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Abstract

In this paper we consider the benefits of applying mod-
ern machine learning techniques to the problem of
Fault Diagnosis and Automated Repair. In the modern
manufacturing environment, many aspects of the pro-
duction line are logged automatically by various sys-
tems. These records are put to a multitude of uses
including assisting stock control, and monitoring and
improving the manufacturing process. This approach
has lead to the accumulation of a huge amount of high-
dimensional data, and does require new methods to
handle it. In this paper we ask if the information com-
monly held by many companies can be used to assist
the repair of faulty products on the production line.
We examine the possibility of using pattern recogni-
tion techniques to determine correct repairs for faults
from past production history. The relative merits of
this method compared to other approaches (such as
model-based reasoning) are also discussed. Finally, we
give some preliminary results which indicate that pat-
tern recognition methods such as the highly acclaimed
Support Vector machine can be successfully applied in
this area.

Introduction
Companies are being driven to reduce the cost of their
production and are concerned about getting their prod-
uct to their customers quickly and efficiently. Electronic
Assembly manufacturers are using the information from
their test systems as a “window on the goodness of their
assembly process”. After all, if they could build product
correctly 100% of the time they wouldn’t need to test it.
If the data from the test system is automatically logged
to a data base, then any faulty items could be sent to a
repair station and the faults associated with that item
called up on a Paperless Repair screen. This reduces
the amount of paper on the shop floor and offers the
operator the opportunity to enter the repairs carried
out on the item. This information can then be fed back
upstream in the manufacturing process to allow assem-
bly workers to identify which process steps are inducing
failures. One such mechanism for logging data from test
equipment and presenting information to repair techni-
cians is the IFR i-Base Information Management prod-
uct which was used to gather the information for this

research. In this paper we will examine the role that
Support Vector machines (Vapnik 1995) can play in this
environment of electronic assembly manufacture. Con-
sider the process of manufacturing a specific product.
The product will progress down the line being modified
and tested at various stages in its creation. If every-
thing runs smoothly the product will be successfully
completed and will not have failed any tests en route.
At some stage however, a product may fail a test, and
then it is up to a technician to determine what’s wrong
and repair the fault. This process of diagnosis and re-
pair is very costly, both in time and in the cost of the
technician. If the process could be totally automated,
or information could be presented to the technician in
order for them to repair the fault quickly, that would
be of great benefit. We will first define precisely what is
meant by fault diagnosis and automated repair in this
context. The properties of the problem will also be ex-
amined, and the suitability of a “learning by examples”
approach compared to other methods such as model-
based reasoning will be discussed. Thirdly we will de-
scribe some simple statistical methods which have been
used to tackle the problem, and SV machines will also
briefly be described. Results on a small but representa-
tive data set are then presented, which gives empirical
evidence to successfulness of this approach.

Fault Diagnosis and Automated Repair
Fault diagnosis is the procedure of discovering the ex-
act nature of why a particular piece of equipment is not
operating as expected. Fault diagnosis is a widely re-
searched area and many different approaches have been
tried. These include model-based approaches (see e.g.
(de Kleer 1990; de Kleer & Williams 1987)), cased-base
reasoning, and expert systems among others. There are
also links between diagnostic/repair processes and for-
mal methods (Gertz & Lipeck 1995). The main objec-
tive of many of these systems is to locate and diagnose
the exact fault of the device. In this paper we are in-
terested in a subtly different scenario. We are not so
much concerned with the prediction of the exact nature
of the fault, but the task of identifying the correct re-
pair action. That is, can we provide helpful information
to a technician repairing products on a production line,



based on previous faults and repairs. Many of the ideas
and discussion presented here is applicable to the man-
ufacture of various products on a production line. Here
however, we are specifically going to concentrate on an
application which uses the manufacture of electronic
products as its base. In order to define the problem
more concisely, we will first need to give some problem
specific background.

Application specifics
At various stages in the production process an elec-
tronic device will be tested in various ways until the
product reaches the end of the line where a final test
will deem it as working correctly. A typical product will
start life as one or more printed circuit boards (PCB’s).
In the early stages these can often be tested individually
and an in-circuit test (ICT) is often carried out. Here
the PCB is placed on a “bed of nails” and an automatic
tester (ATE) is programmed to check each component
on the board individually. It is often the case that if the
a board fails an ICT, then the component responsible
is easily highlighted (as the bed of nails allows access
to each component individually). In some cases how-
ever, the failure of one or more components can have
a knock-on effect and the fault cannot easily be deter-
mined. Later on in the production stage, a product may
become more complicated and an ICT may not be pos-
sible, as access to components may be restricted (e.g.
our single board has now become an assembled set).
In this case Functional Tests (FCT’s) are carried out.
This involves stimulating “input” sections of the board
which can be reached, and measuring a corresponding
output. Here the correct repair is not as self-evident as
it was for an ICT test. The fault will be determined
by subtleties in the different outputs from the board,
which are harder to combine and reason to a fault. In
this paper the main aim is to try and predict the correct
repair action when a set of faults occurs (either from an
ICT or an FCT), based on the past history of the pro-
duction line. In this scenario, the technician repairing
the device may not need to know the exact nature of
the fault. Indeed the only information needed to ensure
the device progresses to the next stage of production is
to identify the correct repair action and to carry it out.
In this paper the problem of identifying the correct re-
pair action is what we term to be fault diagnosis and
repair.

Learning from Examples

Why use a technique which learns from examples,
rather than one which models the device itself? Mod-
elling is a lengthy process which takes a great deal of
effort and time. Modelling is also to a large extent
device-specific. For new devices, modifications to an
existing model or a completely new one will have to
be created. This is therefore only beneficial if the mod-
elling stage is only a small fraction of the total life of the
production. A more generic approach which can cope

with any device, and could be trained quickly without
human interaction, would be more beneficial. The open
question remains however as to whether a system with
no device specific knowledge can successfully learn from
a repair history. Some results using this approach with
Neural Networks (Totton & Limb 1991) suggest that it
is successful, and we continue in the same spirit here.
On many production lines, a vast amount of data is au-
tomatically logged by various systems. These are often
used by companies to re-order components when stock
is low, monitor and improve the manufacturing pro-
cess, and so on. In the production of electronic devices
this is especially evident, as most of the tests on the
equipment are performed automatically and the data
is often logged to a networked storage medium. In a
similar fashion, any repairs carried out are also logged,
for stock and performance purposes. Given that this
data exists and is frequently being used, it should also
be possible to use it to assist the technicians on the
production line. A system which can successfully learn
from examples, would be able to highlight correct re-
pair actions irrespective of the type of device, with only
the overhead of training on the database, and without
relying on gaining information from experts.

Data Representation
In a majority of cases, the problem of assigning repair
actions can be expressed as a pattern recognition prob-
lem. Specific faults on a device can be seen as attributes
which describe the object, and the repair action can be
interpreted as the class in which it belongs. One pos-
sible representation is therefore to have a vector which
has the same dimension as the number of possible faults
(if known, or as an approximation, the number of dif-
ferent faults observed so far), and for each entry have a
pass/fail indicator1. As a test will often fail in a small
number of ways, this leads to large, but very sparse
vectors in the data set. Of course, a device may re-
quire more than one repair action, and will then be
seen to belong to more than one class. This represen-
tation (sparse vectors belonging to multiple classes), is
very similar to those used successfully in the problem
of text categorisation (see e.g. (Joachims 1997)).

The Test-Fail-Repair Cycle
Before we proceed, one more detail concerning repre-
senting the problem as described above has to be dis-
cussed. The representation above works well in a major-
ity of cases, those primarily being the situations where
a board has one or more failures and these are corrected
by a well-carried out repair. Unfortunately, things are
not always that simple, and a product may fail a set
of tests and be repaired several times until the board
either passes or is deemed un-repairable. This process
is illustrated in figure 1. There are several reasons why

1Obviously the naive pass/fail approach can be extended
by including more information, e.g. fail high/low, specific
voltage of failed component etc.
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Figure 1: The Test-Fail-Repair Cycle

a certain product will go through the test-fail-repair cy-
cle before moving on to the next stage of production.
Principally these are

1. An incorrect repair was made.

2. The repair was carried out badly and did not correct
the fault.

3. The fault may have successfully been corrected, how-
ever there could be masked faults which are only be-
come apparent after the repair was made.

These situations give rise to problems when converting
a log file into a data set containing training vectors, as
all of the situations hi-lighted above give rise to multiple
entries in the file for a single product. One stratagem is
to include only the last entry in the log file (i.e. the set
of faults and associated repair, after which the product
passed). Another method would be to include several
entries. The first entry would include only those faults
which the first repair corrected, the second with only
those faults not apparent after the second repair, and
so on.

Support Vector Machines

Support Vector machines (Vapnik 1995; 1998) have
been demonstrated to be an effective tool when ap-
plied to a variety of applications in pattern recogni-
tion. These include the recognition of handwritten dig-
its (Schölkopf 1997) and 3-D objects (Roobaert 1999),
Breast Cancer prognosis (Friess, Cristianini, & Camp-
bell 1998), and engine-knock detection (Rychetsky, Ort-
mann, & Glesner 1999) Here we will briefly describe
the Support Vector algorithm for pattern recognition.
Suppose we have a data set (x1, y1), . . . , (xl, yl),xi ∈
Rd, yi ∈ {−1,+1}. We want to find a hyperplane which
separates the data and does so with maximal margin.
This can be achieved by minimising

1
2
||w||,

under the constraints,

yi[(w · xi)] + b ≥ 1.

Hyperplane

Margin

MarginSupport Vector

Support Vectors

Optimal Separating

Figure 2: The SV machine solution finds the optimal
separating hyperplane between two classes.

If the data are not linearly separable one can introduce
slack variables (ξi) and instead minimise a modification
of the above.

min
1
2
||w||+ C

l∑
i=1

ξi,

under the constraints,

yi[(w · xi) + b] ≥ 1− ξi,

where C is a constant chosen a-priori. In order to solve
this problem, one can introduce Lagrange multipliers
and consider the dual problem,

max
l∑

i=1

αi −
l∑

i,j=1

αiαjyiyj(xi · xj),

under the constraints,

0 ≤ αi ≤ C,
l∑

i=1

αiyi = 0.

This process has the effect of creating a maximal mar-
gin classifier. That is, the two classes presented to the
algorithm are separated by a decision hyperplane that
achieves the maximum separation of the two classes.
This is the so-called optimal separating hyperplane and
is shown in Figure 2.

It is possible to move from the restriction of linear hy-
perplanes by first non-linearly transforming the data
into a higher dimensional feature space by using some
mapping φ : R → F . As the optimisation only requires
to calculate dot products of these vectors, the map-
ping function need not be known explicitly. It is suffi-
cient to have a kernel function of the form K(x,xi) =
(φ(x) · φ(xi)) which corresponds to calculating a dot
product in the feature space and avoids having to com-
pute the mapping φ explicitly. The optimisation prob-
lem now is,

max
l∑

i=1

αi −
l∑

i,j=1

αiαjyiyjK(xi,xj),



under the constraints,

0 ≤ αi ≤ C,
l∑

i=1

αiyi = 0.

This gives rise to the decision rule

f(x) = sgn

(
l∑

i=1

αiyiK(x,xi) + b

)
.

Given that Support Vector machines construct a classi-
fier in a high-dimensional space, one might expect that
their generalisation ability would be restricted because
of the high number of parameters. The key to the gen-
eralisation ability of Support Vector machines though
lies not in the dimensionality of the feature space, but
in the VC-dimension (Vapnik-Chervonenkis dimension,
see e.g. (Vapnik 1995)) of the machine. Vapnik has
shown that the following inequality holds with proba-
bility at least 1−η, and gives a bound for the probability
of errors on a testing set:

Pr(errtestset) ≤ Pr(errtrainset) + φ(
l

h
,
−lnη

l
),

where h is the VC-dimension of the set of functions, and
l is the number of examples in the training set. For the
problem of fault diagnosis, the training vectors xi will
consist of pass/fail information for each test performed
on the board, cf. section data representation, and the
class y will be the repair action carried out. Although
the above optimisation procedure only deals with two
classes (repair actions), it is easy to generalise this to
the multi-class case. Suppose we have n classes, then
we can construct n support vector machines, each of
which separates one class from all the others. When a
new test example is encountered it is classified by each
of the SV machines. The machine which classifies it as
positive (i.e. a member of that class) with the maximum
margin, is deemed to be the correct classification.

Experiments and Results
Experiments were conducted on a small data set (58
examples, 13 attributes, 7 classes), taken from a test
board where faults were deliberately introduced so that
in all cases the true nature of the fault was known.

Experimental Set-up
One known good test subject was fitted to one of the
IFR Automatic Test Equipment (ATE) systems and the
test program executed. At the beginning of each run
the test program requested an unique board serial num-
ber to be entered. This number was incremented at
each run. This resulted in several runs yielding passed
test results for what appeared to be boards of different
serial numbers. One of the components on the board
was tampered with such that the test program would
fail. The test program was run, the unique serial num-
ber noted, and a set of failing results recorded. The

Method Total Error Max Error
%-based 13.0% 60%
pattern-matching 6.5% 40%
C4.5 4.0% 20%
SVM 1.0% 20%

Table 1: Total and maximum error rates for the 4 dif-
ferent methods on 20 random splits of the data set

i-Base Paperless Repair facility was entered and a de-
scription of the injected fault recorded against the par-
ticular serial number. The fault was repaired and the
test program rerun using the noted serial number. This
resulted in the board having a passed status to indicate
a successful repair had been carried out. This process
was repeated for a number of different faults in addi-
tion to using the same fault on a number of different
occasions. The test program stored the actual values
of passing, as well as failing results, to provide a com-
plete set of information to the diagnostic package. This
therefore simulates the actual process carried out on a
typical production line.Data was then extracted from
the database generated by the i-Base facility, and con-
verted into the representations discussed earlier.

Techniques Used

In order to obtain a measure of the success of the tech-
nique, four different methods were applied to the data
:

1. A %-based technique which looks at each fault in-
dividually and calculates the number of times that
each repair action was applied to that fail and was
successful. The percentages obtained for each repair
action on each fault are then totalled up, and the re-
pair action with the highest percentage is predicted
as correct.

2. A simple look-up table which matched fault patterns
seen before, and if conflicts arise, it predicts the one
which most frequently corrected the problem. If the
fault pattern has not been seen before, a repair action
is randomly selected.

3. The decision tree algorithm C4.5 (Quinlan 1993),
which is known to perform well on pattern recogni-
tion problems.

4. Support Vector Machines (described in the previous
section).

All four methods used the same data representation,
and for consistency they were run on 20 random splits of
the data, each time reserving 48 for training and 10 for
testing. The results of the experiments are summarised
in table 1. The maximum error quoted in the table is
the largest error suffered by the algorithm on any single
test run. All of the methods achieved 0 error on at least
one test run.



Discussion

In this paper we have shown that in principle, pat-
tern recognition techniques can be successfully applied
to the problem of fault diagnosis and automated re-
pair. Specifically, we have shown that one of the cur-
rent leading pattern recognition methods, namely Sup-
port Vector machines, are well suited to this task. In
many production environments, specifics of device fail-
ure and repair are electronically stored and often used
for processes such as stock control, or production pro-
cess planning. In many cases, there will often be suf-
ficient information in the existing database which can
be extracted and used in the manner described in this
paper. The ability to prompt inexperienced repair tech-
nicians to make an effective repair reduces the time an
faulty item spends in the repair loop. The ability to ac-
cess accurate repair information in the form of Pareto
graphs allows action to be taken to improve the as-
sembly processes and improve the quality of the prod-
uct. We would also like to provide additional confidence
measures for each prediction given by the algorithm, as
this would greatly enhance the usability of a decision
support system which used this technique. The sup-
port vector approach can easily be extended to provide
such values, see (Saunders, Gammerman, & Vovk 1999)
for details. Future work will be to incorporate the con-
fidence measures, and to integrate this approach into an
online hints facility within a production environment.
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