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Abstract. When correct priors are known, Bayesian algorithms give
optimal decisions, and accurate confidence values for predictions can be
obtained. If the prior is incorrect however, these confidence values have
no theoretical base — even though the algorithms’ predictive performance
may be good. There also exist many successful learning algorithms which
only depend on the iid assumption. Often however they produce no confi-
dence values for their predictions. Bayesian frameworks are often applied
to these algorithms in order to obtain such values, however they can rely
on unjustified priors.

In this paper! we outline the typicalness framework which can be used in
conjunction with many other machine learning algorithms. The frame-
work provides confidence information based only on the standard iid
assumption and so is much more robust to different underlying data
distributions. We show how the framework can be applied to existing
algorithms. We also present experimental results which show that the
typicalness approach performs close to Bayes when the prior is known to
be correct. Unlike Bayes however, the method still gives accurate confi-
dence values even when different data distributions are considered.

1 Introduction

In many real-world applications (such as risk-sensitive applications or those
which rely on human-computer interaction) it is desirable to obtain confidence
values for any predictions that are given. In most cases these confidence values
are used as a filter mechanism, whereby only those predictions in which the al-
gorithm has a certain confidence are predicted; other examples are rejected or
possibly simply abstained from and passed on to a human for judgement. Many
machine learning algorithms for the problems of both pattern recognition and
regression estimation give confidence levels, and the Bayesian framework is often
used to obtain such values. When applying the Bayesian framework one has to
assume the existence of a (often strong) prior, which for real-world data sets is
often chosen arbitrarily. If an incorrect prior is assumed an algorithm may give
‘incorrect’ confidence levels; for example, 95% predictive intervals can contain
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the true label with in much less than 95% of the time. For real-world applications
this is a major failure, as one would wish confidence levels to bound the number
of expected errors.

We therefore desire confidence values to be valid in the following sense. Given
some possible label space ), if an algorithm predicts some set of labels R C Y
with confidence ¢ for a new example which is truly labelled y € ), then we would
expect the following to hold over randomisations of the training set and the new
example:

Ply¢ R)<1-—t (1)

Moreover, we prefer algorithms which give ‘nearly precise’ confidence values,
that is values such that (1) approaches equality.

In this paper we outline the typicalness framework which can produce nearly
precise confidence values for data which is independently and identically dis-
tributed. We compare methods within this framework to their Bayesian coun-
terparts and show experimentally that when the correct prior is known the dif-
ference in performance of the two approaches is negligible; when an incorrect
prior is given (or benchmark data is used) however, the Bayesian algorithms
give inaccurate confidences, whereas those using typicalness remain valid and
even nearly precise.

The rest of this paper is laid out as follows. In Section 2 we describe the
typicalness framework. Sections 3, 4, 5 and 6 sketch algorithms for regression
estimation and pattern recognition in both the Bayesian and typicalness frame-
works. A more comprehensive treatment is given in [4]. In Section 7 we present
some experimental results and our conclusions are in Section 8.

2 The typicalness framework

Here we give a brief outline of the typicalness framework. For more details, see
[6,7,11]. Consider a sequence of examples (z1,...,2) = ((x1,91),---, (X1, 1))
drawn independently from the same distribution over Z = X x ) where )
is some label space. We can use the typicalness framework to gain confidence
information for possible labelings for a new example x;41. The idea is that we
postulate some labels §;11 and for each one we examine how likely it is that all
elements of the extended sequence ((x1,¥1), ..., (X, Y1), (X141, §i+1)) might have
been drawn independently from the same distribution, or how typically iid the
sequence is. The more typical the sequence, the more confident we are in g41.

To measure the typicalness of sequences, we define, for every n = 1,2,..., a
function ¢ : Z™ — [0, 1] which has the property
P((z1y.-y2n) i t((21y .oy 2n)) < 1) <71 (2)

If such a function returns 0.1 or less for a particular sequence, we know that the
sequence is unusual because such values will be produced at most 10% of the
time by any iid process. This means that we can exclude labels that we consider
to be ‘unlikely’ at some particular significance level, e.g. we can exclude all labels
for the new example which would occur only 10% of the time or less.



It turns out that we can construct such functions by considering the ‘strangeness’

of individual examples. If we have some family of functions f : Z"x{1,2,...,n} —
R, n=1,2,..., then we can associate some strangeness value «;
a; = f{z1,.-yzabt) t=1,...,n (3)

with each example and define the following typicalness function

oo >}
==

t((z15.--52n)) (4)

which can be proven to satisfy (2), provided that the strangeness function re-
turns the same value for each example regardless of the order in which they are
presented [8, 11].

3 Regression estimation

We will now consider some algorithms for regression estimation in the context
of the Bayesian and typicalness frameworks before moving on to the pattern
recognition setting.

Given a training sequence (x1,%1),. .., (X;,y;) where x; € R? and y; € R we
choose to model the dependency y; = f(x;) as y; = X; - W where w € R%. The
well known ridge regression procedure [3] recommends choosing w to achieve

!
al|wl|* + Z(yi - w-x;)* — min
=1

where a is a positive constant (the ridge factor).

The method has a natural matrix representation: let Y be the vector of
labels Y = (y1,...,y)" and X be the matrix formed from the training examples
X = (x1,...,%;). We now wish to find w such that

allw|? + [[Y = Xwl[* = min
Taking derivatives in w and rearranging we find this is achieved when
w=(X'X+al)'X'Y (5)
so our ridge regression estimate of the label for some new point x;; is

Jit1 =X (X' X +al)'X'Y

4 Bayesian ridge regression

We now give a Bayesian derivation of the ridge regression estimator. Suppose we
have some data points (x1,41), ..., (X, %) and an unlabeled example x;1. We



assume that the unlabelled examples x1, ..., 2,41 are fixed (deterministic) and
the labels y1, ..., y; were generated by the rule

Yi =W X3 +§ (6)

where w ~ N (0, 11) and each & ~ N(0,1). We would like to predict ;41 under
these assumptions. We should therefore predict

Y141 = Xi4+1 * Wpost + N(Ov ]-)

where wpes 1s chosen according to the distribution P(w|(x1,41), ..., (X, ¥1))-
Bayes rule gives us
P(W|(X1ay1)7 ceey (Xlayl)) X P(W)P((Xlayl)a EERE (Xla Z/l)‘W) (7)

Recalling that the Normal distribution’s density is

1 (z—m)?
e 202 (8)

oV 2w
equations (6), (7) and the multivariate form of (8) give us

1
P(w|(x1,y1). .. (xz, 1)) oc e~ 2allWIP T e 2 e
=1

o o S@lWIPHT L, (wi—xiw)?) ©)

If we choose w to maximise (9), which is equivalent to choosing w such that

!
allw||* +> (4 — x; - w)?) — min
i=1

we obtain exactly the same ridge regression estimator as in section 3.
Formula (9) can be written as
6—%(w/(X/X-l-al)w—ZY/Xw-&-Y/Y) o e—%(w—u)'(X/X-&-aI)(w—u) (10)
where p is given by the right-hand side of (5), and the probability distribution
of the multivariate Normal distribution is

P(x) o e~ 2 (mm) A7 x=p)

where p is the mean of the distribution and A is the covariance matrix. Therefore
the weight vector’s posterior distribution is

P(w|(x1,91), -, (xi,0)) ~ N(X'X +a) ' XY, (XX +al)™")  (11)
and so the predictive distribution for a new example’s label y;41 is

Yir1 ~ N(x (X' X +al) ' XY, %) (XX +al) x40 + 1)



Ridge Regression has a well known dual formulation [5], also known as Krig-
ing, which allows the ‘kernel trick’ to be applied to find non-linear decision rules.
The posterior for a new label’s classification in the dual form is

Gio1 ~ N(Y'(K +al) 'k, b(K +al) 'k + 1)

K is the kernel matrix defined by K, ; = K(x;,x;), 4,j = 1...] where K is
some kernel function [9], k is the vector defined by k; = K(x;,x;+1) and b is
the I 4+ 1-vector (0,...,0,1)". A t% confidence tolerance region for a label will lie
between the %% and %% quantiles of the label’s posterior distribution.

5 Typicalness tests for regression estimation

Now we consider applying the typicalness framework to the particular case of
regression estimation. In this case our sample space is £ = R? x R. If we
have some training sequence ((x1,¥1),--.,(X;,¥;)) and a new example x;41 it
is easy to find the typicalness of any postulated label ;1. We use some re-
gression algorithm whose predictions are independent of the order of training
examples (e.g. ridge regression) to make predictions ¢, ..., 7, Ji+1 on the basis
of the training sequence extended with the new example and its postulated label
((x1,91), -, (X, 1), (X141, G1+1))- We use the residuals to those predictions to
find strangeness values:

i = |yi — Ui (12)
and then use equation (4) (with n =1+ 1) to find the typicalness of §;41.

In regression however, we are not interested in the typicalness of a single
label, our confidence information should take the form of a set of possible labels
admissible at some confidence level. That is, we consider a set of labels R C Y
such that

t(x1,91), - (Ko y), (%141, 9)) <7 V¢ Ryr € [0,1] (13)

and return our confidence in the set as being at least 100(1 — 7)%. In statistics
such a set is often called a tolerance region. Probably we will most often have
some particular confidence level in mind (e.g. 95%) and will wish to predict some
tolerance region in which we have at least that much confidence. Obviously, in
order to find such a region we cannot consider all possible g.

5.1 Ridge Regression Confidence Machine

There exists an efficient application of the typicalness framework to ridge regres-
sion, the Ridge Regression Confidence Machine (RRCM), which allows tolerance
regions to be found for any particular confidence level without considering all
possible labelings of the new example. For details of the algorithm see [?].

The algorithm works by partitioning the real line into a set of intervals, each
of which has uniform typicalness. This avoids the problem of having to explicitly
consider all possible values for §. For any particular confidence level r%, the

algorithm returns a union of these intervals that have typicalness > 1 — 155-



6 Pattern Recognition

In this section we briefly describe two algorithms which provide confidence values
for pattern recognition tasks. One is Bayesian Transduction [1] which can be
shown to approximate the Bayes optimal decision; the other uses the typicalness
framework in conjunction with a kernel perceptron (which is equivalent to a
Support Vector Machine with no threshold).

6.1 Bayesian Transduction

The Bayesian Transduction (BT) algorithm [1] is a transductive algorithm which
uses Bayes Point Machines [2] as a basis. The idea behind the algorithm is as
follows. Suppose we have a training sequence S = (x1,¥1),- .-, (X, ;) where
x; € R? and y; € {£1}. Assume that our hypothesis space H is the class of
kernel perceptrons, where decision functions are given by

!
fw(x) = sign(w - ¢(x)) = sign <Z a; K(x4, x)> (14)

where w = (a1,...,q), ¢(x) = (K(x1,x),...,K(x;,x))’, and K is a kernel
function. We define the so-called wversion space as the set of all w which are
consistent with the training sample

V(S) = {w|fw(xi) = yi; (xi,93) € S;i=1,...,1}? (15)

Restricting ||w]|| = 1 ensures uniqueness of index w for every f = f, € H. Note
that the introduction of a test point x;41 may bisect the volume V of version
space into two sub volumes V1 and V~, where VT is the volume of version
space in which any perceptron would classify the test point as +1, and V'~ is
the volume where perceptrons predict a negative classification. When assuming
a uniform prior over w and the class of perceptrons it is clear that the ratio
pt = V*t/(VT + V™) is the posterior probability of labelling the test point as
+1. An ergodic billiard can be used to obtain estimates for the volumes of version
space which produce posteriors p™ (p~) which do not deviate significantly from
the true expectation of p* (p™).

For this paper we followed the algorithm given in [1] and used n = 1000
bounces for the billard, which bounds the deviation from the true posterior at
e < 0.05 with a probability of 99%. If the prior assumptions are satisfied, then
we would expect the predictions and confidence values assigned by the algorithm
to be approximately Bayes-optimal.

2 It is assumed that there is a function f* in the space H such that for all (x,7) € S,
y=f"(x).



6.2 Perceptron with typicalness

The typicalness framework has recently been successfully applied to pattern-
recognition Support Vector Machines [10, 7]. As a comparison with BT, we will
use the typicalness framework in conjunction with a kernel perceptron.

In order to obtain our confidences and predictions for a test example x4 1,
we do the following:

1. Add (x;41,1) to our training sequence and run the kernel perceptron algo-
rithm [2].

2. Use the resulting a; values (from the expansion of w) as the strangeness
values, and use eq (4) to obtain ¢T.

3. Repeat the above steps, but add (x;+1, —1) to the training sequence instead,
and use (4) to obtain ¢~.

Once we have values for tT and ¢~ we use the following: for every confidence
level 1 — r, output as the prediction region

—{-1,1}iftT >randt” >r
— {1} if t* > r and ¢t~ <r (and vice versa)
—Qifttr<randt— <r

7 Experimental comparisons

In order to compare the Bayesian and typicalness frameworks’ performance, we
generated artificial datasets from the prior distributions assumed by the Bayesian
algorithms. We then generated a similar data set, using a different (incorrect)
prior, and compared the results. We also include some results on benchmark
data sets which are taken from the UCI machine learning repository.

The general experimental set-up was as follows. For all experiments, 100
training and 100 test points were randomly selected a total of 10 times. For the
benchmark data sets, the training and testing examples were randomly drawn
from the set of all data points.

7.1 Regression estimation experiments

For the toy dataset we generated data points drawn from a uniform distribution
over [—10,10]° and for each of the 10 datasets drew a vector w from a five-
dimensional normal distribution N (0, I'). That vector was then used to generate
labels using the equation y; = w - x; + N(0,1). MATLAB implementations of
both algorithms take about 15 minutes to run all 10 splits on a 600Mhz DEC
Alpha processor. However more efficient implementations might show a gap in
performance between the algorithms.

This data precisely meets the prior for Bayesian ridge regression with the
ridge factor a = 1. We also experimented on two benchmark datasets, the auto-
mpg dataset and the Boston housing dataset. For each experiment, we show



the percentage confidence against the percentage of labels outside the tolerance
region predicted for that confidence level. The percentage outside the tolerance
region should never exceed 100 minus the percentage confidence, up to statistical
fluctuations. If we have two valid algorithms, we need some qualitative measure
with which to compare them. One natural comparison for regression estimation
is the width of tolerance regions. We also therefore plot the percentage confidence
against the mean width of the tolerance regions predicted for that confidence
level. We say that algorithms giving narrower tolerance regions are more accu-
rate. Figure 1 shows results on the artificial data which was generated to meet

Bayesian RR tolerance regions for data with w ~ N(0,1)

— a1
a=1000
— - a=10000

9 outside tolerance regions

o 10 20 30 a0 50 60 70 80 %0 100 o 10 20 30 40 50 60 70 80 0 100
9 confidence 9 confidence

RRCM tolerance regions with w=N(0,1) RRCM tolerance regions for data with w ~ N(0,1)

9% outside tolerance regions

Fig. 1. Bayesian RR and RRCM on data generated with w ~ N(0, 1)

Bayesian ridge regression’s prior. The top left graph shows that when Bayesian
RR is run with @ = 1, fitting the prior, it generates valid tolerance regions. If we
increase a however, a greater number of labels fall outside the tolerance regions.
With a set to 10000, only about 15% of labels fall within a 90% tolerance region.
Looking at the top right graph one can see that the tolerance region width is
almost identical no matter how a is set. This causes more and more errors to be
made as the regularisation is increased. If we instead look at the RRCM’s perfor-
mance (bottom graphs in Figure 1) we can see that the tolerance regions contain
almost precisely r% of the labels for every confidence level r, independent of the
setting of a.



These results show that the Bayesian algorithm only predicts tolerance re-
gions valid in the sense of (1) when using the correct prior. As we change a we
are effectively changing the prior, and the tolerance regions degrade in terms
of validity. The typicalness algorithm however makes no assumptions about the
value of the ridge parameter and so makes valid (and indeed ‘nearly precise’)
predictions independent of its value.

Auto mpg benchmark data. Auto mpg benchmark data

— RRCM — RRCM
~. ayesian - - BayesianRR
%0 ~-

o 10 20 30 a0 50 60 70 80 % 100 o 10 20 30 40 50 60 70 80 %0 100
9 confidence 9 confidence

Boston housing benchmark data Boston housing benchmark data

o 10 20 30 40 50 60 70 80 % 100 o 10 20 30 0 50 60 70 80 % 100
9 confidence 9 confidence

Fig. 2. Bayesian RR and RRCM applied to Auto mpg and Boston housing benchmarks

Figure 2 shows results from applying the algorithms to two real world datasets,
with the ridge coefficient a chosen so that a reasonable mean square error is
obtained. The top graphs in the figure show that Bayesian ridge regression is
overconfident on the auto-mpg dataset, predicting tolerance regions that are too
narrow. The RRCM predicts valid tolerance regions, the top right graph shows
that to do so it gives wider tolerance regions than Bayesian ridge regression. On
the Boston housing dataset, Bayesian ridge regression is too conservative. The
bottom left graph shows that its predicted tolerance regions are always valid,
however it also shows that they are much wider than those given by the RRCM.

As the RRCM’s tolerance regions are also valid, we prefer the more accurate
RRCM’s predictions.



7.2 Pattern Recognition Experiments

In this section we compare the Bayesian-Transduction (BT) algorithm and the
kernel perceptron when used within the typicalness framework. We ran experi-
ments on two toy datasets, and the well-known heart data set.

For the artificial data, one dataset was created using a uniform prior over w
such that ||[w|| = 1 (this is the correct prior for BT). We generated 100 train
and 100 test points uniformly in the range [—10, 10]® and then labeled all points
with a w selected from the uniform prior, and repeated this process 10 times.
For the second artificial data set we used a similar set-up to the one above,
except that we added noise to our data from a normal distribution, and the
experiments were run using an RBF kernel with ¢ = 0.2 (so the prior was no
longer satisfied). To get an idea of the timings involved, all 10 splits took a
total of 13 minutes when using BT (implemented in C++) and the typicalness
method took just over 7 minutes (in MATLAB). All experiments were run on a
233Mhz Dec Alpha. Both algorithms however have a naive implementation, and
improvements in performance could be made.

In the case of pattern recognition our aim is once again to exclude labels
which do not meet our confidence threshold. For a two class problem this means
that we have four possible predictions; the label +1, the label —1, both labels
{+1,—1} and the empty set {0}. Hopefully our algorithm will only give one
prediction for an example, however the other two cases also provide us with im-
portant information. Predicting the empty set indicates that we cannot make a
prediction at the required confidence level and this can be used as a filter mech-
anism to perhaps indicate that a human should classify this example. Similarly
predicting both labels indicates that it is not possible to reject a classification
with that confidence level, and this could also be used as a filter. It is interesting
to note that for confidence thresholds below 50%, the Bayesian method is always
forced to make a non-empty prediction, whereas the typicalness method is not.

As in the regression case we plot two graphs; the first shows the percentage
error achieved on the test set, and the second shows the number of ‘dual pre-
dictions’ made for each confidence level. We want our algorithms to be valid in
the sense of (1) so we would not expect any points to lie above the y = z line
in the first graph, again up to statistical fluctuations. Of course an algorithm
can be trivially made valid by always predicting both labels (this corresponds
to an infinitely wide tolerance region in the regression case), however we wish
our algorithms not only to be valid but also to be more accurate (have narrower
tolerance regions). The second graph therefore shows the number of dual pre-
dictions made for each confidence level and the lower this value the better. We
are less interested in empty predictions, since there cannot be many of them (at
most 100r% at any confidence level 100(1 — )%, up to statistical fluctuations).

The top graphs in Figure 3 show results for data generated by a correct prior.
Both algorithms give valid results for this data set. The bottom two graphs show
the setting when an incorrect prior is used. In this case BT is over confident and
produces too many errors for many confidence levels; whereas the values given
by typicalness are valid.
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Fig. 3. Bayesian Transduction (BT) and typicalness perceptron on data with a uniform
prior (top), and a non-uniform prior (bottom).

Figure 4 presents results on the heart data set. Once again BT is over confi-
dent and produces a higher error rate than would be expected by the confidence
rejection threshold. This is certainly not desirable in a real-world application,
for a 95% threshold you would not expect the error rate to be much above 5%
of errors. Notice how once again the typicalness method gives valid confidence
values, with error rates at certain thresholds never in great excess of the values
expected.

8 Conclusions

In this paper we presented a comparison of the Bayesian and typicalness frame-
works. We highlighted the need for algorithms to produce valid (and ideally
‘nearly precise’) confidence values and outlined the typicalness framework which
can be used in conjunction with many machine learning algorithms to achieve
this goal. We have shown that the typicalness framework can be easily applied
to existing well-known algorithms for both regression and classification prob-
lems. In our experimental results we have shown that when the prior is correct
Bayesian methods perform well (as expected), however the difference in perfor-
mance to the methods using the typicalness framework (which does not rely
on such priors) is negligible. When incorrect priors or real-world datasets are
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Fig. 4. Bayesian transduction and typicalness perceptron on the heart benchmark

used, then Bayesian methods can be shown to produce ‘incorrect’ confidence
values for their predictions, whereas the typicalness methods still produce valid
and nearly precise confidence levels. Indeed, in almost all our experiments typ-
icalness methods outperform their Bayesian counterparts in either validity or
tightness of confidence intervals.
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