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Abstract

Most machine learning algorithms share the
following drawback: they only output bare
predictions but not the confidence in those
predictions. In the 1960s algorithmic infor-
mation theory supplied universal measures
of confidence but these are, unfortunately,
non-computable. In this paper we combine
the ideas of algorithmic information theory
with the theory of Support Vector machines
to obtain practicable approximations to uni-
versal measures of confidence. We show that
in some standard problems of pattern recog-
nition our approximations work well.

1 INTRODUCTION

Two important differences of most modern methods of
machine learning (such as statistical learning theory,
see Vapnik [21], 1998, or PAC theory) from classical

statistical methods are that:

e machine learning methods produce bare predic-
tions, without estimating confidence in those pre-
dictions (unlike, eg, prediction of future obser-
vations in traditional statistics (Guttman [5],
1970));

e many machine learning methods are designed to
work (and their performance is analysed) un-
der the general iid assumption (unlike the clas-
sical parametric statistics) and they are able to
deal with extremely high-dimensional hypothesis
spaces; cf Vapnik [21] (1998).

In this paper we will further develop the approach of
Gammerman et al [4] (1998) and Saunders et al [17]

Figure 1: If the training set only contains clear 2s and
7s, we would like to attach much lower confidence to
the middle image than to the right and left ones

(1999), where the goal is to obtain confidences for
predictions under the general iid assumption in high-
dimensional situations. Figure 1 demonstrates the de-
sirability of confidences. The main contribution of this
paper is embedding the approaches of Gammerman et
al [4] (1998) and Saunders et al [17] (1999) into a gen-
eral scheme based on the notion of algorithmic ran-
domness.

As will become clear later, the problem of assigning
confidences to predictions is closely connected to the
problem of defining random sequences. The latter
problem was solved by Kolmogorov [8] (1965), who
based his definition on the existence of the Univer-
sal Turing Machine (though it became clear that Kol-
mogorov’s definition does solve the problem of defining
random sequences only after Martin-Lof’s paper [15],
1966); Kolmogorov’s definition moved the notion of
randomness from the grey area surrounding probabil-
ity theory and statistics to mathematical computer sci-
ence.

Kolmogorov believed his notion of randomness to be
a suitable basis for applications of probability. Unfor-
tunately, the fate of this idea was different from Kol-
mogorov’s 1933 axioms (Kolmogorov [7], 1933), which



are universally accepted as the basis for the theory of
probability. The algorithmic notion of randomness has
mainly remained of a purely mathematical interest and
has not become the leading paradigm in statistics or
machine learning. Some of the reasons why this hap-
pened are:

e algorithmic measures of randomness are non-
computable;

e little work has been done on computable approxi-
mations to Kolmogorov’s randomness (one of the
exceptions is Longpré [14], 1992);

e the algorithmic theory of randomness has been
mainly concerned with the case of binary se-
quences, which is far too restrictive for any prac-
tical applications.

Remark 1 Tt is interesting that the situation with
the notion of Kolmogorov complexity is somewhat
different, despite the fact that the notions of Kol-
mogorov complexity and randomness are extremely
closely connected': despite being non-computable,
Kolmogorov complexity inspired the MDL and MML
principles [16, 26] (and their generalization, Complex-
ity Approximation Principle [24]), which have many
practical applications. (It should be noted, however,
that algorithmic randomness has been used in the dis-
cussions of the MDL principle; see Li and Vitanyi [13],
1997, and [12], 1995.)

The main advantage of Kolmogorov’s notion of ran-
domness in comparison with the earlier definitions (eg,
von Mises’s) is that it is applicable to finite sequences
and that it provides degrees of randomness; this is its
crucial feature which makes practical applications pos-
sible. Later Kolmogorov’s definition was developed
by, among others, Martin-Lof [15] (1966), Levin [11]
(1973) and Gécs [2] (1980).

The main goal of this paper is to study computable
approximations to algorithmic randomness and to ap-
ply those approximations to some benchmark datasets.
The main technical tool will be Vapnik’s [21] (1998)
theory of Support Vector machines, but in principle it
is possible to find useful approximations based on other
techniques, such as ridge regression (see, eg, Saunders
et al [18], 1998). The approach of the algorithmic the-

ory of randomness, as presented in this paper, provides

'For example, one of the definitions of randomness de-
ficiency of a finite binary sequence is the length of this
sequence minus its Kolmogorov complexity.

a unified view of the results in Gammerman et al [4]
(1998) and Saunders et al [17] (1999).

For excellent reviews of algorithmic information the-
ory, see V’yugin [25] (1994) and Li and Vitanyi [13]
(1997).

2 ALGORITHMIC THEORY OF
RANDOMNESS

Typically we will be interested in randomness of a se-
quence z = (z1,...,2,) of elements z; € Z of some
sample space Z. (In the traditional algorithmic infor-
mation theory z; € {0,1}; in our typical applications
z is a sequence

containing the training classified examples and the test
examples with their provisional classifications; [ is the
number of training examples and k is the number of
test examples.) We will assume that Z is equipped
with some computability structure which allows us to
speak of, say, computable functions on Z (but we do
not assume that Z is, say, discrete).

We will consider two kinds of randomness deficiency,
which we call Martin-Lof deficiency (this is a universal
version of the standard statistical notion of p-values)
and Levin deficiency (which is close to being a univer-
sal version of Bayes factors). Let P = Py, Ps,... be
a sequence of statistical models such that, for every
n=1,2,..., P, is a set of probability distributions in
Z™. In this paper we will only be interested in spe-
cific P (namely, the iid models and exchangeability
models) which are computable, and our definitions of
randomness deficiency will only make intuitive sense
for computable P.

We say that a function ¢ : Z* — N (where N is the
set N = {0,1,...} of nonnegative integers extended
by adding the infinity oco) is a Martin-Ldf test for P-
randomness if

1. foralln € Nand m € N and all P € P,,

Plze Z":t(z) >m} <27™;

2. t is semicomputable from below, in the sense that
there exists a computable sequence of computable
functions t; : Z* - N, ¢ = 1,2,..., such that
t(z) = sup, ti(2) for all z € Z*.

Intuitively, a test for randomness is a device for finding
unusual features in the data z € Z™. Item 1 says that



the amount of unusual features is measured in bits
(and every extra bit halves the amount of sequences
exhibiting the unusual features); item 2 says that the
device should be implementable on a computer (we are
interested in universal tests for randomness, which find
all unusual features in our data; therefore, our tests for
randomness are allowed to work forever, all the time
finding new regularities in the data; technically, they
are only required to be semicomputable from below
rather than computable).

A useful modification of the previous definition is
where item 1 is strengthened as follows. We say that a
function ¢ : Z* — 7 (where Z is the set of all integers
7 extended by adding the infinity oo) is a Levin test
for P-randomness if

1. for all n € N and all P € P,,

/ 212 p(dz) < 1;

2. t is semicomputable from below.

(To see that item 1 of this definition implies item 1 of
the previous definition, apply Markov’s inequality.)

We will say that a Martin-Lof test for P-randomness
T is wuniversal if it is largest to within an additive
constant, in the sense that for any other Martin-Lof
test for P-randomness t there exists a constant C' such
that, for all z € Z*, T(z) > t(z) — C. Analogously,
a largest to within an additive constant Levin test for
P-randomness will also be called universal.

Lemma 1 (Kolmogorov, Martin-Lof, Levin) If

P is computable, there exist a universal Martin-Ldf
test for P-randomness and a universal Levin test for
P-randomness.

For every computable P we will fix some univer-
sal Martin-Lof test for P-randomness dl\,fIL and some
universal Levin test for P-randomness d;‘;; the value
dp"(z) will be called the Martin-Lif P-randomness
deficiency of z and the value d%(z) will be called the
Levin P-randomness deficiency of z.

The standard notions of the algorithmic theory of ran-
domness use the “logarithmic scale” (in which random-
ness deficiency is defined to within an additive con-
stant). In applications, it is often more convenient to
use the “direct scale”. Now we will reformulate some
of the previous definitions in the “direct scale”.

We say that a function ¢ : Z* — [0,1] is a p-value
function wr to P if

1. for alln € N, all » € [0,1] and all P € P,

P{zeZ" :t(z) <r} <

2. t is semicomputable from above, in the sense that
there exists a computable sequence of computable
functions ¢; : Z* — [0,1], ¢ = 1,2,..., such that

t(z) = inf; t;(z) for all z € Z*.

This definition is practically equivalent to the standard
statistical notion: in practice, item 2 is completely ir-
relevant, since the p-value functions of any interest in
applications of statistics are always computable.

Notice that:

o if t is a Martin-Lof test for P-randomness, 27 is
a p-value function wr to P;

e if ¢ is a p-value function wr to P, |—logt| (in this
paper, log always stands for the base 2 logarithm)
is a Martin-Lof test for P-randomness.

We will call the function 297 the Martin-Lif P-
randomness level; this function is a smallest, to within
a constant factor, p-value function wr to P.

We say that a function ¢t : Z* — [0, 00] is a P-lottery
if

1. for all n € Nand all P € P,,
[ terrae) <1
2. t is semicomputable from below.

The connection with the notion of Levin test of P-
randomness is obvious. We will call the function 2~ %
the Levin P-randomness level; the inverse 29% of this
function is a largest, to within a constant factor, P-
lottery.

Remark 2 The difference between Martin-Lof and
Levin randomness levels is analogous to the differ-
ence between Bayes factors and p-values. The latter
is discussed in, eg, Schervish [19] (Section 4.6.2) and
Vovk [23]. It is always possible (though not advisable
in practice) to use Levin randomness level as Martin-
Lof randomness level.

Since randomness deficiencies are defined to within an
additive constant and randomness levels are defined
to within a constant factor, the following notation will



turn out to be very useful: =T, <t and >7* stand
for the equality and inequalities to within an additive
constant; =*, <* and >* stand for the equality and

inequalities to within a constant factor.

It turns out that Levin and Martin-Lof deficiencies are
closely connected (cf the relation between plain and
prefix complexity (3.4) in Li and Vitanyi [13], 1997):

Theorem 1 For any computable P and z ranging
over Z*,
Y (z) =* dis (2 | Y (2)-

(This theorem involves “conditional” variants of ran-
domness deficiency; such variants are defined in a nat-
ural way.) This immediately implies

Corollary 1 Levin and Martin-Léf randomness defi-
ciency coincide to within log.

Remark 3 Our definition of randomness is not the
only possible: we can define “uniform randomness de-
ficiency” and define, eg, the iid deficiency as the min-
imum of the deficiencies over all iid measures. The
difference is not big when the sample space Z is com-
pact; this follows from the following elaboration of
Levin’s [11] (1973) result: for any compact class P
of probability measures,

1L 4+ s 1.
dp(z) =" inf dp(z) (1)
and
ML :+ B f ML, . 9
d¥t (@) =" inf d}' (@) @

However, in applications P is often not compact (al-
though it is always “constructively closed”). It is an
important problem to study whether (1) and (2) hold
true for the iid distributions; intuitively, we would ex-
pect that a sequence is iid random if and only if it is
random wr to some iid distribution.

3 THE IDEAL PREDICTION IN
THE IID CASE

In this paper we will be mostly interested in P =
(P1,Ps,...) for which P, is the set of all distributions
P", P ranging over all probability distributions in Z.
This P will be called the #id model and P-randomness
deficiency will be called iid deficiency and denoted dj;q
(with upper index ML or L). From this point on we
will be mainly interested in the iid deficiency and we
will also use the less awkward expression “random-
ness deficiency” in place of “iid deficiency” (retaining

the lower index “iid” in d;;q). This terminology agrees
with that accepted in nonparametric statistics (see, eg,
Fraser [1], 1957).

Remark 4 An important alternative to the iid model
is the stationarity model. In this paper, however, we
will restrict our attention to the iid assumption, which
is more widely used in machine learning.

Suppose for a minute that the randomness deficiency
(either Martin-Lof or Levin) is computable. Then our
prediction problem will become trivial (if we accept
the iid assumption and ignore computation time). As-

suming we have training set (x1,y1),...,(z;,y;) and
test set xj41,..., T+ and our goal is to predict the
classifications y; 41, ..., yi+x for zjy1, ..., 2145, we can

act as follows:

1. Consider all possible values Y7,...,Y; for labels
Yi+1;s - -+, Yi+x and compute (in practice, approx-

imate from above) the randomness level of every
possible completion

(mlay1)7 EERE (:I:l7yl)7 (:I:l+1ayl)7 ERE (.’Iil+k,Yk).

2. Predict the set Y7,...,Y} corresponding to the
completion with the largest randomness level.

3. Output as the confidence in this prediction one
minus the second largest randomness level.

4. Output as the credibility the randomness level of
the output prediction Yi,...,Y) (ie, the largest
randomness level for all possible predictions).

To understand the intuition behind confidence, let us
tentatively choose a conventional “significance level”
such as 1%. If the confidence in our prediction exceeds
99% and the prediction is wrong, the actual data se-
quence belongs to an a priori chosen set of probability
less than 1% (namely, the set of all data sequences
with randomness level less than 1%).

Intuitively, low credibility means that either the train-
ing set is non-random or the test examples are not
representative of the training set (say, in the training
set we have images of digits and in the test set we have
those of letters).

Remark 5 A common belief in algorithmic informa-
tion theory is that terms of order O(logn) are not im-
portant in inequalities between complexities or ran-
domness deficiencies for sequences of length n. It is
interesting that, under our approach to prediction un-
der the iid assumption, randomness deficiency of the



order of magnitude logn becomes the best we can re-
alistically hope for in the problem of pattern recogni-
tion with one unclassified example. Indeed, suppose
we have a training set

(mlayl)r":(ml:yl): Yi € {71/1}

and a new unclassified example z;1; we want to pre-
dict the label y;4q1 € {—1,1} of ;4. Claim: If the
true sample

(3317211)7 R (3317211)7 (331+17yl+1)

is random, the mazimum randomness deficiency of the
wrong sample

(-?71:1/1), sy (-771,,1/1): (-Tl+1, *yl+1)

is log(l4+ 1) (as usual, up to an additive constant). To
see why this is true, notice that if the true sample is
random with respect to some iid distribution P", the
wrong sample will have randomness deficiency at most
log(l 4+ 1) wr to P™ corrupted by changing the label of
every example with probability 1/(I + 1). It is easy to
see that this upper bound, log(l+1), is precise: if there
is a very simple algorithm for finding y; from z;, the
last example will be the “strangest” one in the wrong
sample, and so the randomness deficiency of the wrong
sample will jump to log(l + 1).

4 PERMUTATION DEFICIENCY

In this section we consider a fundamental lower bound
on randomness deficiency, which we call permutation
deficiency. In practice we will only be able to find
a lower bound on the randomness deficiency of some
sequence z by first finding a lower bound L on the
permutation deficiency of z and then using L as a lower
bound on the randomness deficiency of z. We will
see that the difference between permutation deficiency
and randomness deficiency can be quite big, and it
remains an open problem whether one can find easily
computable and natural lower bounds for randomness
deficiency that are not simultaneously lower bounds
for permutation deficiency.

First we will define the exchangeability model (which is
very popular in the foundations of Bayesian statistics;
see, eg, Schervish [19], 1995). We say that a measure
P on a product set Z" is exchangeable if the distribu-
tion of the vector zi ...z, under P equals the distri-
bution of the vector z;(1) ... 2z(;) for any permutation
7 on the set {1,...,n} (here z,...,z, are the coor-

dinate random variables). The exchangeability model

is defined to be the sequence Py, Ps, ... of the follow-
ing statistical models: every P, is the set of all ex-
changeable distributions on Z". The P-randomness
deficiency, where P is the exchangeability model, will
be called the permutation deficiency. The following
theorem will give a more explicit representation of per-
mutation deficiency, but before we can state it we will
need several definitions. A bag is a set to each ele-
ment of which is assigned a nonnegative integer called
its arity (intuitively, how many times this element oc-
curs in the bag). The size |b| of a bag b is the sum
of the arities of its elements. The configuration of a
sequence z = 2z ...z, is the bag which consists of all
distinct elements in z, the arity of each element being
the number of times it occurs in the sequence. For any
sequence z, conf(z) stands for the configuration of z
and Z(z) stands for the set of all sequences of the same
length and with the same configuration as z. If K is
prefix complexity and C' is plain Kolmogorov complex-
ity (see Li and Vitanyi [13], 1997), the Martin-Lo6f and
Levin deficiency of randomness of an element z of a
set A can be defined as

i (z) = log|A| - O(z|A), dji(2) = log|A| - K(2] 4),
respectively.

Theorem 2 If z ranges over Z*, dMV, (z) =+ dMI)(z)

exch E(z
and dg,,(2) =" dz . ().

This theorem shows that Kolmogorov’s [9] (1968)
“Bernoulli sequences” are exactly the sequences with
a small permutation deficiency in the binary case.

To establish a relation between randomness deficiency
and permutation deficiency we will use the notion of
randomness deficiency of a bag. Let P be the iid
model. We will say that a test for P-randomness (ei-
ther Martin-Lof or Levin) is bag-invariant if it takes
the same value for any two sequences with the same
configuration. There exists a universal bag-invariant
test which will be called randomness deficiency (for
bags) and denoted dj;q(conf(z)) with a suitable upper
index.

The following theorem generalizes Theorem 1 in
Vovk [22] (1986):

Theorem 3 The randomness deficiency of a sequence
equals the sum of its permutation deficiency and the
randomness deficiency of its configuration:

diiq(2) =" dfiq(conf(2)) + diyep, (2| difq(conf(z))) .

1

Theorem 2 in Vovk [22] (1986) gives a simple charac-
terization of Levin randomness deficiency for bags in



terms of prefix complexity in the binary case. That
result shows that in the binary case the randomness
deficiency of bags of size n is at most logn. Unfor-
tunately, in the case of infinite sample space the ran-
domness deficiency of bags of size n can be as large as
n:

Theorem 4 If the sample space is constructively in-
finite (meaning that it contains an infinite computable
sequence of distinct elements),

1
sup di’(b) > sup diiy(b) > nloge — Elogn7

- iid

|b]=n |b]=n

where n ranges over the positive integers and b ranges
over the bags.

Remark 6 Kolmogorov ([9], 1968) believed that, in
the binary case, Bernoulli sequences should be de-
fined as sequences with small permutation deficiency
rather than sequences with small randomness defi-
ciency. Note [22] (Vovk, 1986) was written in an
attempt to understand the difference between Kol-
mogorov’s definition and the definition accepted in this
paper. The main result of [22] is that, in the binary
case, these two definitions are close but different.

Remark 7 In the case of infinite sequences, de
Finetti’s theorem (see, eg, Schervish [19], 1995) says
that the two models of iid and exchangeability are
equivalent; therefore, for the infinite sequences, djjq="
dexch- There are finite variants of de Finetti’s theorem
(see, eg, Schervish [19], 1995, Theorem 1.70 due to
Diaconis and Freedman); similarly to the results of
Vovk [22] (1986) (but contrary to Theorems 3 and 4
above) they say that the iid and exchangeability mod-
els are close.

5 PRACTICABLE
APPROXIMATIONS

Let us concentrate on the problem of pattern recogni-
tion, in which the set Y of possible labels is {—1,1},
and the case where k = 1 (there is only one test ex-
ample). Following Vapnik [21] (1998), we consider the
quadratic optimization problem

1+1

1
P(w, &) = E(w cw) +C (z; f,) — min  (3)
1=
(’IU € H: é-: (617"'7€l+]) € Rl+]) ;
where C' is an a priori fixed positive constant, subject
to the constraints

yi((w-F(x;))+b)>1-¢&, i=1,....0+1, (4)

where F' is some (typically non-linear) transformation
applied to the data and taking values in a Hilbert space
H.

Using Lagrange multipliers «; corresponding to con-
straints (4) we can approximate from below both d™M*
and d". The latter was done in Gammerman et al [4]
(1998) and the former was done in the recent paper
Saunders et al [17] (1999). The approach of Gam-
merman et al [4] (1998) suffered from the “distortion
phenomenon” (see Subsection 8.2 of that paper); the
solution suggested (implicitly) in [4] was to use the
function

flaa) + -+ flaug)
flarg)(I+1) ’

where f is some monotonic non-decreasing function
with f(0) = 0, as an upper bound for the Levin per-
mutation level. The specific function f(a) suggested in
Gammerman et al [4] (1998) was f(a) = signa (that
is, f(0) =0 and f(a) = 1 when a > 0). The results
reported in [4] correspond to using the SV method for
prediction and using function (6) for estimating con-
fidence and credibility. Those results are reproduced
here as Figure 2. In that figure (and in the figures be-
low) it is easy to identify two clusters; one of the clus-
ters contains those examples which are support vectors
in both “pictures” (in the terminology of Gammerman
et al [4]; in other words, which are support vectors and
remain support vectors when the classification of the
last example is changed), and the other cluster con-
tains those examples which are support vectors in only
one “picture”.

(6)

Those experiments and all experiments described in
this paper are done for a simple pattern recogni-
tion problem of identifying handwritten digits using a
database of US postal data of 9300 digits, where each
digit is a 16 x 16 vector (cf LeCun et al [10], 1990). The
experiments are conducted for a subset of these data
(a training set of 400 examples and 100 test sets of 1
example each), and include a construction of two-class
classifier to separate digit “2” from digit “7”. The
constant C' in (3) was set to oc (we felt that this way
we would obtain good approximations to randomness
deficiency); therefore, we actually solved the quadratic
optimization problem

'7§l+1) € ]Rl+]) )

—(w-w) »min (we€ H, {=(&,..

2

subject to the constraints

yi (w-F(z;))+b)>1, i

Il
—_
—
+
=
—
-~
~
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Figure 2: Experimental results for SV predictions
and for confidences and credibilities corresponding to
fla) = signa; characteristics of the two clusters
(which can be identified by their average credibility);
the correctly predicted examples are marked with O
and the errors with X

Using results of preliminary experiments we chose as
F in (7) a function implicitly given by the polynomial
(of degree 3) kernel K (z,2') = (x - 2')3/256.

The “distortion phenomenon” leads to much poorer
predictive performance (ie, the number of mistakes
made) for the “pure” algorithm of Gammerman et
al [4] (1998) (corresponding to f(a) = signa); see
Figure 3. The predictive performance, confidences and
credibilities corresponding to the functions f(a) = «
and f(a) = o? are shown in Figures 4 and 5.

Remark 8 In the spirit of Remark 5, it is instructive
to compare our approximations to randomness defi-
ciency (typical order of magnitude log(l + 1), assum-
ing there is only one example to be classified) with
the usual results of statistical learning theory (see, eg,
Vapnik [21], 1998, Chapters 4 and 10) and PAC theory
(see, eg, Haussler et al [6], 1994). Say, Vapnik’s ([21],
Theorem 10.5; Theorems 10.6 and 10.7 are of a similar
form) denominator I + 1 in

EKi41

b(e <
prob(error) < 1

corresponds to our log(l + 1) (when the “direct scale”
is used). Of course, the advantage of our approach
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Figure 3: Experimental results for f(a) = signa
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Figure 4: Experimental results for f(a) = «
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Figure 5: Experimental results for f(a) = o?

is that our measures of credibility and confidence are
applicable to individual examples and not just describe
the results of hypothetical repetitions of the prediction
task.

Our preliminary studies show that in the problem of
regression lotteries are very convenient, but in the
problems of pattern recognition considered in this pa-
per it is not clear which function f to choose in (6).
Our solution is to use the following p-value function
p as an upper bound for the Martin-L6f permutation
level (and, a forteriori, randomness level): arrange all
Lagrange multipliers «; in decreasing order and define
p(21...2n) to be the rank of a;y; divided by I + 1.
The results for this approach (which is also described
in Saunders et al [17], 1999) are given in Figure 6.

6 SOME IMPOSSIBILITY RESULTS

6.1 ON-LINE PREDICTION

Another interesting application of the algorithmic the-
ory of randomness is the following explanation why
the bulk of work in machine learning under the gen-
eral iid assumption (such as statistical learning theory
and PAC theory) has been done in the batch setting.
(The on-line setting has also been very popular, eg, in
the theory of prediction with expert advice, but it uses
different assumptions.) The algorithmic theory of ran-
domness implies that on-line prediction under the iid

90O’s
¢

% 05 1
S
. | 4
0 05 1
Confidence
Cluster 1 2
Average confidence 0.998 0.996
Average credibility 1 0.063

Figure 6: Experimental results for Martin-Lo6f random-
ness level

assumption is impossible, at least at random moments
in time. We will say that n € N is “locally random” if
n is a random element of the set

An) = {QUUg"J,...,QU“g”J“ . 1} :
formally, the local randomness deficiency of n is
dlxn;l)(n), or dh(n)(n). Analogously to Martin-Lof
and Levin randomness deficiencies defined above, we
can define randomness deficiencies for infinite data se-
quences in Z°°. The next theorem formalizes the im-
possibility of on-line prediction under the iid assump-
tion at random time (notice that it is possible to pre-
dict at time n with K(n) < n: this situation differs
little from the batch setting, where n is given in ad-
vance).

Theorem 5 Let (z1,y1),--., (Tn,Un), yi € {—1,1},
range over all finite data sequences (with the first
Il =mn — 1 elements interpreted as the training set and
(Zn,yn) interpreted as the test example) and ¢ range
over all continuations of the sequence

(mlyyl)a"'7(mn717yn71);(~7:n77yn) (8)

(the test example is classified wrongly). Then

lnfC df;d(c) S+ d];d ((ZU] s y1)7 (3327y2), ey (;Un: yn))
+di“(n) (n).



(It is clear that a similar inequality holds for Martin-
Lof deficiency as well.) Inequality (9) shows that we
cannot exclude the wrong classification if the data se-
quence is random and the time n is also random: the
wrong sequence (8) also has a random continuation.

6.2 DENSITY ESTIMATION

According to Vapnik [20] (1995) (see also Vapnik [21],
1998) there are three main problems of statistical
learning theory: pattern recognition; regression esti-
mation; density estimation. As we have seen earlier,
the problem of pattern recognition can be efficiently
solved for typical real-world data sets, in the sense that
we can obtain measures of confidence and credibility
which are valid under the iid assumption (without need
of any other assumptions) and which work well in prac-
tice. On the other hand, in typical high-dimensional
cases the problem of density estimation can only be
solved under assumptions essentially stronger than the
iid assumption. To see why, assume that the unla-
belled examples z; are taken from some discrete space
X, that y; € {—1,1}, and we are asked to estimate
the probability that y;1; = 1. If all unlabelled exam-
ples in the training and test sets are distinct (which is
typical when the number of attributes is big as com-
pared to the number of examples), no non-trivial es-
timate (such as an interval containing neither 0 nor
1) of this probability is possible. Indeed, if the full
sample (z1,y1), .-, (T1+1,y1+1) is random wr to an iid
distribution P, it will also be random wr to a distribu-
tion P* randomly generated by the following stochas-
tic process: for all ¢ € X, P*(x = ¢) = P(z = ¢) and
P*(y |z = ¢) is concentrated on y = —1 or y = 1, the
latter with probability P(y = 1|z = ¢) and the former
with probability P(y = —1|z = ¢). Of course, density
estimation becomes possible when additional assump-
tions are made. In low-dimensional situations, infor-
mative confidence intervals for density estimation are
obtained in, eg, Gammerman and Thatcher [3] (1992).

6.3 REGRESSION

There are several possible understanding of the term
“regression”. One understanding is “regression esti-
mation”: we assume that the examples (x;,y;) are
generated by some iid distribution, and our goal is to
estimate the conditional expectation of y; 1 given x4
(we are assuming that there is only one test example).
This problem coincides with that of density estimation
when y; € {—1,1}, and so, according to the previous
subsection, is infeasible when our only assumption is

iid.

If “regression” is understood as estimating y;411 when
y; € R are not restricted to a finite set like {—1,1}, the
problem of regression can be efficiently solved under
the iid assumption in high-dimensional cases (work in
progress).

There is one more popular statement of the regression
(and pattern recognition) problem, where only y; are
generated stochastically given z;; x; themselves are
not generated stochastically and are just given con-
stants. It is easy to see that in this case even pattern
recognition (and a forteriori regression) is impossible
without making additional assumptions.

7 CONCLUSION

This paper answers the question why one should want
to use the algorithmic theory of randomness: in prac-
tice, we still use “non-algorithmic” notions such as p-
values or lotteries. As we have shown, using the algo-
rithmic theory of randomness we can ask (and answer)
questions about relationships between

e universal p-values and universal lotteries (Martin-
Lof vs Levin randomness level);

e exchangeability and randomness.

The second item raises the open question (already
mentioned): is it possible to make use of the ran-
domness deficiency of the configuration (which can,
according to Theorem 4, be quite big)?

Besides the “positive” results discussed in the pre-
vious paragraph, the algorithmic theory of random-
ness also allows us to prove impossibility of prediction
in certain situations; as shown in the previous sec-
tion, such important problems as density estimation in
high-dimensional spaces, regression estimation in high-
dimensional spaces, and on-line prediction (where it is
required that valid measures of confidence are output
at every step) cannot be solved if our only assumption
is iid.
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