
In Proceedings of the Nineteenth International Conference on Machine Learning (ICML ’02)

Syllables and other String Kernel Extensions

Craig Saunders craig@cs.rhul.ac.uk
Hauke Tschach hauke@cs.rhul.ac.uk
John Shawe-Taylor john@cs.rhul.ac.uk

Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK

Abstract
Recently, the use of string kernels that com-
pare documents as a string of letters has
been shown to achieve good results on text
classification problems. In this paper we in-
troduce the application of the string kernel
in conjunction with syllables. Using sylla-
bles shortens the representation of documents
and as a result reduces computation time.
Moreover syllables provide a more natural
representation of text; rather than the tra-
ditional coarse representation given by the
bag-of-words, or the too fine one resulting
from considering individual letters only. We
give some experimental results which show
that syllables can be effectively used in text-
categorisation problems. In this paper we
also propose two extensions to the string ker-
nel. The first introduces a new lambda-
weighting scheme, where different symbols
can be given differing decay weightings. This
may be useful in text and other applications
where the insertion of certain symbols may
be known to be less significant. We also in-
troduce the concept of ‘soft matching’, where
symbols can match (possibly weighted by rel-
evance) even if they are not identical. Again,
this provides a method of incorporating prior
knowledge where certain symbols can be re-
garded as a partial or exact match and con-
tribute to the overall similarity measure for
two data items.

1. Introduction

Over the past few years there has been considerable
interest in kernel-based algorithms. These algorithms
use a dual-based representation to facilitate the use of
kernel-functions, which correspond to calculating an

inner product between vectors after first (implicitly)
non-linearly mapping them into a higher dimensional
space. The ‘kernel trick’ allows many different types of
linear classifier to be efficiently constructed in a high-
dimensional space, and has lead to many successful
kernel-based algorithms, the most prominent of which
has been the Support Vector Machine (Boser et al.,
1992).

Until recently, in order to use these algorithms one
had first to create a vector representation of the data.
For many types of data, attributes from test examples
are already in this form and no real conversion process
is necessary. When dealing with types of data that
do not have a natural vector representation (e.g. text
data, gene sequences) it is common practice to explic-
itly construct vectors of real valued features that then
can be used as the data points above.

A standard approach for kernel based algorithms with
text data is the bag of words approach as used by
Joachims (Joachims, 1997). After some appropriate
preprocessing for each document a vector is created
with each entry containing the (weighted) frequency
of one particular word. This is known as the TFIDF
representation and is defined as follows. First the term
frequencies are obtained, TF (wi, x) is the number of
times that a word wi occurs in document x. These
values are then scaled by their inverse document fre-
quency,

IDF (wi) = log
(

n

DF (wi)

)
where n is the total number of documents in the corpus
and the document frequency DF (wi) is the number of
documents in which the word wi occurs. The weight
is then given by TF (wi, x)× IDF (wi).

With this representation the information used is the
number of appearances of different words – their order
in the document is ignored. Recently kernels which
operate on discrete structures have been developed

(Haussler, 1999; Watkins, 1999). One example of such
a kernel is the string kernel, which works directly on
strings of text without the need to first create a fea-
ture vector. This has successfully been applied to text
categorisation problems (Lodhi et al., 2001), but does
have some drawbacks in that it is computationally ex-
pensive to compute, and using the kernel with single
letters can perhaps seem a little unnatural.

In this paper we examine the use of the string ker-
nel technique with syllables. As mentioned before one
disadvantage with the bag-of-words approach is that
the information regarding the ordering of the words is
lost. The use of syllables or even words as the tokens
on which the string kernel is constructed would result
in shorter documents which would reduce the compu-
tation time. Whereas letters are too fine a representa-
tion, it may be that words are too coarse. Marginally
different spellings or prefixes/suffixes could distort a
matching kernel based on words (unless a complex pre-
processing algorithm is used to produce stems).

We also present two extensions to the string kernel,
which can be used with letters, syllables, words or any
other representation. The first extension introduces
the possibility of different decay weights λ for differ-
ent symbols. The second extension introduces the idea
of ‘soft matching’, where symbols can count as a match
(or weighted partial match) even if they are not iden-
tical.

The rest of this paper is laid out as follows. In Section
2 we briefly review the string kernel and its associated
features. In Section 3 we consider the use of syllables
in conjunction with the string kernel. In Section 4 we
introduce the two variants of the string kernel and in
Section 5 we present some initial experimental results.
We end with some conclusions and suggestions for fu-
ture work in Section 6.

2. The String Kernel

The string kernel has been shown to be successful
when applied to some small text categorisation tasks
(Lodhi et al., 2001). The basic idea is to compare
two documents by looking at common subsequences
of a fixed length. The subsequences do not have to
be contiguous. That means that e.g. the subsequence
cat is present both in the word caterpillar and in the
word cart. If the appearances of substrings are more
coherent they receive a higher weighting than appear-
ances with larger gaps. This is done by penalising the
lengths of the gaps exponentially with a decay fac-
tor λ ∈ (0, 1), see Table 1. Although the results of
experiments conducted with the string kernel on sub-

c-a c-r a-r c-t a-t c-u u-t
φ(car) λ2 λ3 λ2 0 0 0 0
φ(cat) λ2 0 0 λ3 λ2 0 0
φ(cut) 0 0 0 λ3 0 λ2 λ2

Table 1. The 2-character features of the words ‘car’, ‘cat’,
and ‘cut’.

sets of the Reuters-21578 dataset (Lewis, 1997) look
promising (Lodhi et al., 2001), it does have a high
computational cost. In (Lodhi et al., 2000) a dynamic
programming technique for calculating the kernel was
given that had time complexity of O(n|s||t|) where n is
the length of sub-sequences being considered, and |s|
and |t| are the lengths of the two documents. This is a
high computational cost (even for relatively short doc-
uments) and makes applying it to even medium sized
data sets impractical. Some recent work based on ap-
proximating the gram matrix generated by the string
kernel (Lodhi et al., 2002) has made progress and ap-
plied the kernel to larger data sets, however here we
would not only like to reduce computational costs, we
would also like to explore a new (perhaps better) rep-
resentation for text.

3. The Syllable Kernel

The idea of the syllable kernel is to replace the in-
dividual letters that are used as the ‘symbols’ in the
original string kernel by larger (and more informative)
chunks of the documents in such a way that the docu-
ments consist of fewer ‘symbols’ and therefore become
shorter. Motivated in part by this speed up advantage
we considered syllables rather than letters as our un-
derlying representation. If for example there are on
average 3 letters to each syllable, then the time taken
to analyse documents shrinks by a factor of 9.

In order to obtain syllables we used Franklin M.
Liang’s hyphenation algorithm as described in (Knuth,
1984) with American and French hyphenation pattern
files. Note that any other syllabification algorithm
could have been used at this point. We are aware that
a certain number of errors are made by such algorithms
(especially those that operate at speed), but as long as
they are consistent across the corpus, we would expect
that the effect of these errors on any results obtained
would be negligible.

3.1 Syllables in Reuters-21578

As an example of the results of the syllabification pro-
cess, Table 2 shows a list of words, and the resulting
syllables produced. These words were taken from the
Reuters-21578 collection, and are all the words in that

Table 2. An example of the results from syllabifying different words.

Word Syllables Word Syllables
computeraided com-put-eraid-ed computer com-put-er
computerknowledge com-put-er-knowl-edge computed com-put-ed
supercomputer su-per-com-put-er computers com-put-er-s
supercomputers su-per-com-put-er-s computing com-put-ing
computerized com-put-er-ized ltcomputer lt-com-put-er
computerbased com-put-er-based
microcomputer mi-cro-com-put-er
computerization com-put-er-i-za-tion

collection that contain the substring ‘comput’. No-
tice how the different spellings and prefixes and suf-
fixes change, but the syllables seem to capture a re-
lationship. It is worth noting that with clever stem-
ming the bag-of-words approach would have picked up
matches for computer, computed, computing, etc. as
well as matches for the two supercomputer words. It
would not of course produce matches for all the words
(although there is obviously some similarity), and it
would not take into account the ordering of other
neighbouring words. Similarly, although the standard
string kernel based on letters would produce matches
(all words have the substring ‘comput’, many other
words contain the substring ‘compu’ and many more
contain ‘comp’, for example comparable) – so that spu-
rious (incorrect) matches would be introduced. Note
that no other words in the entire set of documents
contained both the syllables ‘com’ and ‘put’. Also,
the string and syllable kernels are able to cope with
the misspelled entry ‘ltcomputer’, whereas the bag-of-
words would not.

It is important to note that the syllabification pro-
cess does not introduce a large time overhead due to
pre-processing. Once a list of unique words from a
document has been obtained, the syllabification pro-
cess is simply run on the list. This can then be used
as a look-up table in order to replace words in a docu-
ment with their respective syllables. Note that as more
documents are processed any new words encountered
can be added to the list and only these would require
syllabification.

4. Extensions of the String Kernel

In this section we introduce two new extensions to the
standard string kernel. The first uses different values
of lambda to assign different weights to ‘insertions’.
The second method allows the introduction of soft
matching, so that a partial match can contribute to
the overall similarity of two documents. Both of these
techniques would allow prior information about the

representation being used to be added into the kernel.

4.1 Simple Weighting of ‘Symbols’

First of all let us introduce some notation. A string
s is a finite sequence of symbols from an alphabet Σ,
including the empty sequence. A string s = s1, . . . , s|s|
has length |s| and st is the concatenation of two strings
s and t. The string s[i : j] is the substring si, . . . , sj

of s. We say that u is a subsequence of s if there exist
indices i = (i1, . . . , i|u|) with 1 ≤ i1 < . . . < i|u| ≤ |s|,
such that uj = sij , for j = 1, . . . , |u|, or u = s[i] for
short.

With the original string kernel we have one lambda.
Here the idea is that different symbols might have dif-
ferent significance. We therefore use (potentially) dif-
ferent lambdas for different symbols. For this purpose
we define for each symbol c ∈ Σ its own decay factor
λc ∈ (0, 1). The u coordinate of the feature vector for
the string s is now defined by

φu(s) =
∑

i:u=s[i]

i|i|∏
j=i1

λsj
.

That means that e.g. the feature ‘cat’ for the document
‘cartridge’ would receive the weighting λcλaλrλt.

We now define the weighted string kernel K̂ of two
strings s and t as

K̂n(s, t) =
∑

u∈Σn

φu(s)φu(t)

=
∑

u∈Σn

∑
i:u=s[i]

∑
j:u=t[j]

i|i|∏
k=i1

j|j|∏
l=j1

λsk
λtl

.

The evaluation of K̂ can be computed in a similar way
to that of the original string kernel if we define

K̂ ′
i(s, t) =

∑
u∈Σi

∑
i:u=s[i]

∑
j:u=t[j]

|s|∏
k=i1

|t|∏
l=j1

λsk
λtl

,

for i = 1, . . . , n− 1

and

K̂ ′′
i (sx, t) =

∑
j:tj=x

K̂ ′
i−1(s, t[1 : j − 1])λx

|t|∏
l=j

λtl
,

and use the following recursions:

K̂ ′
0(s, t) = 1, for all s, t,

K̂ ′
i(s, t) = 0, if min (|s|, |t|) < i,

K̂i(s, t) = 0, if min (|s|, |t|) < i,

K̂ ′
i(sx, t) = λxK̂ ′

i(s, t) + K̂ ′′
i (sx, t),

K̂n(sx, t) = K̂n(s, t)

+
∑

j:tj=x

K̂ ′
n−1(s, t[1 : j − 1])λ2

x,

K̂ ′′
i (sx, tu) = K̂ ′′

i (sx, t)
|u|∏
j=1

λuj
,

provided that x does not occur in u,

K̂ ′′
i (sx, tx) = λx

(
K̂ ′′

i (sx, t) + λxK̂ ′
i−1(s, t)

)
.

As mentioned above, using differing values of lambda
is one way of incorporating prior knowledge into the
string kernel. One possible application of this tech-
nique would be to assign different lambdas to syllables
of different lengths while using the syllable kernel. If
words could be grouped into syntactical groups (e.g.
adverbs, verbs, nouns etc.) then one could use a lower
penalty for adverbs for example as their insertion is
less likely to change the overall meaning of the sen-
tence.

4.2 Weighting of Soft Matches

Rather than the standard approach of only match-
ing identical symbols, a refinement would be not only
to match equal ‘symbols’ but also similar ‘symbols’
– with an extra factor that ensures that these soft
matches gain a lower weight than exact matches.

Look at the following example: If we have the words
‘calf’ and ‘calves’ the original string kernel with sub-
sequence length three would only find one common
subsequence: ‘cal’. Since the letters ‘f’ and ‘v’ sound
very similar (and indeed we know that plurals of words
ending in ’-f’ are sometimes formed using ’-ves’ after
the stem), we might also want these to register as a
match. However, we probably want to assign a smaller
weight to this soft match to distinguish it from an ex-
act match.

More generally we can construct for each pair {u, v}
of subsequences a similarity value Au,v. (That means
that if we define Au,v = δu,v (i.e. Au,v = 1 if

u = v, Au,v = 0 otherwise) we recover the origi-
nal string kernel). This leads to a symmetric matrix
A = (Au,v)u,v∈Σn ∈ R+

0

|Σn|×|Σn|
.

If this matrix is positive semi-definite1 we can define
a Kernel K̃ that uses this soft matching technique:

K̃n(s, t) = φ(s)>Aφ(t) =
∑

u∈Σn

∑
v∈Σn

φu(s)φv(t)Au,v.

The crucial part of this approach is the matrix A since
the evaluation of φ(s)>Aφ(t) is done in the feature
space. However, if we define a positive semi-definite
matrix a ∈ R+

0

Σ×Σ
that measures the similarity be-

tween two individual symbols we can define a sensible
matrix A by Au,v =

∏k
i=1 aui,vi

. Since this is the k-
fold tensor product of positive semi-definite matrices,
it is also positive semi-definite.

If we define

K̃ ′
n(s, t) =

∑
u∈Σn

∑
v∈Σn

∑
i:u=s[i]

∑
j:v=t[j]

λ|s|+|t|−i1−j1+2
n∏

i=1

aui,vi

and

K̃ ′′
i (sx, t) =

|t|∑
j=i

K̃ ′
i−1(s, t[1 : j − 1])λ|t|−j+2ax,tj

we are able to define some new recursions for this ap-
proach:

K̃ ′
0(s, t) = 1,

K̃ ′
i(s, t) = 0, if min(|s|, |t|) < i,

K̃i(s, t) = 0, if min(|s|, |t|) < i,

K̃ ′
i(sx, t) = λK̃ ′

i(s, t) +
|t|∑

j=i

K̃ ′
i−1(s, t[1 : j − 1])λ|t|−j+2ax,tj︸ ︷︷ ︸

=K̃′′
i (sx,t)

,

K̃n(sx, t) = K̃n(s, t) +
|t|∑

j=n

K̃ ′
n−1(s, t[1 : j − 1])λ2ax,tj ,

K̃ ′′
n(sx, ty) = λK̃ ′′

i (sx, t) +
λ2K̃ ′

i−1(s, t)ax,y ∀x, y ∈ Σ.

It can be seen that a combination of the two ap-
proaches for weighting as described above can easily

1Note that these matrices do not have to be positive

semi-definite since e.g.

 1 0.8 0.2
0.8 1 0.8
0.2 0.8 1

 is not positive

semi-definite.

be constructed. One application of the soft matching
approach could be used at the word level. If a look-up
table of synonyms or verbs and their future/past tense
equivalents existed, then soft matches could be defined
for words such as ‘taught’, ‘teaching’, ‘instructed’, etc.

5. Experiments

In order to present a fair comparison with the stan-
dard string kernel and the techniques presented here,
we performed tests on small data sets which unless
stated otherwise were subsets of the Reuters-21578 col-
lection. In order to get an idea of the timings involved
we conducted a timing experiment by generating a
1000× 1000 kernel matrix on a 1000 document subset
of the Reuters data set. So that a direct time compar-
ison could be made between different representations,
we used k = 3 for characters, syllables, and words
when generating the matrix. Note however that for
characters a larger value of k is needed in practice to
achieve good results, so the efficiency increase in using
larger symbols may in practice be larger (see Section
5.1). For k = 3 the timing values for the generation of
the kernel matrix is as follows:

Characters 149m 18s
Syllables 29m 24s
Words 14m 40s

As can be seen from the timings, syllables give ap-
proximately a factor of 5 speed up in efficiency over
characters and using words is twice as fast as using
syllables. Obviously bag-of-words is much faster, here
the kernel matrix creation takes approximately 10 sec-
onds, however in this paper we are interested in test-set
performance and can address the efficiency question at
a later stage.

The following sections give the results of comparing
the techniques in this paper to the string, word and
bag-of-words representations on the Reuters data set
and an English/French bilingual data set. We used a
simple kernel-adatron algorithm (Cristianini & Shawe-
Taylor, 2000) in all of our experiments. As well as
the standard error rate, we also used the standard F1
measure to evaluate the different approaches. This is
defined as follows:

F1 =
2PR

P + R

where P = precision and R = recall.

5.1 Comparing the Syllable and String
Kernels

For our first experiments we used cross-validation to
determine the best parameters for each method. We
used the first 150 positive and the first 150 negative ex-
amples of the acq-category as our tuning subset. First
we ran 20 random splits with different values of C
(powers of 10 from 0.01 to 100 000 000) and different
values of λ to determine the ‘optimal’ values for C
and λ using 200 examples for training and 100 exam-
ples for testing. After choosing the best parameters
these 300 examples were used as a training set, and
the next 700 examples (350 positive, 350 negative) of
the acq-category were used as an independent test set.

In order to make a true comparison between our meth-
ods and the bag-of-words approach we are interested in
comparing results to the TF-only bag-of-words model.
This meant that all kernels perform a frequency count
on their respective representations,2 whereas the re-
weighting of individual features (as done with TFIDF)
could be achieved in all string kernel variants used by
using the λ-weighting scheme introduced in Section
4.1. In order to see how re-weighting affects perfor-
mance however, we will also include results for bag-
of-words with TFIDF weightings. The results for the
experiments described above are given in Table 3.

As can be seen from the table all methods have sim-
ilar performance. Nonetheless the syllable kernel is
clearly best among the unweighted kernels, with all of
the string-kernel variants outperforming the TF only
representation. If the classification error of the sylla-
ble kernel and the TF-only kernel is examined more
closely, it is found that out of a total of 81 errors
which at least one of the algorithms made, there is
a total of 54 examples where their predictions dif-
fered. Of these 54 errors only 6 were made by the
syllable kernel, which gives a strongly significant re-
sult in the improvement for the syllable kernel (a one
tailed test gives a value of approx 1.2 × 10−8). Note
that the syllable kernel gets better results using k = 3
rather than k = 4 for the string kernel. This combined
with the speedup gained by the representation gives
an efficiency increase of just over a factor of 7. No-
tice however that the inclusion of the IDF weightings
for bag-of-words increases performance. This suggests
that an appropriate λ-weighting scheme for symbols
in the string kernel variants would also yield gains in
performance. The experiment was repeated using the
same subset, but with the first 600 documents as train-
ing and the remaining 400 documents as a test set.

2Using TF-only representation with a linear kernel is
identical to using the word kernel with k = 1

Table 3. Experiments with a subset of the Reuters data.
String Kernel Syllable Kernel Word Kernel B-o-w (TF only) B-o-w (TFIDF)

Best C 1e5 1e7 1e5 1e5 1e5
Best λ 0.1 0.05 0.01 – –
Best k 4 3 2 – –
Classification error 0.1514 0.1229 0.1814 0.1829 0.0800
Value for F1 0.8675 0.8900 0.8457 0.8443 0.9251
Number of SVs 184 218 157 150 252
Time 208min 29 min 9min 10 sec 10 sec

The performance of all algorithms increased, though
in this case the TF-only and string and word kernels
performed equally well. There was a slight drop in
performance however of both the syllable kernel and
TFIDF. These results are shown in table 4.

5.2 Soft-matching

For the soft matches we calculated for each pair (s, t)
of syllables the sum as,t := K1(s, t) + K2(s, t) where
Ki denotes the basic string kernel with λ = 0.5 and
subsequence length i. Since this leads to a kernel ma-
trix, the matrix a (that is implicitly used to construct
the matrix A (see Section 4.2)) is positive definite.
Obviously a more rigorous approach to obtaining fig-
ures for the “quality” of matches could be used, how-
ever we wanted to see if a simple approach could yield
any improvements in performance. Experiments were
performed on the same subsets as above, and the re-
sults are shown in Table 5, column 1. Unfortunately a
slight drop in performance was observed, however the
number of Support Vectors did decrease. One possible
reason for the slight decrease in performance is that it
is unclear if is that using a string kernel with k = 1 is
a sensible metric for determining if two syllables are
similar. Common syllables should perhaps be indi-
cated by matching two or three letter subsequences be-
tween them. We have however demonstrated in prin-
ciple that this type of technique can be used, and fur-
ther experimentation using different methods to obtain
’matching scores’ would be necessary to assess the true
performance of this method when using syllables.

5.3 Combined Kernels and Uneven Weighting

In addition to the straight application of soft-matching
to syllables, Table 5 also shows the results of two fur-
ther experiments. The first combined several different
length syllable-kernels. The syllable kernel was used
with lengths 1–4 to produce a new kernel which was
weighted in the following way: K(·, ·) = 0.2 × K1 +
0.3 × K2 + 0.3 × K3 + 0.2 × K4. It is hoped that by
combining these kernels we would be able to ’pick out’
the important groups of syllables. When using only

the first 300 examples to train on, the performance is
slightly worse than the syllable approach, however for
the larger data this technique outperforms all other
methods. The second experiment (results in the third
column in the table) was used to test the method in-
troduced in Section 4.1 where different weightings are
given to different symbols. For this experiment a syl-
lable kernel was used where the weighting given to the
syllable was proportional to its length, i.e. λs = λ|s|

where |s| is the length of the syllable s. The perfor-
mance of this approach is very similar to the syllable
kernel approach, however using a different weighting
scheme may yield better results.

5.4 Experiments on Bilingual Data

In this section we give some results on English and
French documents taken from the Hansard collec-
tion of Canadian parliament proceedings. English
and corresponding French documents for different ses-
sions of parliament can be extracted giving the same
data set but in two different languages. The collec-
tion is however not a classification collection so we
constructed a “health” category by using all docu-
ments with headings which could be considered to be
based around a health issue (these included documents
headed “Health”, “Breast Cancer”, “World Aids Day”,
etc.). A total of 500 positive and 500 negative ex-
amples were extracted for use as a subset (the head-
ings were removed from the documents) in both the
French and English versions. We then conducted ex-
periments similar to those in Section 5.1 using splits
of the first 300 examples to choose parameters and
then using that as a training set whilst testing on 700
independent examples.

Table 6 shows the results on each corpus. Once again
the results are similar for the different techniques, how-
ever for bag-of-words the performance actually de-
creases with the introduction of IDF. Both the TF
representation and the word kernel perform well, with
the word kernel with k = 2 performing better on the
English documents and TF achieving good results on
the French corpus, with the syllable kernel outper-

Table 4. Experiments with a subset of the Reuters data.
String Kernel Syllable Kernel Word Kernel B-o-w (TF only) B-o-w (TFIDF)

Best C 1e5 1e5 1e5 1e5 1e5
Best λ 0.1 0.05 0.01 – –
Best k 4 3 2 – –
Classification error 0.0325 0.0350 0.0325 0.0325 0.0350
Value for F1 0.9682 0.9657 0.9682 0.9684 0.9659
Number of SVs 305 379 281 287 443

Table 5. Using a soft-matching approach, a combined kernel approach and when using an uneven weighting scheme.

300/700 Soft Syllable Kernel Combined Weighted
Best C 1e5 1e7 1e5
Best λ 0.01 0.05 0.7
Best k 3 – 3
Classification error 0.1500 0.1343 0.1243
Value for F1 0.8645 0.8810 0.8886
Number of SVs 141 242 169
600/400 Soft Syllable Kernel Combined Weighted
Best C 1e5 1e7 1e5
Best λ 0.01 0.05 0.7
Best k 3 – 3
Classification error 0.0400 0.0250 0.0400
Value for F1 0.9604 0.9754 0.9612
Number of SVs 260 359 328

Table 6. Experiments using an ’artifical’ classification problem from the Canadian parliament proceedings.
English String Kernel Syllable Kernel Word Kernel B-o-w (TF only) B-o-w (TFIDF)
Best C 1e5 1e7 1e5 1e5 1e5
Best λ 0.1 0.05 0.01 – –
Best k 4 3 2 – –
Classification error 0.0814 0.0771 0.0729 0.0757 0.0929
Value for F1 0.9153 0.9199 0.9251 0.9224 0.9040
Number of SVs 189 211 190 186 266

French String Kernel Syllable Kernel Word Kernel B-o-w (TF only) B-o-w (TFIDF)
Best C 1e5 1e7 1e5 1e5 1e5
Best λ 0.1 0.05 0.01 – –
Best k 4 3 2 – –
Classification error 0.0971 0.0757 0.0771 0.0714 0.0971
Value for F1 0.8988 0.9219 0.9211 0.9269 0.8985
Number of SVs 205 230 207 197 271

Table 7. Experiments using and English and French corpus, 600 examples were used for training and 400 for testing
English String Kernel Syllable Kernel Word Kernel B-o-w (TF only) B-o-w (TFIDF)
Best C 1e5 1e5 1e5 1e5 1e5
Best λ 0.1 0.05 0.01 – –
Best k 4 3 2 – –
Classification error 0.0900 0.0825 0.0850 0.0825 0.0900
Value for F1 0.9062 0.9147 0.9124 0.9152 0.9072
Number of SVs 287 327 281 282 462

French String Kernel Syllable Kernel Word Kernel B-o-w (TF only) B-o-w (TFIDF)
Best C 1e5 1e5 1e5 1e5 1e5
Best λ 0.1 0.05 0.01 – –
Best k 4 3 2 – –
Classification error 0.0950 0.0875 0.0800 0.0850 0.925
Value for F1 0.9000 0.9091 0.9179 0.9124 0.9034
Number of SVs 294 352 327 301 498

forming the string kernel. Once again the experiments
were repeated using the first 600 documents as train-
ing and 400 for testing (see Table 7). For this ex-
periment a similar trend in results is observed. The
performance decrease for IDF is unexpected, however
the large number of distinct words in the French cor-
pus (approx 12000 compared to 9000 for the English
corpus) could account partially for this, along with the
consideration that the topic in this case was artificially
created, however further experimentation is necessary.

6. Conclusions

In this paper we have introduced a technique for apply-
ing the string kernel to representations of documents
based on syllables. One advantage of using syllables
is that document lengths are decreased which results
in an increase in the speed of computation of the ker-
nel. Initial experiments show that this technique is
successful in practice, however further experimenta-
tion is needed (perhaps on larger data sets in conjunc-
tion with an approximation technique) in order to fully
evaluate the approach. Experimental results were also
given using an English and French corpus on a compa-
rable document set. These results also indicated good
performance for the string kernel variants, which out-
performed the TFIDF bag of words approach.

We have also presented two extensions to the string
kernel which allow prior knowledge to be captured and
used. The first introduces a different λ (decay weight-
ing) value for different underlying symbols. An ap-
plication of this technique would be to syntactically
group words and provide lower-penalties for the intro-
duction of certain groups of words (such as adverbs)
that do not necessarily change the overall meaning of
the text. A successful term weighting scheme can im-
prove overall performance, as was shown in the com-
parisons between TF and TFIDF bag-of-words rep-
resentations. The second approach extends the ker-
nel to allow the soft matching of underlying symbols.
This would allow information regarding synonyms and
other semantic knowledge to be incorporated into the
matching process. We have demonstrated through
experimentation with the syllable representation that
both of these extensions work in principle, and these
additions therefore provide a more general form of the
string kernel which can be applied to different appli-
cation areas. One application area in which we believe
the string kernels would perform well is that of infor-
mation retrieval. These kernels tend to perform well
on short documents, and therefore using them to pro-
cess queries in an information retrieval setting could
yield good performance and would also be fast (due to

queries being very short).

Acknowledgements

This research was supported in part by the EU under
the KerMIT project no. IST-2000-25341.

References

Boser, B., Guyon, I., & Vapnik, V. (1992). A training
algorithm for optimal margin classifiers. In Fifth
annual workshop on computational learning theory.
ACM Press.

Cristianini, N., & Shawe-Taylor, J. (2000). An in-
troduction to support vector machines. Cambridge
University Press.

Haussler, D. (1999). Convolution kernels on dis-
crete structures (Technical Report UCSC-CRL-99-
10). University of California, Santa Cruz.

Joachims, T. (1997). Text categorization with support
vector machines: Learning with many relevant fea-
tures (Technical Report). Universität Dortmund,
Fachbereich Informatik. Revised: 19 April 1998.

Knuth, D. E. (1984). The tex book, vol. A of Computers
& Typesetting. Addison Wesley. Seventh printing,
June 1986.

Lewis, D. D. (1997). Reuters-21578 text categoriza-
tion test collection, distribution 1.0.
Available from http://www.research.att.com/˜lewis.

Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristian-
ini, N., & Watkins, C. (2002). Text classification
using string kernels. Journal of Machine Learning
Research. to appear.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., &
Watkins, C. (2000). Text classification using string
kernels (Technical Report NC-TR-2000-079). Neu-
roColt Technical Report.

Lodhi, H., Shawe-Taylor, J., Cristianini, N., &
Watkins, C. (2001). Text classification using string
kernels. Advances in Neural Information Processing
Systems 13 (pp. 563–569). MIT Press.

Watkins, C. (1999). Dynamic alignment kernels (Tech-
nical Report CSD-TR-98-11). Royal Holloway, Uni-
versity of London.

