Computationally Efficient Transductive Machines

Craig Saunders, Alex Gammerman, Volodya Vovk

Royal Holloway, University of London,
Egham, Surrey, England, TW20 0EX
{craig,alex,vovk}@dcs.rhbnc.ac.uk

Abstract. In this paper! we propose a new algorithm for providing confidence and credi-
bility values for predictions on a multi-class pattern recognition problem which uses Support
Vector machines in its implementation. Previous algorithms which have been proposed to
achieve this are very processing intensive and are only practical for small data sets. We
present here a method which overcomes these limitations and can deal with larger data sets
(such as the US Postal Service database). The measures of confidence and credibility given
by the algorithm are shown empirically to reflect the quality of the predictions obtained
by the algorithm, and are comparable to those given by the less computationally efficient
method. In addition to this the overall performance of the algorithm is shown to be com-
parable to other techniques (such as standard Support Vector machines), which simply give
flat predictions and do not provide the extra confidence/credibility measures.

1 Introduction

Many risk-sensitive applications such as medical diagnosis, or financial analysis require predictions
to be qualified with some measure of confidence. Indeed in general, any predictive machine-learning
algorithm which requires human-computer interaction, often benefits from giving qualified predic-
tions. The usability of the system is improved, and predictions with low confidence can be filtered
out and processed in a different manner. In this paper we have two aims: firstly, we wish to provide
confidence and credibility values for our predictions, rather than the simple “flat” answer given by
many Machine Learning techniques (such as a standard Support Vector Machine [10]); secondly
we want to obtain these values in an efficient manner so that the algorithm is practical for large
data sets, and does not suffer the time penalties of previously proposed algorithms (e.g. those
in [1,7]). To achieve the confidence and credibility measures, we build on ideas of algorithmic
information theory (see [12]). By using these ideas, we are able to provide confidence measures
with a strong theoretical foundation, and which do not rely on stronger assumptions than the
standard i.i.d. one (we actually make a slightly weaker assumption, that of exchangeability). This
is in contrast to many alternative methods (such as the Bayesian approach), which often require
a prior probability (which is not known and has to be estimated), and confidence measures are
given on the assumption that this prior is the correct one. In order to compute these values we
use Support Vector Machines and the statistical notion of p-values, in an extension of the ideas
presented in [7]. The multi-class method presented in that exposition however, was processing-
intensive, and the length of time required meant that the algorithm was not practical for medium
to large datasets. The method presented here (and originated in [11]) however, overcomes these
difficulties, and in section 4 experiments are conducted on much larger data sets (e.g. 7900 train-
ing, 2000 test). The layout of this paper is as follows. In section 2 we describe the theoretical
motivation for the algorithm, then in section 3 we concentrate on a specific implementation which
uses Support Vector machines. In this section we briefly describe a previous method of qualifying
Support Vector method predictions, and extend the technique to the multi-class case. The ineffi-
ciencies of this method are presented, and a new algorithm is proposed. Experimental evidence is
presented in section 4 which indicates that as well as providing confidence and credibility values,
the algorithm’s predictive performance is comparable to a standard Support Vector machine when

! Published in the Proceedings of the Eleventh International Conference on algorithmic Learning Theory
2000 (ALT ’00), Lecture Notes in Artificial Intelligence, Springer-Verlag, 2000

2 Craig Saunders et al.

using the same kernel function. Specifically, experiments were carried out on the US Postal Service
digit database, and a comparison is made between the new algorithm, the algorithm presented in
[7], and a standard Support Vector Machine. In section 5 we discuss the merits of this approach
and suggest future directions of research.

2 Randomness

In [12] it was shown that approximations to universal confidence measures can be computed, and
used successfully as a basis for machine learning. In this section we present a summary of the
relevant ideas, which will provide a motivation for the technique described in section 3. What
we are principally interested in is the randomness of a sequence z = (z1,...,2,) of elements of
z; € Z where Z is some sample space (for the applications presented in this paper, z is a sequence
(X1,Y1)s -+ (X, 91), (X141, Y14+1) where x; € R"™,y € Z, containing [training examples and one test
example along with some provisional classification). Let P = Py, Pa, ... be a sequence of statistical
models such that, for every n = 1,2,..., P, is a set of probability distributions in Z™. In this
paper we will only be interested in specific computable P (namely, the iid and exchangeability
models). We say that a function ¢t : Z* — N (where N is the set {0, 1, ...} of non-negative integers)
is a log-test for P-typicalness if

1. foralln e Nand m € Nand all P € P,,, P{z € Z" : t(z) > m} <27 ™.
2. t is semi-computable from below.

As proven by Kolmogorov and Martin-Lof (1996) (see also [4]), there exists a largest, to within
an additive constant, log-test for P-randomness, which is called P-randomness deficiency. When
‘P, consists of all probability distributions of the type P™, P being a probability distribution in
Z, we omit “P-” and speak of just randomness deficiency. If d(z) is the randomness deficiency of
a data sequence z, we call 6(z) = 274*) the randomness level of z. The randomness level 4 is the
smallest, to within a constant factor, p-value function; the latter notion is defined as follows: a
function ¢ : Z* — [0,1]) is a p-value function w.r.t. the iid model if

1. for all n € N and r € [0, 1] and all distributions P € Z,
P {zeZ":t(z)<r}<r.(1)
2. t must be semi-computable from above.

The randomness level is a universal measure of typicalness with respect to the class of iid distribu-
tions: if the randomness level of z is close to 0, z is untypical. Functions ¢ which satisfy the above
requirement are called p-typicalness tests.

2.1 Using Randomness

Unfortunately, this measure of typicalness is non-computable (and in practice one has to use
particular, easily computable, p-value functions). If however one could compute the randomness
deficiency of a sequence and we accept the iid assumption and ignore computation time, then the
problem of prediction would become trivial. Assuming we have a training set (x1,41),--., (X, 1)
and an unlabelled test example x;11, we can do the following:

1. Consider all possible values Y for the label 3,41, and compute the randomness level of every
possible completion

(X17 y1)7) (Xl7 yl)7 (Xl-‘rla Y)
2. Predict Y corresponding to the completion with the largest randomness level.

3. Output as the confidence in this prediction one minus the second largest randomness level.
4. Output as the credibility the randomness level of the prediction.

Computationally Efficient Transductive Machines 3

The intuition behind confidence can be described with the following example. Suppose we choose
a “significance level” of 1%. If the confidence in our prediction exceeds 99% and we are wrong,
then the actual data sequence belongs to the set of all data sequences with randomness level less
than 1%, (which by (1) is a very rare event). Credibility can be seen as a measure of quality of
our data set. Low credibility means that either the training set is non-random or the test example
is not representative of the test set.

2.2 Use in Practice

In order to use these ideas in practice, we will associate a strangeness measure with each element
in our extended training sequence (denoted «;). If we have a strangeness measure which is in-
variant w.r.t. permutation of our data, the probability of our test example being the strangest in
the sequence is l%l Because all permutations of strangeness measures are equiprobable, we can
generalise this into a valid p-typicalness function :

#{i:a; > Oél+1}.

t=) = I+1

This is the type of function we will use in order to approximate the randomness level of a sequence.
In this paper, our strangeness measures («;) are constructed from the Lagrange multipliers of the
SV optimisation problem, or the distances of examples from a hyperplane.

3 SV Implementation

In this section we describe a way of computing confidence and credibility values which uses Support
Vector Machines. We first describe and extend the method outlined in [7] to the multi-class case.
The new method presented later in this section is more computationally efficient than the one
presented in [7] (for timings see section 4), allowing much larger datasets to be used.

3.1 Original Method
In [7], a method for two-class classification problems was presented. The method involved adding a
test example to the training set, along with a provisional classification (say —1). A Support Vector

machine was then trained on this extended set, and the resultant Lagrange multipliers were used
as a strangeness measure. That is the following optimisation problem was solved :

1
max o — = Z aiajyiyjlc(xivxj)a

subject to the constraints,

Y a=0,0>0i=1,.. 141 (1)

The p-typicalness function took the form :

#{i o >}
I+1

p_:

The test example was then added to the training set with a provisional classification of +1, and
p+ was calculated in a similar fashion. Confidence and credibility were then calculated as outlined
in section 2.1.

4 Craig Saunders et al.

Extension to Multi-Class Problems The method above can easily be extended to the multi-
class case. Consider an n-class pattern recognition problem. This time, for each test example, n
optimisation problems have to be solved (one for each possible classification). We generate n “one
against the rest” classifiers, each time using the resultant a-values to calculate p-typicalness as
follows. For each class m € {1,...,n}, train an m-against-the-rest Support Vector machine, and
calculate p,, as :
#{i: (i > cug1) A(yi =m)}

|Sm] ’

Pm =

where
Smo={(x5,9:) yi = m)}.

That is, for each classifier, we only use the a-values which correspond to the provisional classi-
fication given, in our calculation of p-typicalness. Unfortunately, although this method works in
practice, it is rather inefficient and can only be used on small data sets. Consider as an example
of a medium-large problem, the well known 10-class digit recognition problem of the US Postal
Service data set. To train a single “one vs. the rest” SV machine on this data set takes approxi-
mately 2 minutes. Therefore, to use the above method to classify a test set of 2000 examples, it
would take approximately 2 x 10 x 2007 = 40140 minutes. Which is roughly 1 month! Clearly this
is unacceptable, and an improvement has to be found.

3.2 New Method

The general idea is as follows; we create a hash function f;, : R — {1,...,h}, which when given
a training vector x;, returns a value in the range {1,...,h}. This is used to create a total of
h x n subsets of our training data (where n is the number of classes in our training set). For each
class in the training set, a Support Vector Machine is trained in the following way. For every
possible output of the hash function j, train a Support Vector Machine each time leaving out of
the training process those examples which both are a member of the class being considered, and
return a value of j from the hash function. More formally, we have the following. We are given a
training set 7" which consists of I examples and their labels (x1,91), ..., (x;,), where x;, € R?
and y, € {1,...,n}. We also have a hash function f, : R? — {1,...,h}. Note that the hash
function should be chosen so that it is “pseudo-random” and splits the training set into roughly
equal portions. The hash function used in the experiments in this paper simply computed the sum
of all attribute values modulo h plus 1. First of all we create nh sets S; ; from our training set

Sij ={(xn, 1) sy =0, fa(xe) # 7 U{(xk, 1) sy # i}, (2)
where ¢ = 1,...,n and j = 1,...,h. On each of these sets we train a Support Vector Machine.
That is, we obtain hn functions of the form

Fijx)= Y oryK(xs,x),

k:(Xk,Yr) €S,

where C is some kernel function, and the a;’s are obtained by solving the following optimisation
problems; maximise

l
Zak - é Z akamykym,c(xkyxm)a

k=1 km:(xx,yr),(Xm,Ym)ESi,j
subject to the constraints,

Z YO :07 (672 20, k:].,...,‘Siﬁj
k:(xk,yx)€Si,;

This is similar to the “one against the rest” method which is often used in multi-class Support
Vector Machines [9]. For our purposes though, we create several “one against the rest” classifiers
for every class, each time only including positive examples which have a particular value when the
hash function is applied.

Computationally Efficient Transductive Machines 5

3.3 Classification, Confidence, and Credibility

The procedure for classifying a new test example is given by Algorithm 1. In a nutshell the
procedure simply applies the hash function to some new example X,.w, then for each class identifies
a working set (denoted W;) and a particular function F;; (which did not use any element of
the working set in its creation). The function F;; is then used to obtain the distance to the
hyperplane for each element of the working set, and our new example (these distances are denoted
by di,...,djw,|, dnew). Note that “distance” here is defined as the output of a function F; ;(x), and
therefore can be negative (if the point x lies on a specific side of the hyperplane). In order to give

Algorithm 1 Classifying a new test sample Xpew
Obtain jncw = fh (chw)~
for Each class ¢ in training set do
Create a working set W; which includes all examples in the training set with y, =7 and fj,(X%) = Jnew
(i.e. W; = {:C : fh(xk) = jncw,yk = i,k = 17 . ,l})
For every example in W; and Xnew use F; ;... (see eq (2)) to get the distance dj from the hyperplane.
Compute p-value (p;) for new example, where p; = %
end for '
Predicted classification is arg max p;.

Confidence in prediction is 1 — mix Dj-
JF
Credibility of prediction is max p;.
3

confidence and credibility values for the new example, we compute the example’s p-value for each
possible classification. Once the distances di, ..., dw,|, dnew to the hyperplane for a particular
working set W; (including our new test example) have been calculated, the p-value is simple
to compute. The ideal situation is where our new example is the “strangest” example of the
working set. For this algorithm the strangest example is the one with the smallest distance to the
hyperplane (recall that “distance” in this sense can be negative, so the smallest dj, is either the
example furthest on the “wrong” side of the hyperplane for classification ¢, or if all examples are
on the positive side, the example closest to the hyperplane). The probability that our example
Xnew has the smallest valued distance to the hyperplane out of all examples in the working set is
simply

1
Pidpew < min di p < ——
{ " S <) k} UGS
(since all permutations of dy, ..., dw,|, dnew are equiprobable). The distances from the hyperplane

are a valid strangeness measure (i.e. they are invariant under permutation), so we can construct
a valid p-typicalness function as follows :

o #{k : dk S dnew}
b= Wi+ 1

As stated in Algorithm 1, our prediction for Xpe, is given by the classification which yielded
the highest p-value. In an ideal case, the p-value associated with the correct classification will
be high, say > 95%, and for all other classifications it will be low, say < 5%. In this case both
confidence and credibility will be high and our prediction is deemed to be reliable. If however the
example looks very strange when given all possible classifications (i.e. the highest p-value is low,
e.g. < 10%), then although confidence may be high (all other p-values may still be < 5%), our
credibility will be low. The intuition here would be: although we are confident in our prediction
(the likelihood of it being another candidate is low), the quality of the data upon which we base
this prediction is also low, so we can still make an error. This would concur with the intuition in
section 2. In this situation our test example may not be represented by the training set (in our
experiments this would correspond to a disfigured digit).

6 Craig Saunders et al.

4 Experiments and Results

Experiments were conducted on the well known benchmark USPS database (see e.g. [3]), which
consists of 7291 training examples and 2007 test examples, where each example is a 16 x 16
pixelated image of a digit in the range 0-9. For all these experiments, the following kernel was

used
3

Kxy) = XY

Although this kernel does not give the best possible performance on the data set, it is comparable
and is only meant to ensure that a comparison between the techniques presented here is a fair one.

4.1 Efficiency Comparison

In order to compare this method to the one presented in [7], we conducted an experiment on a
subset of the USPS data set. All examples of the digits 2 and 7 were extracted from the data
set creating a two-class pattern recognition problem with 1376 training examples and 345 test
examples. Table 1 shows the timings and error rates for both methods?. Note that a normal
Support Vector machine also has 3 errors on this data set (when trained with the same kernel
function). Also in this case, the 3 errors produced by the SV machine and the two transductive
methods were the same 3 examples. For the new method the range of values which the hash
function can produce (h), can be changed. The value of h determines how many subsets each class
in the training set is split into, and results are shown for h = 2, 3, and 4. Even though the data

Method Time Errors|ave -log p-value
OIld |5 hrs 20 mins| 3 3.06

2 Splits 39 secs| 4 2.51

3 Splits 50 secs| 3 2.33

4 Splits|1 min 4 secs| 3 2.20

Table 1. Timings, errors (out of 345), and average -log (base 10) p-values for the different methods, on
a 2-class subset of the USPS data set. Note that large average p-values are preferable (see section 4.2)

set in this experiment would not normally be considered to be large, the previous method suffers
a heavy time penalty. The table clearly shows that the method proposed in this paper is more
efficient, whilst retaining the same level of performance. In order to interpret the last column of
the table, notice that a -log p-value of 2 indicates a p-value of 1%. The gap in efficiency between
the two methods is due to the fact that the new method does not have to run two optimisation
problems for each test point. If the number of test examples is increased, the time taken by the
hashing method does not alter significantly. The old method however, scales badly with any such
increase. In order to illustrate this in practice we used a subset of the data described above. A
total of 400 examples were used for training, and two test set sizes were used: 100 examples and
345 examples. Table 4.1 shows the error rates and timings of the old method, and the hashing
method with 3 hash sets. Notice the time penalty incurred by the old method as the test set is
expanded.

4.2 Predictive Performance of the Algorithm

Experiments were also conducted on the full USPS data set, and the performance of the algorithm
was measured when each class was split into different numbers of subsets. Table 2 summarises these
results. In the case of having 5 splits, the performance of the algorithm deteriorated. This could be
due to the fact that although by having 5 splits the training set was larger and therefore one would

2 Note that for the experiments we used the SVM implementation from Royal Holloway. See [8] for details.

Computationally Efficient Transductive Machines 7

Method Time (100 examples) Time (345 examples)

Old |11 mins 37 secs (0 errors)|39 mins 16 secs (5 errors)
3 Splits 12 secs (0 errors) 13 secs (6 errors)
Table 2. Timings and error rates for the two methods. The training set size was 400, and two test sets of
size 100 and 345 were used. The old algorithm suffers a heavy time penalty with the increase in test set
size.

expect a better decision function, the working set is greatly reduced in size. This led to the p-values
for many classes being of the same magnitude and would therefore result in more misclassifications.
As a point of comparison for the results shown in table 2, note that the Support Vector Machine

No of Splits|Error Rate|ave -log p-value
2 5.7% 2.46
3 5.5% 2.23
4 5.4% 2.04
5 6.0% 1.91

Table 3. Error rates for different numbers of splits of each class; the last column gives the average minus
log p-value over all incorrect classifications. The data set used was the 10-class USPS data set.

when using the same kernel has an error rate of 4.3%. Although for the smaller data set used in
the previous section the performance of the new method, the original transductive method, and
the Support Vector machine was identical, our quest for efficiency on a large data set has resulted
in a small loss in performance in this case. Our aim though is to produce valid confidence and
credibility values whilst retaining good performance, we are not necessarily trying to outperform
all other methods. The table shows that the performance of the algorithm does not suffer to a
large extent, even though it provides the extra measures. The last column in the table shows the
average minus log of p-values calculated for the incorrect classifications of the new example. For
relatively noise-free data sets we expect this figure to be high, and our predictive performance
to be good. This can also be interpreted as a measure of the quality of our approximation to
the actual level of randomness, the higher the number, the better our approximation. This is our
main aim: to improve the p-values produced by the algorithm. We believe that good predictive
performance will be achieved as our p-values improve. This can already be seen in the progression
from the algorithm presented in [1]. Our algorithm provides better confidence and credibility®
values, and our predictive performance is also higher. When comparing p-values in the tables it is
important to note that there is an upper bound on the ave -log p-value which can be obtained. This
stems from the fact that even if every incorrect classification is highlighted by the algorithm as the
strangest possible, then the p-value is restricted by the sample size from which it is obtained. As an
example, consider the p-values obtained in table 1. For the old method, the strangeness measure
was taken over the whole training set (approx. 1300 examples). This would yield a maximum
average (-log p-value) of 3.11. For hashing however, we are restricted to computing p-typicalness
functions over the hash set. For 3 splits, each hash set contains roughly 225 examples. This would
yield a maximum average of 2.34. For larger data sets, we would therefore hope that this figure
gould improve (as the hash set size would increase).

4.3 Confidence and Credibility Values

For the experiments, the confidence in our predictions was typically very high, 85-99%. This was
due to the data set being relatively noise free. In a data set corrupted by noise, we would expect
the prediction not to be so clear cut. That is, the noise in the data may make another classification

3 In the paper, the measure of credibility was referred to as possibility.

8 Craig Saunders et al.

(other than correct one) appear to be random. The correct classification may have a large p-value
(95%), and therefore may clearly be one we predict. The confidence in the prediction however, will
be lower. Our intuition behind the measure of credibility was that it should reflect the “quality” of
our predictions. If credibility is low, then the example looks strange for every possible classification,
and so our prediction is not as reliable. It is therefore expected that the credibility associated with
a prediction which is later found to be incorrect, should be low in a majority of cases. This has
been observed experimentally and is illustrated by Figure 1, which displays histograms showing
the number of incorrect predictions which have credibility within a certain range for 2,3 and 4
splits.

2 Splits 3 Splits
120 ———————— 120
100 E 100
13 (%]
S 80 5 80
£ £
5 60| 5 60
]]
£ £
E 40 E 40
P4 P4
20 - E 20 f
0 =1 [L T 0 L L T e ET L
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
Credibility (1=100%) Credibility (1=100%)
4 Splits
120
100 |-
o
5 80|
3
©
a
5 60r
9]
8
E 40
zZ
20 ¢

0 RS
0 01 02 03 04 05 06 07 08 09 1
Credibility (1=100%)

Fig. 1. Credibility values for incorrectly predicted examples, when run with different numbers of splits.

4.4 Rejecting Examples

It is possible to use the measures of confidence and credibility to obtain a rejection criteria for diffi-
cult examples. Suppose we pick a specific confidence threshold, say 95%, and reject all predictions
which fall below this level. We can then expect that the error rate on the remaining predictions will
not deviate significantly from at most 5%. Note that over randomisations of the training set and
the test example, and over time, we would expect the error rate to be < 5% (over all examples).
In this scenario however, we have a fixed (but large) training set. Also, we are measuring the error
over the non-rejected examples and not the whole set. If a small number of examples are rejected
however, we would not expect the error rate to deviate significantly from 5%. Unfortunately, it is
not possible to say a-priori how many examples will be rejected. For our experiments have selected
four possible rejection criteria, these are : Confidence, Credibility, Confidence x Credibility and
(1 — Confidence) — Credibility. The first measure is obvious - we want to reject all classifications
which do not achieve a certain confidence value, therefore capping the generalisation error. The
other measures however, also control generalisation error. We may wish to reject examples with

Computationally Efficient Transductive Machines 9

low credibility; that is, those examples which look unlikely given any classification. Thirdly, by
simply taking the product of the two measures, we end up with a single measure which is only
high when both values are high. Finally, the difference between typicalness values of the two like-
liest classifications can be used. Again, this is an attempt to reject samples which do not have a
clear leading candidate for the correct classification. The rejection rate vs. generalisation error on
non-rejected examples is plotted for hash sizes 2,3,4 and 5, and are shown in figure 2.

2 Hash Sets 3 Hash Sets 4 Hash Sets

—— Confidence —— Confidence —— Confidence

- Credibility - Credibility - Credibility
---- (1-Confidence) - Credibility ---- (1-Confidence) — Credibility ---- (1-Confidence) - Credibility
——~- Confidence * Credibility ——~- Confidence * Credibility ——~- Confidence * Credibilty

"
I T \j‘“‘"/’?j”‘\ﬁ Sy

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
% of examples rejected % of examples rejected % of examples rejected

Fig. 2. Generalisation error on non-rejected examples vs. rejection rate.

5 Discussion

In this paper we have presented an algorithm which gives both confidence and credibility values
for its predictions, on a multi-class pattern recognition problem. This method overcomes the
time penalties suffered by a previously proposed algorithm, whilst retaining a comparable level of
performance. This allows the method to be used on large real-world data sets. Empirical evidence
has been presented which indicates that the confidence and credibility values produced by the
algorithm correctly reflect confidence in the prediction and the quality of the data upon which it
was based. Furthermore, in addition to providing confidence and credibility values, the performance
of the algorithm has been shown to be comparable to that of Support Vector machines. The
work here concentrates on pattern recognition problems, but can easily be extended to regression
estimation. Both Support Vector Machine regression, and methods such as Ridge Regression (see
e.g. [2], or [6] for the kernel-based version) can be extended to incorporate the ideas in this paper.

Acknowledgements

This work was partially supported by EPSRC GR/L35812 and GR/M15972, and EU INTAS-93-
725-ext grants. In addition we are indebted to the support provided by IFR Ltd.

References

1. A. Gammerman, V. Vapnik, and V. Vovk. Learning by transduction. In Uncertainty in Artificial
Intelligence, pages 148-155, 1998.

2. A. Hoerl and R.W. Kennard. Ridge regression: Biased estimation for nonorthogonal problems. Tech-
nometrics, 12(1):55-67, 1970.

3. Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. J. Jackel.
“Handwritten digit recognition with back-propagation network”. Advances in Neural Information
Processing Systems, pages 396—404, 1990.

4. M. Li and P. Vitanyi. An Introduction to Kolmogorov Compexity and Its Applications. Springer, 1997.

10

ot

10.
11.

12.

Craig Saunders et al.

P. Martin-Lof. The definition of random sequences. Information and Control, 1966.

C. Saunders, A. Gammerman, and V. Vovk. Ridge regression learning algorithm in dual variables.
In ICML ’98. Proceedings of the 15th International Conference on Machine Learning, pages 515-521.
Morgan Kaufmann, 1998.

C. Saunders, A. Gammerman, and V. Vovk. Transduction with confidence and credibility. In Pro-
ceedings of IJCAI’99, volume 2, pages 722-726, 1999.

C. Saunders, M.O. Stitson, J. Weston, L. Bottou, B. Schélkopf, and A. Smola. Support Vector machine
- reference manual. Technical Report CSD-TR-98-03, Royal Holloway, University of London, 1998.
B. Scholkopf, C. Burges, and V. Vapnik. Extracting support data for a given task. In Proceedings,
First International Conference on Knowledge Discovery and Data Mining, pages 252-257. AAAT Press,
1995.

V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

V. Vovk and A. Gammerman. Algorithmic randomness theory and its applications in computer
learning. Technical Report CLRC-TR-00-02, Royal Holloway, University of London, 1999.

V. Vovk, A. Gammerman, and C. Saunders. Machine-learning applications of algorithmic randomness.
In Proceedings of ICML ’99, pages 444-453, 1999.

