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Abstract— Enhanced performance is demonstrated from a increase in quantum mechanical tunnelling of charge throug
buried, compressively strained-Si.7Gen.s p-MOSFET fabricated  the gate insulator [4]. A secondary effect of the reductién o
on a relaxed Sh.s;Gen.15 using a high thermal budget 0.25um ha gate insulator thickness is the reduction of electros an

CMOS process. The devices are designed to be fully compatébl T . . .
with a strained-Si CMOS process but offers a number of poterial hole mobilities in the inversion layers of CMOS transistors

benefits over a surface channel p-MOSFET for certain circuit [4][5]. Therefore a number of technology solutions are gein
applications. Transconductance, on-current, hole veloty and pursued to find methods of circumventing these problems.

mobility enhancements are observed over surface straine8i One of the leading contenders for improving the mobil-
channel devices on both SissGen1s and SbsGev virtual  iag of the inversion layer carriers is the use of strained-

substrates and the bulk Si control devices for constant effgive . .
channel length. The buried channel devices exhibit enhanogents Si technology [6][7][8]. A number of different schemes are

over the Si control devices of 93% in on-current and 62% in hok  being researched to produce appropriate strain in the n- and
velocity for 0.25 um effective channel length devices without p-channel devices but most include SiGe technology. Many

compromising the subthreshold characteristics. The extreted of the main microelectronic companies are involved in SiGe
effective mobility for. the burleq .channel device is over 40% technology research at some level.
greater than the universal mobility curve for bulk Si p-MOS o . .
devices at 0.55 MV/cm vertical effective electric fields. Ge has a 4.2% larger lattice constant than Si. Therefore the
. o growth of a Sj_,Ge, heterolayer on top of a silicon or a
Index Terms— CMOS, p-MOSFET, strained-Si, SiGe, quantum o jayed Sj_, Ge, buffer layer or virtual substrate results in
well, thermal budget, drain current enhancements, transcaduc- ? . .
tance enhancements, virtual substrate. a compr_esswely sj[ralned Sl.Ge channel :fn_l> y [8][9][10].
By growing a strain relaxation buffer of Si,Ge, followed
by a tensile strained-Si layer results in a structure whiolnf
|. INTRODUCTION a processing point of view, looks very similar to a silicon

SiGe in the form of the heterojunction bipolar transistopafer and can be processed in a fashion much closer to
became a main stream technology in 1999 with the saf@sStandard CMOS process [8][9][10]. This is the basis of
of the first circuits using the technology [1][2]. While thestrained-Si CMOS. The tensile strain splits _the conduction
share of SiGe devices has been increasing even during B@@d valleys with thel, valleys being lowered in energy and
microelectronics market downturn in the last few yearssit f1€ A4 valleys being increased in energy to such an extent that
complementary metal oxide semiconductor (CMOS) techn@nly the lowerA, valleys have any significant population of
ogy which has the largest share of the microelectronics etar&armiers [9][10]. A quantum well is formed with a conduction
[3]. CMOS devices are now being aggressively scaled to gaR&nd discontinuity of 0.6y eV for a strained-Si grown on
lengths below 100 nm and predictions suggest that the gcall@P Of @ relaxed Si,Ge, buffer and this combined with
is likely to continue for at least another decade [3]. A numbd€ high effective mass in the vertical direction confines th
of problems, however, are being found as the MOSFET gafléctrons in the tensile strained-Si surface layer. Thaatahn
lengths are reduced. In particular the gate oxide thickne_%glntervalley scattering _h_as demonstrated significantsiases
in state-of-the-art production devices is now below 2 nif the n-MOSFET mobility both at room [11]-[15] and low

and thinner oxides increase the off-state current throbgh f€mperatures [8]. Strained-Si on insulator has also beed us
to increase the mobility enhancements [16][17].
Manuscript received January 5, 2004; This work was supgdyethe U.K. For holes the situation is very different. For both compres-
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compressive strain. A second issue is that a tensile steine U oo
layer grown on a relaxed Si,Ge, buffer is higher in energy -0.20-W
to holes than the relaxed substrate [9][10]. This combined =25V |
with the lower effective mass in the vertical direction résu

in a larger spread of the wavefunction into the substrate
compared to electrons. It can result in a parasitic chanhel o
holes in the relaxed $i,Ge, buffer especially if high Ge
contents in the substrate are used to improve the mobititgesi
then only a thin strained-Si channel can be grown under the
critical thickness. Therefore the use of a buried, comjrelss
strained-Si_,Ge, quantum well may have advantages in
improving the hole mobility in such devices by the use of Drain-Source Bias (V)

the lower effective mass and by confining the holes away from ) ) )

the SiSIQ interface [7][18]. The mobilty enhancementn thd &, . , ™ Sraonert 22 & Lncion, of source rap st for gate
strained-Si surface p'MOSFET has been limited to less th@ﬁgth of 0.3um and 5um width and all measurements are dc.

30% for standard virtual substrates with Ge contents of 20%

and below [13][15] with silicon-on-insulator devices rémeal

for any significant mobility improvement [17][19]. then grown followed by the channel layers. The thickness of

A number of papers have demonstrated the higher mobiltlyis spacer layer was chosen after modelling the As diffusio
possible in compressively strained SiGe quantum wellseitrduring the high thermal budget fabrication process to predu
in p-MOSFETs or modulation-doped FETs but all have usexretrograde doping profile for the n-type wells. N-type dupa
low thermal budget processing [20][21][22]. In particuladiffusion of As and P in SiGe is known to be larger than that
deposited gate insulators rather than a thermal gate oxide hin bulk Si [25] but there is little accurate data in the litiena
frequently been used [20]. We have previously demonstratied the diffusivity of n-type dopants in SiGe. Therefore the
the performance of strained-Si n-MOS transistors fabeitatsetback of the dopant was modeled using diffusion data for
on top of a buried Si-Gey 3 layer with a Sj s5Gey 15 virtual  Si [26]. All process steps with thermal anneals above 400
substrate and processed using a high thermal budget®25 were included in the diffusion modeling. Simulations irate
CMOS process [14]. Significant performance enhancemethat a 50 nm spacer will result in a channel doping of less than
were demonstrated over bulk Si devices. Very little perfo0'® cm~2 whilst providing good subthreshold characteristics.
mance degradation was demonstrated with the addition of theOn the Sj s5Gey. 15 virtual substrate a 20 nm i-Si layer was
buried Sj.rGey 3 layer to the strained-Si n-MOS devices. Wgrown and a 17 nm i-Si on the §iGe) 2 virtual substrate.
have also demonstrated improved strained-Si p-MOS enhanBeth these tensile strained-Si layers are below the Maghew
ments with high thermal budget processing using low energnd Blakeslee critical thickness [27] and should therefmre
plasma enhanced chemical vapor deposition virtual substrastable to high temperature processing [28][29]. The buried
[23]. In this paper we demonstrate p-MOS transistors withcannel device was grown on top of a,&iGe 15 virtual
compressively strained buried($iGe) 3 channel, grown on substrate and consisted of a 50 nm undopegss$e) 15
a Sh.s5Gey. 15 virtual substrate and processed using the sarapacer, a 10 nm undoped compressively-straingd G#) 3
high thermal-budget CMOS process as the n-MOS devicelsannel and a 10 nm undoped tensile-strained Si cap. This
[14]. Enhanced performance over control Si deviced pf cap thickness was chosen after a number of simulations to
transconductance, hole velocity and mobility are obsefeed calculate the consumption of the cap through cleans, tHerma
a large range of effective channel length devices. The eteta oxide growth and also Ge diffusion [30] from the,$Ge) 3
effective mobility for the buried channel device is over 40%hannel. At least 2 nm of Si cap should remain after the
greater than the universal mobility curve for bulk Si p-MOSlevices have been processed. This is especially imporgant a
devices at 0.55 MV/cm vertical effective electric fields. any Ge incorporated into the oxide would create defect state
or result in Ge pileup at the SiOinterface increasing the
interface trapped charge density and reducing the tramsist
performance [31][32].

The wafers were grown by low pressure chemical vapor Device fabrication followed the process flow of a high-
deposition on 100 mm n-type (18-33-cm) (100) silicon thermal budget 0.2%xm CMOS process [14][23]. Si control
substrates [24]. The process gases @Hgiand GeH were wafers were also processed after the n-well was implanted
used with AsH as the n-type dopant. Virtual substrates wenesing a three stage phosphorus implamt ef10*2 cm~2 dose
grown at 800°C with the active regions grown at 53@ to at 400 keV2 x 10'3 cm~2 dose at 280 keV an2ix 10'2 cm—2
reduce Ge diffusion. Typical growth parameters can be fouddse at 70 keV. Modelling was used to design the well implant
in [24]. The virtual substrates consisted of 1utn graded to be nominally identical to the well doping in the as-grown
SiGe followed by 1xm of constant composition Si,Ge, heteroepitaxial material. It should be noted that Si waféth
doped with As tol0'7 cm~2 with Ge contents of y=0.15 and epitaxially grown doping profiles demonstrated near idetti
0.20. The temperature was then reduced to 360before performance to the present Si control implanted well wafers
a constant Ge composition undoped spacer of 50 nm wa&8]. No chemical mechanical polishing (CMP) of the stagtin

o control
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II. DEVICE DESIGN AND FABRICATION
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Fig. 2. The subthreshold plots for the Si control, straiSeédn Sp.sGey. 2
and buried channel devices. All devices have a lithograghte length of 0.3
pm and 5pm width.

Fig. 3. The effective channel length as extracted by thet smifl ratio
technique versus the drawn or lithographic gate length lier 4 different
wafers.

substrates at any stage was undertaken as previous resgt§ally have better subthreshold slopes that the Si dontro
have demonstrated significantly higher mobilities [14][2&n  devices.

CMP polished substrates[13][20]. As CMP is likely to produc
off-cut surfaces when the growth and relaxation processes a
considered [34], non CMP substrates should be expected to
produce higher mobilities [35]. A thermal gate oxide was The plotting of performance parameters as functions of
grown at 800°C followed by an anneal in a Natmosphere. lithographic gate lengthL,, however, can be misleading
Source and drain implants using high doped drain (HDD) a@$pecially for submicron LDD MOSFETSs. In such cases,
low doped drain (LDD) structures with 9\, spacers were the effective channel lengtlh.;, is normally taken as the
activated with a 1020°C rapid thermal anneal and a fullindependent variable rather thah, in comparing channel-
titanium salicide process was used. Oxide thicknessessof 4£ngth dependent performance parameters [37]. Partigutar

nm were extracted from C-V characteristics30f x 300 um LDD structures, the lateral straggle in the source and drain
MOS capacitors. doping can actually causk. ;s to increase significantly with

respect toL,, as can a retrograde, setback or modulation
doping profile [37]. Furthermorel,.;; may exhibit a strong
dependence on gate bias at low gate overdrijiés— V|

Fig. 1 shows the measured drain currefjt, as a function because of the virtual channel which forms in the LDD regions
of source-drain biad/;, for as-drawn 0.3 by fum (L, by under or close to the gate contact [38]. The diffusivities of
W) devices at three values of gate overdijVg — V;| where dopants in strained-Si and SiGe are expected to be higher
Vy is the gate voltage andf; is the threshold voltage. On-than in bulk Si especially for the p-type implant boron used
current enhancements are observed for each of the strainfed-the Ohmic contacts [39], possibly leading to different
Si devices including the buried channel over the bulk %IDD and HDD source and drain profiles and hence different
controls. At|V, — V| = —Vas = 2.5V, Iy, for the strained- metallurgical as well as effective channel lengtlis is
Si surface channel device on3kGe).15 exceeds that of effectively a measure of the length over which a gate bias
the control by 50%, whereas for the strained-Si device @an invert charge in the substrate to form a channel, and is
Sip.sGay .2 the enhancement is 60%. The enhancements also found to be sensitive to the doping profile perpendicula
higher at lower gate overdrivdW, — V| = 1.5 V) due to to the channel; it is found to be significantly longer than
the result of reduced self-heating in the strained-Si devicthe metallurgical gate length in the case of retrograderdppi
[36] since only dc measurements of devices are presented3id] and for buried channel Si pMOSFETSs [40]. In fig.L3
this paper. It is apparent from Fig. 1, however, that theemirr is plotted againstL.;; for the Si controls and the surface-
drive performance is considerably lower for the buried ctedn and buried-channel strained-Si devices. The shift and rati
device than for the surface channel strained-Si deviégs. method forL.;; extraction was used and is described in detail
enhancements of the buried channel device over the Si don&lsewhere [23][37]. For the shortest channel length dsyice
of 38% at -1.5 V and 21% at -2.5 V are observed. L, is longer thanL.s; for the strained-Si surface channel

The subthreshold,; versusV, — V;| characteristics for the devices, as expected from enhanced source and drain diffusi
same strained-Si (20%), buried channel and control devicaempared with the controls. For the buried channel devices,
are plotted in Fig. 2. All the devices exhibit on-currentfof L.s is indeed significantly higher by approximately Quf,
current ratios of at least seven orders of magnitude, stigges as anticipated.
together with the extracted values of subthreshold slépe, Replotting Fig. 1 for a constarii.¢; of 0.25 m is shown
that electrostatic integrity is not seriously compromigethe in Fig. 4. For L.y of 0.25 um, the buried channel device
strained-Si devices. The strained-Si and buried chanvédel® now has higher performance than the surface strained-Si p-

IV. EFFECTIVE CHANNEL LENGTH

IIl. ELECTRICAL RESULTS
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1,4, for the strained-Si surface channel device on@:SE6) 15 5 2000- ]
virtual substrate exceeds that of the control by 45%, for o
the strained-Si device on the 3iGeg) » virtual substrate the 1000 -
enhancement is 57% and the buried channel has a 92% en-
hancement. These values are reduced for an applied bias of 2. 0 .

V to 24%, 22% and 71% respectively again demonstrating the

self-heating in the devices [36]. It must be stated that robd

performance from the buried channel transistor is a devi€®. 5. (a) The velocity of the holes (that §&,%* /Co.) versus the drawn

with a lihographically or as-drawn gate length around @2 5% I"SSHE At enan o e four efers o deviie 0oy )

smaller than some of the other devices in the same plot aaghn.

demonstrates one of the disadvantages of the buried channel

design in that the gate has less control of the channel since i

is further from the gate. The results also demonstrate teat &train, in spite of the high thermal budgets employed in the

band-offset of the heterostructure also plays a significdllet fabrication of the devices. The buried channel devices have

in changing the effective channel length of a device. As tlimost comparable performance to the control Si device down

cost of lithographically typically increases exponeiyialith to 0.2 um drawn gate length.

the exponential decrease in minimum feature size [3][8% th

is a significant disadvantage for the buried channel device. _ .
The maximum transconductancg,** per unit width di- A. Effective Mobility

vided by the oxide capacitanc€,, versus lithographic and Effective mobilitiesy.¢s as functions of vertical effective

effective channel lengths are plotted in Fig. 5(a) and 5(kJectric fieldsEg;; were calculated for long channel devices

respectively. Them**/C,, is a measure of the hole velocity(L= 100 ym) according to the expressions

and therefore is a good measure of material performancéwhic

Effective Channel Length (um)

should be relatively device independent. It is also indepain feff = igd (Vo) Qine (1)
of oxide thickness allowing the values to be easily compared W J

to other devices with substantially different oxide thiekses. and

Again the performance of the buried channel device is above

that of the control Si sample for the lithographic gate léisgt Jo 1 ‘ 2
but below the strained-Si surface channel devices. When the I T s (@ +7Qinv) 2)

effective channel length is plotted, the buried channelaeis wheren = 1/3 for holes andQ,,.., and Q, are the inversion

superior to all the other devices for all gate lengths (F{g)p : ' o
Enhancements over the Si control of 23% for the strained-lr ii;gfiié@hiﬂzeé)rgzi ;uzubcﬂgﬁglitxgs) gg;ri?]i(? ﬁ?r:
on S .s5Gey 15 Virtual substrates, 45% for the strained-Si on Id(‘/g)/vds. measured at low drain bi?ﬁ@(s — 10 mV). The

Siy.sGey.» Virtual substrates and 62% for the buried channe| o :
. . arge densities are computed from split C-V measurements
devices were measured for an effective channel length &f 0. 1][42]:

um for a low source-drain bias of -0.1 V.

Fig. 6 shows the drain induced barrier lowering (DIBL) as a o0
function of lithographic gate length. No significant incsedn Qiny = / CyedVy 3)
the roll-off is observed for the strained-Si devices, itadiicg Vo
that electrostatic integrity is conserved notwithstagdthe and
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Fig. 6. The drain induced barrier lowering (DIBL) as a funatiof effective  Fig- 7. The effective mobility as a function of the verticaearic field for
channel length for 5:m wide devices. the strained-Si and buried channel devices with the uraven®bility of bulk

Si control devices plotted for comparison.

Vi also demonstrated over the Si control of 23% for the strained
Qv :/ CopdV, (4) Si on Sj s;Gey.15 virtual substrates, 45% for the strained-Si
Va on Sy G o virtual substrates and 62% for the buried channel

where Cy, is the gate-to-channel andy, the gate-to-body devices were measured for an effective channel length & 0.2
capacitance (per unit area). The flat-band voltégge which  ;m for a low source-drain bias of -0.1 V. The enhancement
limits the integration in (4) is determined from the highover the strained-Si p-MOS devices is only evident when
frequency MOS-C capacitance measurements [43], and #&ices with the same effective channel length are compared
overlap capacitance was subtracted frofp before perform- and this is reversed when constant lithographic or as-drawn
ing the integration in (3). The.;; — E.sy characteristics for gate lengths are compared. The effective channel length was
the buried and strained-Si devices are plotted in Fig. 7gloaround 0.2um longer than the as-drawn or lithographic gate
with the universal mobility curve for a bulk Si p-MOS devicelength for all gate lengths below/im which may preclude the
The control sample had effective mobility below the uniatrsuse of such buried technology devices as significantly short
curve and has been omitted for clarity. The results for thfate-length devices are required to be fabricated to obtain
strained-Si devices on both the,$§Gey 15 and the §jsGe&.2  performance enhancements over strained-Si technology.
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