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[1] We study the amplification of ducted whistler-mode waves in the Earth’s
magnetosphere by the cyclotron instability for different types of energetic electron
distributions in velocity space. Particular attention is paid to the comparison between cases
of smooth distribution functions and those with sharp gradients (‘‘steps’’) in velocity
space, which arise naturally owing to interactions with noise-like VLF emissions. We
show that step-like features greatly favor the amplification of whistler-mode waves
propagating along the Earth’s magnetic field line and hence the generation of narrowband
VLF emissions even if the electron anisotropy is only moderate. The results obtained are
discussed in light of observations of discrete VLF emissions from the magnetosphere, in
particular those of Bell et al. [2000]. INDEX TERMS: 2720 Magnetospheric Physics: Energetic

particles, trapped; 2730 Magnetospheric Physics: Magnetosphere—inner; 0654 Electromagnetics: Plasmas;

2772 Magnetospheric Physics: Plasma waves and instabilities; KEYWORDS: whistlers, amplification,

anisotropic, electrons, step-like, chorus

1. Introduction

[2] Satellite experiments on VLF chorus and triggered
(narrowband) emissions demonstrate the occurrence of very
large amplification of the primary whistler wave during the
process of cyclotron interaction with energetic electrons in
the Earth’s magnetosphere. This amplification reaches 40 to
60 dB [Carlson et al., 1990; Omura et al., 1991; Bell et al.,
2000]. Theoretical studies [Nunn and Smith, 1996; Smith
and Nunn, 1998], also show that for effective nonlinear
particle trapping and following generation of a triggered
signal, rather high amplitude of the primary whistler signal
near the equatorial region is required. Such values of the
wave amplitude can be reached due to a cyclotron inter-
action with trapped particles as the initial wave propagates
along the magnetic field line.
[3] It is very difficult to explain such a large amplification

using currently available satellite data on energetic electrons
in the Earth’s magnetosphere. Estimates show that the
observed trapped electron flux is insufficient to obtain these
amplification values if one assumes a typical smooth distri-
bution with moderate values of transverse anisotropy, i.e. the
with the perpendicular temperature not too much exceeding
the parallel temperature. Note that the quasi-stable electron
population in the inner magnetosphere is unlikely to have the
beam-like distribution with narrow spread. On the other

hand, assumption that the distribution function has a sharp
gradient (step-like feature) in velocity space allows one to
explain recent observations of energetic electrons and whis-
tler-mode waves [Trakhtengerts et al., 2001].
[4] In this paper, we consider a step in the distribution

function of energetic electrons over the field-aligned velo-
city component vk. This step appears in a natural way as the
cyclotron instability develops, and serves as the boundary
between resonant and non-resonant electrons interacting
with a whistler-mode hiss (broadband) signal [Bespalov
and Trakhtengerts, 1986; Tagirov et al., 1986; Trakhten-
gerts et al., 1996; Trakhtengerts and Rycroft, 2000].
[5] In contrast to the case of smooth energetic electron

distributions, which was studied in a huge number of papers,
the whistler cyclotron instability with a step-like electron
distribution has been considered by not many authors [Nunn
and Sazhin, 1991; Villalón and Burke, 1997; Hobara et al.,
1998]. This is probably explained by the absence of obvious
experimental evidence for this type of distributions. Indeed, to
detect such feature, the instruments with very fine energy,
pitch-angle, and temporal resolution are required. Moreover,
measurements should be made in the region close to the
equatorial plane, where the step is formed. Nevertheless,
some indications of a step in the distribution function were
revealed inOGO-5 satellite data [Lyons et al., 1972]. Unfortu-
nately, the energy and pitch angle resolution of these data
(�10% and �5 to 10�, respectively) were not enough to
reconstruct the exact width and dynamic features of the step.
[6] The formation of this step-like feature in the energetic

electron distribution was explained by Trakhtengerts et al.
[1996]. Nunn and Sazhin [1991] and Villalón and Burke
[1997] analysed the wave growth rate for this type of
distribution. It is important to note that, in the case when
waves propagate along the inhomogeneous geomagnetic
field, use of the local value of the growth rate for the
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analysis of wave generation is not quite correct. Rather, the
one-hop amplification of a wave packet determined by the
growth of wave amplitude along the entire path of the wave
packet between magnetically conjugate regions of the iono-
sphere is required. A rigorous analysis of this problem was
performed by Hobara et al. [1998].
[7] The main goal of this paper is to extend previous

studies by making a detailed comparison of the amplification
rates for both smooth and step-like distribution functions, for
similar values of parameters such as energetic electron
number density, energy, and transverse (pitch angle) aniso-
tropy. In particular, we show that choosing the parameters
according to recent observations of triggered VLF emissions
[Bell et al., 2000] yields a sufficient amplification rate to
explain these triggered emissions for the step-like distribu-
tion function, whereas that is impossible if a smooth distri-
bution with the same parameters is assumed.

2. Cyclotron Amplification of Whistler-Mode
Waves

[8] The one-hop amplification of a wave packet, i.e., the
ratio of wave amplitudes after and before it propagates
through the interaction region which is considered to be
near the equatorial plane of the magnetosphere, is defined as

� w;~k
� �

¼ ln
A lð Þ
A �lð Þ

� �
¼
Z l

�l

g w;~k; z
� �
Vgk

dz ð1Þ

where w and ~k are the frequency and wave vector of the
whistler-mode wave, z is the coordinate along the magnetic
field line (with the origin being at the equatorial plane), ±l
are coordinates of the feet of the field line in the conjugate
regions of the ionosphere, g(w,~k, z) is the local growth rate,
Vgk is the component of the group velocity parallel to the
geomagnetic field ~H , and A is the wave amplitude.
[9] To simplify the analysis, we shall restrict our consi-

deration to the case of ducted whistler wave propagation,
when ~k k ~H . The case of oblique wave propagation
demands more complex analysis, and will be considered
in another paper. In our case, the amplification can be
written as [Trakhtengerts et al., 1996]

� ¼ p2e2

cm2

Z 1
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0
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� �
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where the energetic electrons’ energy W = m(v?
2 + vk

2)/2 and
the first adiabatic invariant I? = mv?

2/2H are used as
velocity-space variables, v? and vk are, respectively, the
components of electron velocity parallel and perpendicular
to the geomagnetic field ~H , F0 is the distribution function of
the energetic electrons, and Nw = kc/w is the whistler-mode
wave refractive index. The factor I is defined by

I ¼
Z l

�l

exp i

Z z

0

�

vk
dz00

� �
dz

����
����
2

ð3Þ

where � = w � wH � kvk is the cyclotron phase mismatch,
and wH is the local electron gyrofrequency. The integrals in
(2) are taken at the stationary point zst, which is found from
the equality � = 0, the exact Doppler shifted cyclotron
resonance condition. The integration limits are determined
from the condition that the lowest resonance energy WRL =
mvRL

2 /2 is achieved at the equator (vRL = (wHL � w)/kL;
hereafter the subscript L refers to the values in the equatorial
plane). The electron charge and mass are, respectively, e and
m; c is the velocity of light in free space.
[10] We shall consider two different types of distribution

function for the energetic electrons. The first is a smooth
anisotropic distribution, which we choose in the form
[Cornilleau-Wehrlin et al., 1985]

Fsmooth ¼ Bsmooth

nh

v30
sin2�L

	 
a W0

W þW1

� �b

: ð4Þ

Here nh is the density of energetic electrons in the
equatorial plane, �L is electron pitch angle in the
equatorial plane, a is the anisotropy index (the ratio of
the perpendicular and the parallel temperatures of the
energetic electrons). The power-law energy spectrum is
determined by characteristic electron energy W0 = mv0

2/2
and parameters b and W1, which quantify the ratio between
the number of electrons with high and low energies: as W1

increases or b decreases the number of the high energy
particles grows. The parameter W1 ensures that the
distribution is finite at W ! 0. The normalization constant
Bsmooth is given by

B�1
smooth ¼

1

4

Z 1

0

x�a xþ x1ð Þ�b
Z x

0

yaffiffiffiffiffiffiffiffiffiffiffi
x� y

p dy dx ð5Þ

where y = I?HL/W0, x = W/W0, x1 = W1/W0.
[11] The second type of distribution is a distribution

with a step-like feature, which appears as the cyclotron
instability of a smooth energetic electron distribution with
a whistler hiss band develops; the position of the step
corresponds to the boundary between resonant and non-
resonant electrons [Trakhtengerts et al., 1996]. For this
type of distribution

Fstep I ;Wð Þ ¼ Bstepnh � c W? �Wk
	 


I?e
�W=W0 ð6Þ

where c(x) is the Heaviside unit function

c xð Þ ¼ 1; x > 0

0; x � 0

�
ð7Þ

Wk = W � I?H, W? = mv?
2/2, and v? corresponds to the

velocity at the boundary between resonant and nonresonant
electrons. The normalization constant Bstep ¼ ð m

2pW0
Þ3=2

HL=W0 The exact form of the smooth part of the distribution
used in (6) is not important, because its contribution to the
amplification is much smaller than that of the ‘‘step’’ part.
[12] Substituting (4) into (2), we find the following

expression for whistler wave amplification by a smooth
energetic electron distribution:
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where xmin ¼ WRL=W0; vkst ¼ v0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yHst=HL

p
,Hst =H(zst),

the subscript st refers to the stationary point introduced in (2),
nc is the cold plasma density, and wp is the electron plasma

frequency. To calculate I we use the stationary phase method
[Trakhtengerts et al., 1996]:

I ¼
pvk

@�=@z

����
����
zst

ð9Þ

where
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� �
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¼ zst

a2
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þ
kv 2?L

HL

vkst
�� ��

 !
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Here we have used the following approximation of the
whistler wave refractive index in case of propagation parallel
to magnetic field line

Nw ¼ wp=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w wH � wð Þ

p
ð11Þ

and the parabolic approximation for both the magnetic field
strength and cold plasma density distribution along the
geomagnetic field line close to the geomagnetic equator:

H

HL

¼ nc

ncL
¼ 1þ z2

a2

� �
ð12Þ

where a ¼
ffiffiffi
2

p
R0L=3 is the characteristic scale of the Earth’s

magnetic field at the magnetic shell L, and R0 is the Earth’s
radius.
[13] Using (11) and (12), we have, from � = 0, the

following cubic equation for the value of the gyrofrequency
at the stationary point wHst

:
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þ w2
Hst
w

w2
pLv

2
0

w2
HLc

2
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þ wHst

w 3w�
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2
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[14] In the case of a step-like distribution (6), we have,
from (2),

�step¼
nhffiffiffi
p

p
ncNw

w2
pv0

c

wH � wð Þ
w
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0

H2
st
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e�yI ; if v? � vRL
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where now vkst ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2? þ yv20ð1� Hst=HLÞ

p
, and the value

for wHst
is the solution of (13) for x = y + v?

2/v0
2.

[15] The expression (9) for I is valid only for a smooth
distribution of energetic electrons, when the dispersion in vk
is large enough [Hobara et al., 1998]:

�vk=vk � kað Þ�2=3

This condition means that rather small part of particles is at
cyclotron resonance with a wave at the stationary point zst.
For parameters used in our calculations (see bellow) (ka)�2/3

� 10�2.
[16] Thus, in the case of a step-like distribution function,

we should use more accurate expression for I. For that a

Figure 1. One-hop amplification �smooth of a whistler-
mode wave by energetic electrons with a smooth anisotropic
distribution function of the energetic electrons (8) as a
function of wave frequency normalized to the equatorial
gyrofrequency, for different values of the anisotropy index
a and energy parameter W1: (a) W1/W0 = 0.1; (b) W1/W0 =
0.5. The values of the other parameters are b = �2.5, v0 =
8 � 104 km/s, nh = 10�2 cm�3, L = 3.4, wpL = 9 � 105 Hz.
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second order expansion of the spatial dependence of � near
the stationary point zst in the calculation of integral (3) must
be used. Following Hobara et al. [1998] we have:

I ¼ 4p2a2b�2=3Ai2 �P yð Þð Þ ð15Þ

where P( y) = b2/3(zst/a)
2, Ai is Airy function, and

b ¼ wHLa

vkst
1þ w

2wHst

þ kv 20
2vkLwHL

y

� �
: ð16Þ

3. Results

[17] The results of numerical calculations for the expres-
sions for one-hop whistler wave amplification, (8) and (14),
are presented in Figures 1–4. In our calculations we have
used the parameters corresponding to the experimental data
presented by Bell et al. [2000]. These are: L = 3.4 (a � 104

km, wBL/2p � 22 kHz), nh = 10�2cm�3, wpL
= 9 � 105Hz,

and v0 = 8 � 104km/s (W0 � 18 keV).
[18] The dependence of the one-hop amplification �smooth

on wave frequency w, for different values of the anisotropy
index a and energy parameter W1, is shown in Figures 1a
and 1b. It is important to note, that in the case of a step-like
distribution function, the profile of the energetic electron
number density along the magnetic field line is similar to
the case of a highly anisotropic smooth distribution (see

Figure 2 of Trakhtengerts et al. [2001]). Thus, to compare
the smooth and step-like distributions with similar para-
meters, we use rather high values of the anisotropy index a
in our calculations.

Figure 2. The maximum one-hop amplification �max ( panels a,c) and the corresponding frequency
wmax ( panels b,d) of a whistler-mode wave by energetic electrons with a smooth anisotropic distribution
(8). The different curves correspond to different values of the anisotropy index a ( panels a,b) and the
parameter W1 ( panels c,d); all the other parameters are as shown in Figure 1.

Figure 3. One-hop amplification �step of a whistler-mode
wave by energetic electrons with a step-like distribution
function for the energetic electrons (14); v0 = 8 � 104 km/s,
v?/v0 = 0.2, nh = 10�2 cm�3, L = 3.4, wpL = 9 � 105 Hz.
The frequency w? and corresponding value of �?(19) are
marked by the dot.
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[19] It is seen that for a smooth distribution function the
amplification occurs over a rather wide frequency band,
from, say, 0.25 to 0.8 wHL. For a chosen distribution (4), the
maximum value of the one-hop amplification increases as
the anisotropy index a increases. As is mentioned above,
the larger value of W1 parameter corresponds to the dis-
tribution with more high-energy electrons. Thus, the num-
ber of resonant particles and, hence, the one-hop
amplification increases with increase in W1. For rather large
values of this parameter (W1/W0 > 1) the dependence of the
amplification on W1 becomes very weak. A decrease in b
leads to a similar variation in the distribution and amplifi-
cation as an increase in W1. So, the results for one particular

value of this parameter are shown. The dependencies of the
maximum amplification �max and the corresponding fre-
quency wmax on the anisotropy index a and parameter W1

are presented in Figure 2. The one-hop amplification
typically lies between 3 and 13 for the plasma parameters
shown.
[20] The amplification in the case of a step-like distribu-

tion is shown in Figure 3. This plot demonstrates the typical
dependence of the one-hop amplification on frequency,
which exhibits one strong narrowband peak and nearby
much weaker peaks. Varying the parameter values leads to
change of the maximum amplification value and corre-
sponding frequency, as illustrated in Figure 4.
[21] In contrast to the previous case (Figures 1 and 2), the

one-hop amplification �step has a sharp maximum with a
large value (^ 100); only a very narrow part of the whistler
band is amplified (�w/wHL � 0.01). The position of the
maximum of the one-hop amplification is near the fre-
quency w? defined by the condition that the wave is in
cyclotron resonance with the step exactly at the equatorial
plane:

v? ¼
wHL � w?

kL
: ð17Þ

The oscillatory behavior of the amplification is due to the
fact that the efficiency of cyclotron interaction, which is
determined by the factor I, depends on the wave-particle
phase mismatch between two cyclotron resonance points
±zst symmetrically located on either side of the equator. This
mismatch is a function of the electron energy and pith-angle
and wave frequency, so the I has the oscillatory
dependence on P( y), which results in oscillatory depen-
dence of amplification on the frequency. This point is
discussed in more detail by Hobara et al. [1998].
[22] From (17) we have

v?wpL

cwHL

� �2

¼ wHL

w?
1� w?

wHL

� �3

ð18Þ

and the following expression for the one-hop amplification
at the frequency w?:

�? ¼ 4p3=2Ai2 0ð Þ
nhw2

pLa
2v0

ncv?c2
e�W?=W0

Z1
0

b�2=3y 2e�ydy: ð19Þ

The results of numerical computations of (19) and (18) are
presented in Figure 4 for three values of v0 = 4, 8 or 16 �
104 km/s, i.e. for electron energiesW0 � 4.5, 18, 70 keV. As
the value of the step velocity v? grows, efficiency of
cyclotron wave-particle interactions increases (b�2/3 term in
(19)), but the number of resonant particles decreases
(e�W?=W0 term in (19)). Therefore the dependence of �? on
v? has a maximum (Figure 4a). It should be mentioned that,
according to our numerical analysis, the maximum of the
one-hop amplification �step(14) is not exactly at the
frequency w? (see Figure 3, where the frequency w? and
corresponding value of �?(19) are marked by the dot). The
maximum is at a slightly higher frequency, by �w? < 0.005
w? and the value of maximum amplification is about twice
that obtained from (19).

Figure 4. (a) Shown as a function of v? is the one-hop
amplification �? of a whistler-mode wave by a step-like
distribution of energetic electrons for the case when the
step is in resonance with the wave at the equatorial plane.
(b) Values of the wave frequency w? corresponding to
resonance with the step at the equatorial plane; other
parameters have the values nh = 10�2 cm�3, L = 3.4, wpL =
9 � 105 Hz, as before.
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4. Discussion

[23] The results obtained clearly demonstrate the essential
difference between cyclotron amplification of a whistler-
mode wave propagating along the magnetic field for a
smooth anisotropic distribution function for the energetic
electrons (Figures 1 and 2) and for a distribution with a
sharp velocity gradient (‘‘step’’, Figures 3 and 4). In the
case of the smooth distribution (4), we have moderate
values of the one-hop amplification over a wide frequency
band (�smooth < 6, for reasonable values of the anisotropy
parameter a < 4). For the step-like distribution (16), a very
high value of the one-hop amplification takes place over a
very narrow frequency band.
[24] This shows the great advantage of a step-like dis-

tribution function over a smooth anisotropic function when
seeking an explanation for discrete VLF emissions, for
which a large value of the one-hop whistler-mode wave
amplification is usually required to account for the observed
emission properties. For example, the one-hop amplification
by a step-like distribution at L = 3.4, W0 = 18 keV, and v? /v0
� 0.2 (these values were measured in the experiment of Bell
et al. [2000], the value of v? is estimated from the condition
(18) for a top frequency of a hiss band) is an order of
magnitude greater than the amplification by a smooth
distribution function even at strong anisotropy (a = 16).
This theory can therefore explain the amplification which is
needed for a satisfactory interpretation of the triggered VLF
emissions observed by Bell et al. [2000], while to explain
that with use of a smooth distribution demands extremely
high values of the anisotropy index.

[25] Acknowledgments. This work was supported by NATO Linkage
grant ESR.CLG 975144 and INTAS grant No. 99-00502. P.D.L., A.G.D.
and V.Y.T. have been partly supported by the Russian Foundation for Basic
Research, grant 99-02-16175a.
[26] Janet G. Luhmann thanks Manfred P. Leubner and another referee

for their assistance in evaluating this paper.

References
Bell, T. F., U. S. Inan, and R. A. Helliwell, Simultaneous triggered VLF
emissions and energetic electron distributions observed on Polar with
PWI and HYDRA, Geophys. Res. Lett., 27(2), 165–168, 2000.

Bespalov, P. A., and V. Y. Trakhtengerts, The cyclotron instability in the

Earth radiation belts, in Reviews of Plasma Physics, vol. 10, edited by M.
A. Leontovich, pp. 155–192, Plenum, New York, 1986.

Carlson, C. R., R. A. Helliwell, and U. S. Inan, Space-time evolution of
whistler mode wave growth in the magnetosphere, J. Geophys. Res.,
95(A9), 15,073–15,089, 1990.

Cornilleau-Wehrlin, N., J. Solomon, A. Korth, and G. Kremser, Experi-
mental study of the relationship between energetic electrons and ELF
waves observed on board GEOS: A support to quasilinear theory, J.
Geophys. Res., 90(A6), 4141–4154, 1985.

Lyons, L. R., R. M. Thorne, and C. F. Kennel, Pitch angle diffusion of
radiation belt electrons within the plasmapause, J. Geophys. Res., 77,
3455–3474, 1972.

Hobara, Y., V. Y. Trakhtengerts, A. G. Demekhov, and M. Hayakawa,
Cyclotron amplification of whistler waves by electron beams in an in-
homogeneous magnetic field, J. Geophys. Res., 103(A9), 20,449 –
20,458, 1998.

Nunn, D., and S. S. Sazhin, On the generation mechanism of hiss-triggered
chorus, Ann. Geophys., 9, 603–613, 1991.

Nunn, D., and A. J. Smith, Numerical simulation of whistler-triggered VLF
emissions observed in Antarctica, J. Geophys. Res., 101(A3), 5261–
5277, 1996.

Omura, Y., D. Nunn, H. Matsumoto, and M. J. Rycroft, A review of ob-
servational, theoretical and numerical studies of VLF triggered emissions,
J. Atmos. Terr. Phys., 53, 351, 1991.

Smith, A. J., and D. Nunn, Numerical simulation of VLF risers, fallers and
hooks observed in Antarctica, J. Geophys. Res., 103(A4), 6771–6784,
1998.

Tagirov, V. R., V. Y. Trakhtengerts, and S. A. Chernous, On the nature of
pulsating auroral patches, Geomagn. Aeron., 26(4), 600–605, 1986.

Trakhtengerts, V. Y., and M. J. Rycroft, Whistler-electron interactions in the
magnetosphere: New results and novel approaches, Geomagn. Aeron.,
62(17–18), 1719–1733, 2000.

Trakhtengerts, V. Y., M. J. Rycroft, and A. G. Demekhov, Interrelation of
noise-like and discrete ELF/VLF emissions generated by cyclotron inter-
actions, J. Geophys. Res., 101(A6), 13,293–13,303, 1996.

Trakhtengerts, V. Y., A. G. Demekhov, D. L. Pasmanik, E. E. Titova, B. V.
Kozelov, D. Nunn, and M. J. Rycroft, Highly anisotropic distributions of
energetic electrons and triggered VLF emissions, Geophys. Res. Lett.,
28(13), 2577–2579, 2001.

Villalón, E., and W. J. Burke, Theory of quasi-monochromatic whistler
wave generation in the inner plasma sheet, J. Geophys. Res., 102(A7),
14,381–14,395, 1997.

�����������
A. G. Demekhov, D. L. Pasmanik, and V. Y. Trakhtengerts, Institute of

Applied Physics, RAS, 46 Ulyanov Street, 603600 Nizhny Novgorod,
Russia. (andrei@appl.sci-nnov.ru; pdl@aurora.appl.sci-nnov.ru; vyt@
appl.sci-nnov.ru)
D. Nunn, Department of Electronics and Computer Science, South-

ampton University, Southampton SO17 1BJ, UK. (dn@ecs.soton.ac.uk)
M. J. Rycroft, Faculty of Computer Sciences and Engineering, De

Montfort University, Leicester LE 1 9BH, UK. (Michael.J.Rycroft@
ukgateway.net)

SMP 4 - 6 PASMANIK ET AL.: CYCLOTRON AMPLIFICATION OF WHISTLER-MODE WAVES


