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Abstract

In this paper we follow the same general ideol-
ogy as in [Gammerman et al., 1998], and de-
scribe a new transductive learning algorithm
using Support Vector Machines. The algorithm
presented provides confidence values for its pre-
dicted classifications of new examples. We also
obtain a measure of “credibility” which serves
as an indicator of the reliability of the data
upon which we make our prediction. Experi-
ments compare the new algorithm to a stan-
dard Support Vector Machine and other trans-
ductive methods which use Support Vector Ma-
chines, such as Vapnik’s margin transduction.
Empirical results show that the new algorithm
not only produces confidence and credibility
measures, but is comparable to, and some-
times exceeds the performance of the other al-
gorithms.

1 Introduction
In this paper, we describe a new method of transduc-
tive inference using Support Vector machines [Vapnik,
1995]. Whereas induction tries to learn a general rule
(e.g. of classification) from a given training set, trans-
duction reasons from particular to particular. That is,
instead of trying to obtain a general rule, the learning
process is focussed on obtaining the classification of a
single new example, or given set of new examples. In sec-
tion 3 we introduce a method of transduction based on a
Support Vector (SV) machine which uses the statistical
measure of p-values. By measuring p-values the algo-
rithm gives confidence values for each of its predictions.
The method also provides a credibility measure based
on the p-values for different predictions. These mea-
sures can be interpreted as an indication of the quality
of our prediction. The performance of the new algorithm
is then compared to two other techniques (which simply
give flat predictions, and no measure of confidence or
credibility), viz. a standard Support Vector Machine,
and Vapnik’s margin transduction. Results show that
the transductive method presented here is comparable
to, and sometimes exceeds the performance of the other

two methods, whilst providing the additional informa-
tion of confidence and credibility values for its predic-
tion. Our trasnductive algorithm therefore gives us the
best of both worlds: as in [Gammerman et al., 1998;
Gammerman, 1997] it provides confidence and credi-
bility values (the predictive performance however, of
the algorithm described in [Gammerman et al., 1998] is
poor; this is probably explained by the “distortion phe-
nomenon” : see [Gammerman et al., 1998], section 8.2
for details); as in Support Vector Machines, it achieves
good predictive performance.

2 SV Implementation
In this section we describe the method upon which the
transduction algorithms used in this paper are based.
The method involves adding k examples to a training
set and then training a separate SV machine for every
possible classification of the k examples. Although the
two transduction algorithms discussed here (our new al-
gorithm and Vapnik’s margin technique) both use this
as a basis, the method of prediction, and any additional
information (such as confidence and possibility) about
the test examples which they produce, is different. The
details of the algorithms will be presented in the next sec-
tion, for now though we present the general ideas which
are common to both. Suppose we have some training
data

(x1, y1), . . . , (xl, yl) yi ∈ {−1, 1} xi ∈ IRn, (1)

and a set of test data,

x∗1, . . . ,x
∗
k. (2)

(Note: as with a Support Vector Machine, we assume
that both the training and test data are generated inde-
pendently from the same distribution.) For a fixed set
of classifications of the test data

y∗1 , . . . , y∗k, (3)

we construct a Support Vector Machine on the combined
sequence

(x1, y1), . . . , (xl, yl), (x∗1, y
∗
1), . . . , (x∗k, y∗k). (4)

For simplicity we will only consider the separable case,
however the following can easily be generalised to the



non-separable case (for details see e.g. [Vapnik, 1995]).
We therefore want to find an optimal hyperplane w such
that

1
2
||w||2 (5)

is minimised, subject to the constraints

yi[(xi ·w) + b] ≥ 1, i = 1, . . . , l, (6)
y∗j [(x∗j ·w) + b] ≥ 1, j = 1, . . . , k. (7)

In order to find the optimal hyperplane we have to solve
the following quadratic optimisation problem: maximise

W (α, α∗) =
l∑

i=1

αi +
k∑

j=1

α∗j
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l∑
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αiαryiyrK(xi,xr)
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k∑
j,r=1

α∗jα
∗
ry
∗
j y∗rK(x∗j ,x

∗
r)

−
l∑

i=1

k∑
r=1

yiy
∗
rαiα

∗
rK(xi,x∗r), (8)

subject to the constraints

αi ≥ 0, i = 1, . . . , l, (9)
α∗j ≥ 0, j = 1, . . . , k, (10)

l∑
i=1

yiαi +
k∑

j=1

y∗j α∗j = 0. (11)

Here K(xi,xj) is a kernel function - a general expres-
sion for the inner product in Hilbert space. According
to Hilbert-Schmidt theory K(xi,xj) can be any symmet-
ric function that satisfies Mercer’s conditions (for details
see [Vapnik, 1995]). The process above is repeated for
all possible classifications y∗1 , . . . , y∗k of the test set. In
the following sections we shall describe how the two al-
gorithms use this process in different ways.

3 Transduction Algorithms

The method of transduction which we introduce here
uses the statistical measure of p-values to determine the
significance of the αi-value(s) associated with the test ex-
ample(s), once the quadratic optimisation problem (8)-
(11) has been solved for all possible classifications of the
test set. This method not only gives predicted classifi-
cations, but also provides valid measures of confidence
and credibility for its predictions [Vovk and Gammer-
man, 1999]. First of all we shall consider the case when
the test set to be classified only contains one example
and there are two possible classifications. This will then
be extended to a multi-class classification. Finally we
shall consider problems involving multiple test examples
and binary classes.

3.1 Confidence values for a single test
example

If we are only interested in the binary classification of a
single example, then the quadratic optimisation problem
(8) has to be solved twice (once where the new example
is classified as +1, the other −1), and therefore two hy-
perplanes are obtained. For each hyperplane, we obtain
a value of “strangeness” for the test example. This is
defined as follows. Consider the training set, with the
new test example included,

x1, . . . ,xl,xnew.

Once (8) has been solved, each of the examples in this
set has an associated Lagrange multiplier

α1, . . . , αl, αnew.

Suppose we are interested in the probability that the
αnew is actually the largest Lagrange multiplier in this
set. Since the training examples and the one new exam-
ple are exchangeable, then this probability is

P{αnew > max
1≤i≤l

αi} ≤
1

l + 1
,

(the randomisation is over all permutations of the exam-
ples). The value of the Lagrange multiplier can be inter-
preted as a measure of “supportiveness” of the example,
and therefore high values indicate that this example is
“strange” and unlikely to occur. In order to determine
how unlikely a certain α-value is, we can use the sta-
tistical measure of p-values. Simply examining whether
or not the α-value associated with the new test exam-
ple is the highest or not and accepting or rejecting it as
the correct classification based on this alone would not
produce a reliable classifier. We therefore look at the
p-value associated with the α-value and make a decision
based on this value. If the rank of αnew is n (i.e. αnew

is the nth highest α-value), the p-value is defined as

p-value = P{rank(αnew) ≥ n}, (12)

(once again, the randomisation is over all permutations
of the examples), which is equivalent to

p-value =
#{i : αi ≥ αnew}

l + 1
. (13)

The p-value is a measure of how “strange” our test ex-
ample is when given a certain classification. That is, the
p-value tells us the probability of observing this partic-
ular ordering of the alpha values under the assumption
that ynew is the correct classification. The classification
ynew which yields the highest corresponding p-value, de-
termines the classification predicted by the algorithm.
The confidence in prediction can then be defined as

Confidence = 1− P2, (14)

where P2 is the p-value obtained when the example was
given the classification which we did not predict.



3.2 Classifying multiple new examples
If we are to consider the case when multiple new exam-
ples x∗1, . . . ,x

∗
k are added to the existing training set,

then the QP problem (8)-(11) has to be solved a total
of 2k times (in a two-class scenario). Unfortunately this
is impractical for large values of k (e.g. k ≥ 7) Each
solution of this problem yields Lagrange multipliers cor-
responding to each of the test examples. The p-value
associated with a particular assignment of classifications
is then defined as

p-value = P{(rank(α1)+. . .+rank(αk)) ≥ (n1+. . .+nk)},
where n1, . . . , nk are the actual measured ranks of the
corresponding Lagrange multipliers α1, . . . , αk, and the
randomisation is over all permutations of the examples.
As in the single example case, the classifications pre-
dicted for the test examples are those which yield the
highest p-value. Confidence is defined to be 1−P2 where
P2 is the second highest p-value, and as in the single ex-
ample case, P1 (the highest p-value) corresponds to our
credibility.

3.3 Measure of Credibility
Not only do we obtain a confidence value for our predic-
tion, but we also consider a measure of credibility which
indicates the quality of the data on which we base our
decision. We define credibility as the value P1, i.e. the
p-value obtained when the test data are given the pre-
dicted classification(s). In order to see how this can be
interpreted as a measure of the quality of the data, first
consider an “ideal” case. Suppose we are adding a single
test example. Also suppose that when the correct clas-
sification is given to our test example it is not a support
vector and therefore will have a p-value of 1. Assume
that when given the incorrect classification, the p-value
obtained from the example is at most 0.05. In this sit-
uation, our confidence would be 95% or greater and the
value of credibility would be 1 (100%). This would mean
we have high confidence in our prediction from a good
set of data. Now consider a similar case where the high-
est p-value still corresponds to the correct classification,
but is much lower, say 0.3. If the other p-value obtained
was the same as before, then we would still have a high
confidence of 95%. Our measure of credibility however
would be much lower (30%). This would convey the
meaning that although we confidently rejected all other
classifications of this test example, the test example is
actually “strange” in both scenarios and therefore the
data is not sufficient to give us a totally secure predic-
tion. Section 4.1 introduces empirical evidence which
supports this line of reasoning. The measure of cred-
ibility provides us with a filter mechanism with which
we can “reject” certain predictions. That is, if for any
task the consequences of making a wrong prediction are
quite severe, we can choose to reject those predictions
which have a low credibility value associated with them.
The more severe the consequences for making an incor-
rect prediction are, the higher we can set the rejection
threshold.

3.4 Vapnik’s Margin Transduction

As a point of comparison for our technique we shall use
a method of transduction suggested by Vapnik [Vapnik,
1998]. This method also uses the basic ideas described
in section 2. The predicted classifications are the ones
which separate the joint sequence

(x1, y1), . . . , (xl, yl), (x∗1, y
∗
1), . . . , (x∗k, y∗k), (15)

with maximal margin. The predicted classifications are
therefore given by

arg min
y∗1 ,...,y∗k

min
w

1
2
||w||2, (16)

(subject to constraints (6) and (7)), over all possible clas-
sifications y∗1 , . . . , y∗k. In the dual representation, this is
equivalent to maximising (8)-(11) for all possible classi-
fications of the test set, and predicting the classifications
which achieve the overall minimum.

4 Experiments and Results

First of all we shall present some empirical evidence of
the quality of the confidence and credibility values ob-
tained by the new transductive algorithm, based on a
two-class digit recognition problem. A performance com-
parison is then made between our new algorithm, Vap-
nik’s Margin algorithm, and a standard SV machine on
the same data set. Unless stated otherwise, the experi-
ments in this section were performed on the US Postal
Service database of handwritten digits (see e.g. [LeCun
et al., 1990]). The kernel function used in these experi-
ments was a polynomial of the form

K(x,y) =
(x · y)d

256
,

for which the best performance is achieved with d = 3.

4.1 Confidence and Credibility Values

Table 1 shows an example of the confidence and credibil-
ity values obtained on a digit-recognition task of sepa-
rating the digit ’8’ from all other digits. The training set
used in these experiments consisted of 49 examples of the
digit ’8’ and 451 examples of other digits (’0’...’9’). The
test set consisted of 100 other digits from the database.
Both the new transduction algorithm and an SV machine
were run on the data. Out of 100 test examples both
methods classified all but three examples correctly (they
both misclassified the same three examples). The ta-
ble shows the confidence and credibility values for these
three misclassified examples (along with the examples
themselves). For all of the misclassified examples the
credibility of the prediction is very low (no more than
5%). This suggests that for all of these examples, the
quality of the data is not sufficient on which to base a
prediction.



Misclassified Examples
Example No. 1 2 3

Example
True Class 8 8 8
Confidence 95% 96% 99%
Credibility 4.6% 4.5% 0.8%

Table 1: Confidence and credibility values for miss-
classified examples.

Method n = 20 n = 40 n = 100 n = 200
p-value Trans 640 390 262 186
Margin Trans 526 355 268 180
Standard SVM 522 355 272 191

Table 2: Incorrect classifications over a total of 20000
runs. In addition to providing confidence and credibil-
ity values, the p-value transductive algorithm has good
generalisation ability.

4.2 Relative Performance of the
Algorithms

In this section we compare the predictive performance
of the new algorithm, alongside the margin transduction
technique and a Support Vector Machine. For this ex-
periment, we again used a subset of the digit database.
All of the examples of the digits 2 and 7 were extracted
from the database, giving a total set of 1721 examples. In
each of these experiments a subset of n examples were
randomly chosen and used as a training set. A single
further example was then randomly picked as a test ex-
ample. All three algorithms were trained on the same
training set and gave their predictions for the test exam-
ple. This process was then repeated for a total of 20000
runs, and for different values of n. Table 2 summarises
these results. It is clear from the table that the new
algorithm does not suffer in performance despite provid-
ing the extra information of confidence and credibility
values.

5 Discussion
In this section we briefly discuss related work and high-
light possible directions for further research based on the
results presented in this paper.

5.1 Adding multiple examples
At the present time, adding k examples to our original
training set in order for them to be classified is imprac-
tical for large values of k. Recent developments in the
training of Support Vector machines, however, such as
those presented in [Platt, 1998] may yield improvements
in the application of this algorithm. Another transduc-
tive algorithm has recently been proposed in [Bennett
and Demiriz, 1998] which is based on the margin trans-
duction technique. This technique minimises the w vec-
tor in the L1-norm rather than the L2-norm and uses

integer programming to rapidly find hyperplanes which
separate the training data, even if the number of exam-
ples is large. This method however, does not provide
confidences or credibility values for its predictions.

5.2 Extension to Regression
An important direction of this research is to extend it to
the case of regression, i.e. where the classifications yi are
no longer required to be binary values, but can be real
numbers. Statistically valid p-values may be obtainable
from Support Vector Machines for regression estimation
(see e.g. [Vapnik, 1998]), or other related methods such
as those in [Saunders et al., 1998].

6 Conclusion
In this paper we have presented a new transduction algo-
rithm which is based on the Support Vector technique.
It has been shown that the algorithm produces confi-
dence values for its predictions, and also gives a measure
of credibility which indicates the quality of data upon
which the prediction is based, and therefore serves as a
guideline of how reliable the prediction actually is. Em-
pirical results have been presented which show that val-
ues of confidence and credibility produced by the algo-
rithm do correctly reflect the reliability of the predictions
given. This method has been shown not only to produce
these values, but also to have good generalisation ability
on a test set, comparable to and sometimes exceeding
the results achievable by a Support Vector Machine.
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