21],1998) there are three main problems of statisticallearning theory: pattern recognition; regression esti-mation; density estimation. As we have seen earlier,the problem of pattern recognition can be e�cientlysolved for typical real-world data sets, in the sense thatwe can obtain measures of con�dence and credibilitywhich are valid under the iid assumption (without needof any other assumptions) and which work well in prac-tice. On the other hand, in typical high-dimensionalcases the problem of density estimation can only besolved under assumptions essentially stronger than theiid assumption. To see why, assume that the unla-belled examples xi are taken from some discrete spaceX , that yi 2 f�1; 1g, and we are asked to estimatethe probability that yl+1 = 1. If all unlabelled exam-ples in the training and test sets are distinct (which istypical when the number of attributes is big as com-pared to the number of examples), no non-trivial es-timate (such as an interval containing neither 0 nor1) of this probability is possible. Indeed, if the fullsample (x1; y1); : : : ; (xl+1; yl+1) is random wr to an iiddistribution P , it will also be random wr to a distribu-tion P � randomly generated by the following stochas-tic process: for all c 2 X , P �(x = c) = P (x = c) andP �(y j x = c) is concentrated on y = �1 or y = 1, thelatter with probability P (y = 1 jx = c) and the formerwith probability P (y = �1 jx = c). Of course, densityestimation becomes possible when additional assump-tions are made. In low-dimensional situations, infor-mative con�dence intervals for density estimation areobtained in, eg, Gammerman and Thatcher [3] (1992).6.3 REGRESSIONThere are several possible understanding of the term\regression". One understanding is \regression esti-mation": we assume that the examples (xi; yi) aregenerated by some iid distribution, and our goal is toestimate the conditional expectation of yl+1 given xl+1(we are assuming that there is only one test example).This problem coincides with that of density estimationwhen yi 2 f�1; 1g, and so, according to the previoussubsection, is infeasible when our only assumption isiid.

If \regression" is understood as estimating yl+1 whenyi 2 R are not restricted to a �nite set like f�1; 1g, theproblem of regression can be e�ciently solved underthe iid assumption in high-dimensional cases (work inprogress).There is one more popular statement of the regression(and pattern recognition) problem, where only yi aregenerated stochastically given xi; xi themselves arenot generated stochastically and are just given con-stants. It is easy to see that in this case even patternrecognition (and a forteriori regression) is impossiblewithout making additional assumptions.7 CONCLUSIONThis paper answers the question why one should wantto use the algorithmic theory of randomness: in prac-tice, we still use \non-algorithmic" notions such as p-values or lotteries. As we have shown, using the algo-rithmic theory of randomness we can ask (and answer)questions about relationships between� universal p-values and universal lotteries (Martin-L�of vs Levin randomness level);� exchangeability and randomness.The second item raises the open question (alreadymentioned): is it possible to make use of the ran-domness de�ciency of the con�guration (which can,according to Theorem 4, be quite big)?Besides the \positive" results discussed in the pre-vious paragraph, the algorithmic theory of random-ness also allows us to prove impossibility of predictionin certain situations; as shown in the previous sec-tion, such important problems as density estimation inhigh-dimensional spaces, regression estimation in high-dimensional spaces, and on-line prediction (where it isrequired that valid measures of con�dence are outputat every step) cannot be solved if our only assumptionis iid.AcknowledgementsThe referees' insightful comments helped us to im-prove the presentation. We thank EPSRC for pro-viding �nancial support through grants GR/L35812(\Support Vector and Bayesian learning algorithms"),GR/M14937 (\Predictive complexity: recursion-theoretic variants") and GR/M16856 (\Comparisonof Support Vector Machine and Minimum MessageLength methods for induction and prediction").
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