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Abstract. We analyse Trimpi signatures during 23 and 24 April 1994 at 4
sites on or near the Antarctic Peninsula (Palmer, Faraday, Rothera, and Halley) on
subionospheric VLF signals received from 4 US naval transmitters (NAA, NSS, NLK
and NPM). Electron precipitation patches are found to be large i.e. about 1500 km
x 600 km, with the longer axis orientated east-west. Calculations using a 3-D Born
scattering model, where patch densities are 1.5 el cm 2 above ambient at the center
at about 84 km altitude, provides results which are consistent with this picture. A
high proportion (38%) of the Trimpi events were associated with strong lightning
flashes in Eastern USA. When lightning discharges had currents >65 kA (positive or
negative) there was a >80% chance of seeing an associated Trimpi event. The chance
of seeing any Trimpi events fell to near-zero for discharges of <45 kA. The largest
Trimpi perturbations occur when the center of the precipitation patch is 700-800 km
from the receivers. This result is consistent with the modelling calculations for large
patches. The equatorwards edge of the precipitation patch was estimated to be at
about 60°S, close to the magnetic conjugate of the lightning. The close association of
the equatorwards edge of the precipitation patch with the conjugate location of the
causative lightning is consistent with a quasi-ducted whistler-induced precipitation
mechanism. Nonducted whistler-induced precipitation mechanisms would predict a
5-10° latitudinal gap between the lightning and the equatorwards edge of the patch.
However, the lack of observed whistlers at the time of the Trimpi events is consistent
with the nonducted whistler mechanism and is not consistent with the quasi-ducted
mechanism, although the distances from duct exit point to receiver may have been too
large (~700-1000 km) for the signals to be detectable. Using the significantly larger
patch dimensions determined in this study it is estimated that lightning may well be

10-100 times more effective at depleting the radiation belts than hiss.



1. Introduction

The Trimpi effect is a well known phenomenon in radio science and consists of
transient perturbations in amplitude and phase of a received narrow-band subionospheric
VLF/LF signal. Such signal perturbations are known to be due to localised D-region
inhomogeneities or LEP (Lightning-induced Electron Precipitation) produced Ionisation
Enhancements (LIE’s), comprising perturbations in electron density and possibly
collision frequency [Helliwell et al., 1973]. The energetic electron precipitation arises
from lightning whistlers interacting with cyclotron resonant radiation belt electrons in
the equatorial zone.

Determining the typical size of LEP patches would allow the calculation of electron
precipitation fluxes following wave-particle interactions [Nunn and Strangeways, 2000];
input into modelling the dimensions of plasmaspheric ducts [Strangeways, 1999]; and
investigation of the possibility of oblique (nonducted) whistler-induced precipitation
[Lauben et al., 1999; Johnson et al., 1999].

Previous estimates have suggested patch sizes of the order of 50 km x 200 km,
with the major axis lying parallel to lines of constant L-shell. Since early estimates
were made by Crombie [1964], and then Tolstoy and Rosenberg [1986], increasingly
sophisticted computer modelling and experimental setups have been used to refine the
picture. Dowden and Adams [1989] found strong diffraction regions caused by patches
less than 50 km wide in latitude, although considerably more in longitude. Similarly,
Smith et al. [1993] and Smith [1996] used Trimpi signatures observed in the Antarctic
Peninsula region to infer perturbed regions of the ionosphere with dimensions of 50 km
latitudinally and 200-300 km longitudinally. Poulsen et al. [1993] suggested the need for
ionospheric disturbances of radius 50-200 km in order to scatter a measureable signal.
Using a network of receivers Dowden and Adams [1993] found that most LIEs had
latitudinal dimensions of 100-250 km, with longitudinal dimensions being much larger.

However, some of the events observed in that study were consistent with smooth lateral



spread, but the remainder required fine structure to explain the observed diffraction
patterns. The interpretation of the results of these early studies were made more
complex by the realisation that non-LEP Trimpi (some of which appear to be associated
with red sprites) were contaminating the studies [Rodger, 1999; Nunn and Strangeways,
2000].

More recently Dowden et al. [2001] used the decay timescale information from
Trimpi signatures to determine the dimensions of LEP and non-LEP patches. LEP
patches were found to be thin (20 km vertically), and significantly larger than in earlier
work (300 km x 1000 km). In contrast, non-LEP patches have significant vertical
extent, but are only 25-50 km in horizontal extent. Further indications of large LEP
patch dimensions came from Lauben et al. [1999] and Johnson et al. [1999] where
the inferred spatial extent of ionospheric disturbance from precipitation caused by
obliquely (nonducted) propagating whistlers was ~1000 km. Large patch dimensions
have also been suggested by Strangeways [1999] through a quasi-trapped whistler
propagation theory in which ducted energy spreads at the magnetic equator. This
produces a significantly larger precipitation footprint than the actual dimensions of the
plasmaspheric duct.

In this paper we analyse Trimpi signatures received during 23 and 24 April
1994 at 4 sites on the Antarctic Peninsula (Palmer, Faraday, Rothera, and Halley).
Subionospheric VLF signals were received from 4 US naval transmitters (NAA, NSS,
NLK and NPM). We analyse a small representative subset of Trimpi events in detail,
but also consider data collected from March-October in 1994 and 1995 in order to relate
the small dataset to typical Trimpi characteristics. The Trimpi analysed in this study
were generated following the occurrence of lightning in North America. Local sources
of lightning that might produce non-LEP signatures in the datasets are extremely rare
in the Antarctic [Ingmann et al., 1985]. 3D modelling is used to calculate the patch

dimensions and hence investigate the likelihood of ducted or non-ducted VLF waves



being responsible for the production of electron precipitation patches.

2. Experimental setup

Subionospheric signals from VLF transmitters were recorded on OMSK receivers
(Dowden et al., 1994) at Faraday (65.3°S, 64.3°W), Rothera (67.5°S, 68.1°W), and
Halley (75.5°S, 26.5°W), Antarctica [Clilverd et al., 1999]. The phase and amplitude of
the signals were logged with a time resolution of 0.4 s. The phase and amplitude receiver
used at Palmer (64.8°S, 64.1°W) is described in Lev-Tov et al. [1995] and was run
with a time resolution of 0.1 s. The transmitters studied were NAA (24.0 kHz, Cutler,
Maine), NSS (21.4 kHz, Annapolis, Maryland), NLK (24.8 kHz, Seattle, Washington),
and NPM (23.4 kHz, Oahu, Hawaii). Palmer monitored NAA, NSS, NLK and NPM.
Faraday monitored NAA and NPM. Rothera monitored NAA, NSS and NLK. Halley
monitored NAA and NSS. Thus, ten great circle paths (GCPs) criss-cross the region of
the Antarctic Peninsula where precipitation is expected to occur initiated by continental
lightning in the USA [Burgess and Inan, 1993; Lev-Tov et al., 1996, Clilverd et al., 1999].
The locations of the receivers and the GCPs to the transmitters are shown in Figure 1.
The L=2.0 and L=2.5 contours are also shown (dashed lines). An ellipse is plotted to
indicate the possible size and shape of the region into which electron precipitation is
likely to be occurring in the Trimpi events studied in this paper.

The Trimpi observed were analysed using a simple algorithum to determine the size
of the changes in amplitude and phase of the transmitter signals. The significance of the
Trimpi events were estimated based on the maximum change of amplitude compared
with the noise levels occurring at the time of the event. A best fit regression line through
the data points is determined for before and after the event time, using 11 samples
before and after (either 0.4 s or 1.25 s per sample). Separate regression lines, deviations,
and differences at t=0 intercept are calculated for the phase and amplitude, which are

then combined (linearly) to detemine the significance parameter. Typical significance



values of 1000-2000 occur for well defined Trimpi events. Examples of a range of values
are shown in Figure 2 where the long-dashed lines represent the best fit regression line,
and the vertical short-dashed line represents the t=0 intercept. The significance of the
Trimpi (effectively the Signal/Noise) increases as the Trimpi effect becomes larger and
more well defined. Clearly the lower panels of Figure 2 shows a Trimpi that has the
largest amplitude and phase changes, and the least noise. Thus the significance value is
the highest. Significance values of <500 are not considered as indicating the presence of
a Trimpi. The significance of the Trimpi observed will be discussed in the next section.
In this study we are concerned only with Trimpi caused by LEP. As such, any
non-LEP Trimpi occurring at the transmitter end of the GCP could contaminate the
datasets. Non-LEP Trimpi are produced by ionospheric disturbances directly associated
with lightning and can be expected for transmitters in the mainland USA and Hawaii.
Lightning is very rare in Antarctic Peninsula region, and thus we do not expect local
non-LEP Trimpi to appear in the study. By only selecting Trimpi events that were
simultaneously observed on the majority of the GCPs mentioned above we can be
confident that the ionospheric disturbance is located in the Antarctic Peninsula region,

and hence, can only be caused by LEP.

3. Observational Results

The phase and amplitude changes associated with an isolated Trimpi event observed
at 05:47 UT on 23 April 1994 are shown in Figure 2. The plot shows NAA at Faraday,
NSS at Rothera, NLK at Rothera, NPM at Palmer, and NPM at Faraday. A clear
Trimpi signature is observed at 05:47:05 UT on all of the paths, both in phase and
amplitude. The onset of the Trimpi event is simultaneous on all paths to within +1 s.
A second smaller Trimpi event can be seen occurring at 05:47:24 UT.

The interpretation of simultaneous Trimpi event occurrence on all paths is either

one of a large patch of precipitation covering the whole region, or of several smaller



patches which individually interact with separate paths. Potentially, small patches of
ionisation could be caused by multi-component whistlers. However, small patches of
ionisation would be expected to produce Trimpi events with a variety of phase and
amplitude relationships. Small patches distributed over a range of distances from GCPs
would give a wide ranging distribution of phase versus amplitude in a scatter plot
[Dowden and Adams, 1989]. In this study we analysed ~1000 Trimpi events during 1994
and 1995. There were never less than 5 GCPs recorded, always covering the whole of
our study region. The vast majority of the events (>95%) exhibited consistent phase
and amplitude relationships on any path that showed an effect i.e. positive phase,
negative amplitude for NPM at Faraday [Clilverd et al., 1999]. These relationships are
given in Table 1 which shows the typical phase and amplitude relationships observed for
the 9 GCPs logged during this study. In general, the paths to the north of the receivers
showed positive amplitude and positive phase events, while paths to the northwest and
west showed negative ampitude and positive phase. This finding provides convincing
evidence for a single large patch.

For the purposes of comparison with several different paths it is more efficacious
to plot scatter phase, which is the phase between the scattered signal and the GCP
direct signal, and scatter strength, which is the ratio, in dB, between the strength of
the scattered field and the GC path direct signal. The relationships between amplitude
and phase Trimpis and scatter strength and scatter phase are well known and readily
derived [Dowden and Adams, 1988; Wolf and Inan, 1990]. The scatter strength and
phase of a representative subset of the events taken from 23 and 24 April 1994 are given
in Table 2. Group (a) is representative of the Trimpi events that occurred on 23 April
and group (b) representative of 24 April. All the events shown had amplitude and phase

characteristics consistent with the relationships shown in Table 1.



3.1 Location of causative lightning

If we can determine the typical location of the causative lightning flash this should
provide some information on the likely location of the precipitation patch. If the
precipitation is caused by nonducted VLF waves then we should expect the precipitation
to occur on the same longitude as the flash, but probably polewards [Johnson et al.,
1999]. If the precipitation is caused by ducted VLF waves then the patch could be offset
latitudinally either side of the causative lightning location. However, on average, the
location of the duct would be close to the longitude of the lightning, although probably
slightly polewards to facilitate efficient coupling [Strangeways, 1981].

To locate the lightning discharges likely to result in Trimpi events observeable from
the Antarctic Peninsula we analysed lightning data from the coastal region of eastern
USA. The US National Lightning Detection Network (NLDN) has operated since 1989.
A network of ~ 106 receiving stations is connected to a central processor that records
the time, polarity, signal strength (proportional to peak current), and number of strokes
of each cloud-to-ground lightning flash detected over the continental United States
[Cummins et al., 1998]. NLDN is designed to have data from an average of 6-8 sensors
contributing to the determination of the location of a stroke. The detection efficiency
during the period of interest in this paper (April 1994) is estimated to have been 70-80%
for return stroke peak currents of 5 kA or more, with a typical location accuracy of
2-4 km over the US, falling to 8-16 km at 200-400 km offshore.

During 05-11 UT of 23 and 24 April 1994 we looked for the occurrence of large
lightning flashes and checked to see if a Trimpi event was observed a second or two
later on the Antarctic peninsula. For flashes with currents >100 kA there were 44
agreements versus 2 occasions where such high-current lightning occurred but no Trimpi
were seen during good, low noise, receiving conditions. This finding is consistent with
the findings of earlier work, where Inan et al. [1988] found that 25 large lightning

discharges could be associated with Trimpi events on all but 1 occasion. Burgess and



Inan [1990] also found a close association between Trimpi events on NPM-Palmer and
lightning occurring in eastern USA. The 2 lightning flashes without corresponding
Trimpi signatures in this study had latitudes of between 26-28°N, significantly south of
the conjugate region to Faraday (38°N) and may mark the furthest end of the latitude
range for detectability from the Antarctic sites of the resultant precipitation events.
Figure 3 shows the significance values of Trimpi events observed on NPM-Faraday
against latitude (Figure 3a) and longitude (Figure 3b) of the lightning discharge.
There are increasing significance trends as the flashes occur towards 34°N, 76°W, with
relatively small significance values when flashes occur elsewhere. The conjugate location
to this region is 60°S, 80°W, which is to the west of the Antarctic Peninsula. The
center of a precipitation patch resulting from the lightning [Lauben at al., 1999 and
Strangeways, 1999] would be expected to be polewards of this location. At 65°S the
longitude of 80°W is ~700 km from the Faraday receiving site.

During 05-11 UT on 23 April 1994 334 Trimpi events were observed on NPM-
Faraday. Only 42 Trimpi events were immediately preceded by flashes where the
discharge current was >100kA (positive or negative). Of the other 292 events 84 are
associated with recorded discharges in the eastern USA. The causative discharges for the
remaining Trimpi events probably occur out to sea, which is too far eastwards to be seen
by NLDN. This is confirmed by the detection of simultaneous Trimpi events occurring
on the NSS-Halley GCP, which is more easterly than the other paths discussed here.
Figure 4 shows the percentage of discharges that have been associated with a Trimpi
event versus the current of the discharge. The bins are 5 kA wide. The percentage
association falls rapidly towards zero at about 50 kA (positive or negative). This may
represent the lower limit of the wave amplitude for whistlers interacting with cyclotron
resonant radiation belt electrons. For discharges above 65 kA there is a good chance of
seeing a coincident Trimpi event (>80%).

The Trimpi events that occur during 08-09 UT on 24 April 1994 appear to be
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caused by lightning flashes from eastward of the region of maximum significance,
possibly 65-70°W. Evidence for this is that we observe Trimpi events on all the usual
paths plus NAA-Halley and NSS-Halley (see Table 2). The Halley paths cross the L=2.5
contour at ~50°W. In addition, no coincident large lightning flashes were detected close
to the eastern sea board, the inference being that the flashes were further out to sea and
not detected. The significance on NPM-Faraday for these Trimpi is only 3000, compared
with the maximum of 5500 shown in Figure 3. We assume this is because the patch of
precipitation has significant area to the east of Faraday compared with the other Trimpi
events, and thus produces less effective Trimpi events on the westerly NPM-Faraday

path. At 65°S the longitude of 50°W is ~650 km from the Faraday receiving site.

3.2 Estimates of Patch size

The simplifying assumpton made here is that the scatter amplitude of Trimpi
events is proportional to the length of the GCP through the patch itself. This is likely
to be true for large smoothly varying patches, but not true for small denser patches.
However, we believe that the evidence presented in Table 1 is highly suggestive of large
patches and therefore we continue with that assumption in place. During 23 and 24
April 1994 about 400 Trimpi events were analysed in detail. Table 2 gives details of a
representative subset of these events which occur to the west of Faraday on April 23,
group (a), or close to overhead on April 24, group (b).

In group (a) the east-west path, NPM-Faraday, typically observes Trimpi events
of about —10 dB. This is much larger than the north-south path, NSS-Rothera, which
typically observes —18 dB events. Thus the horizontal dimensions of the region of
ionization on the path must be larger east-west than north-south, with the ratio being a
factor of about 2.5. The most easterly path, NAA-Faraday, has Trimpi events that are
typically —26 dB and probably represents the eastern edge of the patch. No events in

this group were observed on the far eastern path, NSS-Halley. Lightning flashes can be
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associated with some of these events and they are located around 33-34°N, 75-76°W.
If the middle of the patch is close to the conjugate longitude of the lightning flash
determined above we would estimate the major axis of the patch to be of the order
of 1500 km (twice the distance of patch center to Faraday) and the minor axis of the
order of 600 km. The Trimpi events on 23 April 1994 that occurred before the start of
daylight conditions (/=11 UT) all gave similar results regarding patch dimensions.

However, the Trimpi events in group (b) on 24 April 1994 could not be associated
with an NLDN-observed lightning flash on the east coast of USA. This is probably
because the lightning conjugate is much nearer to the longitude of Faraday than
the example described immediately above, and hence beyond the NLDN detection
area. This is consistent with the fact that these are the Trimpi that were observed
simultaneously on the Halley paths. The perturbation observed on the NLK-Rothera
path is this time smaller than that on NAA-Faraday, suggesting that the patch effects
a smaller amount of path to the west of the peninsula than paths directly north of
Faraday - again consistent with the center of the patch being near Faraday. In fact the
westerly path, NPM-Faraday, has basically the same scatter values as the northerly
path, NAA-Faraday, suggesting that the patch is as wide in latitude as it is in longitude
to the west of Faraday. To the west the NLK-Rothera path crosses the L=2.5 contour
about 500 km from Faraday. To the east the NSS-Halley path is 650 km distant. This
suggests that the major axis is at least about 1200 km and that the ratio for the
major:minor axis is about 1200:500 or a factor of 2.4.

In the above representative examples we have descibed the process by which
precipitation patch sizes were estimated. Using Trimpi events on 23 and 24 April 1994
we estimate the precipitation patch sizes to be ~1500 km by ~600 km. Typically they
are centered to the west of the Antarctic Peninsula by about 700 km, although they can
be much closer at times. The next section describes the modelling processes used to

investigate the relationships shown in Tables 1 and 2 using a 3-D Born Trimpi scattering
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model, and a patch of similar size and shape to that estimated above.

4. Modelling
4.1 The LIFE scattering model

The direct transmission paths for which numerical modelling will be made are
NPM, NSS, NAA and NLK to Faraday, Antarctica. Separate computations will not be
made for a receiver at Palmer, which is very close to Faraday. Rothera station is some
300 km to the SW of Faraday, and again separate computations need not be made,
provided that the location of the patch relative to the GCP is adjusted appropriately.
GCP data required for these computations are as follows

1) NPM—Faraday; f=23.4 kHz; range=12.3 Mm; GCP bearing to Faraday 96° w.r.t.
magnetic North.

2) NAA-Faraday; {=24.0 kHz; range= 12.2 Mm; GCP bearing 178°.

3) NSS-Faraday; f=21.4 kHz; range= 11.6 Mm; GCP bearing 170°.

4) NLK-Faraday; f=24.8 kHz; range= 13.6 Mm; GCP bearing 138°.

The transmitters are modeled as vertical electric dipoles at zero altitude. The
receiver at Faraday is assumed to be a vertical electric dipole, though in experimental
practice the horizontal magnetic fields are measured. The computer code for the
numerical modeling of the VLF Trimpi effect is fully three dimensional with an
anisotropic ionosphere and curved earth, and is based upon a linear weak scattering
or Born formalism. The code is very general and has been used to successfully model
VLF scattering not only from ‘classical’ LIEs as here, but also from a time decaying
red sprite plasma column [Nunn and Rodger, 1999] and from assemblies of spritelet
plasma columns [Rodger and Nunn, 1999]. Apart from the LIE itself the background
ionosphere is assumed to be homogeneous. This presents some difficulties for the

present computations since the GC path and transmitter—LIE paths are always very
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long (~12 Mm). The ambient ionospheric profile and of course ambient magnetic field
vector will vary considerably over this distance making the incident complex modal
composition vector at the LIE hard to accurately predict. The ground properties also are
assumed to be homogeneous, and to have the properties of sea water with a conductivity
of 0.20 S m™! and a dielectric constant of 81. The region of direct interest is entirely
over the sea, but in the case of the long paths from NAA and NSS there are substantial
overland segments. Furthermore these paths encounter ionospheric inhomogeneities
related to the South Atlantic Anomaly. The unperturbed ionospheric electron density
and collision frequency profiles are given by a standard nighttime ionospheric model.

The collision frequency (v) profile is given as a function of vertical coordinate z, by

v(z) = 1/7(2) = 1.86 x 10e 012 571 (1)

and the unperturbed electron density profile given by

Ne(z) = 7.857 x 1079ePEHy(2) em™3 (2)

where we take $=0.43 km~! and H'=87 km [Wait and Spies, 1964]. The ambient
magnetic field is assumed to have a strength of 3.8 x 107° T and a co-dip angle of
130°. The LIE is defined by the quantity dNo(x,y, z,) or the perturbation of electron
density. The perturbation of collision frequency dv(x,y, z,) due to heating is assumed
zero due to the rapid cooling of the plasma within a time scale ~ms [Rodger et al.,
1998]. The LIE may then be defined as a spatial perturbation of susceptibility tensor
X'(z,y, z). LIE electron density profile  No(x,y, z,) is rather arbitrarily assumed here
to be independent of horizontal coordinates x and y, but confined to an ellipse with the
long axis magnetic E/W. The ratio of major axis to minor axis of the ellipse is taken to
be 2.5 in accordance with the previous discussion. The vertical dependence of electron

density perturbation is assumed to be Gaussian, centred at a height 2z, with a variance
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0. In the vertical direction the LIE is limited to the height range 60-95 km. The top
height of 95 km is above the reflection level, and scattering from above this height may

be neglected. The electron density perturbation (§V,) above the ambient profile is given
by

ON, = 5Ngexp[(Z*Z°)2/”2]F(x',y') (3)

where 0 N? is the perturbation at the patch centre, 2’ is the local E/W coordinate, and
y' is the N/S coordinate. Here F' is unity inside the ellipse and zero outside it. In the
present simulation we take 2y to be in the range 80-87 km and 0=10 km. The short
semi-axis is taken to be 400 km and the long semi-axis 1000 kms, that is the LIE ellipse
is 2000 km long and 800 km wide. The maximum electron density perturbation dN? at
the LIE centre is taken to be 1.5 el cm ™3, consistent with precipitating electron fluxes
observed on low altitude orbiting satellites [Voss et al.,1998; Molchanov et al., 1998].
We note here that due to the transitory nature of the precipitation the satellite is unable

to determine patch size.

4.2 Scattering theory and implementation

The linear Born theory of 3D VLF scattering from an ionospheric plasma
perturbation is fully described in Nunn [1997]. The Born approximation involves
assuming that the total incident field at a given point in the LIE is the incident zero
order field (Eg). As shown in Nunn [1997] a better linearisation may be achieved
by assuming that the perturbation of electric displacement vector is zero within the
LIE rather than the perturbation of electric field is zero. This takes into account the
polarisation field generated within the LIE, and results in the following expression for

effective source current (Jeg(r)).
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Jeﬁ‘(r) = O'E() (]_ + (]_ — O[)X() + O[X)il(]_ + X())E() (4)

where Xg is the zero order susceptibility tensor, X’ is the perturbation of susceptibility
tensor due to the LIE and X is the total susceptibility.

The quantity « is a factor dependent on the geometry of the LIE. In the current
simulations the LIE resembles a flat dielectric disc. By analogy with the isotropic
problems of a dielectric slab or sphere in an applied electric field a suitable choice for
a is 0.66, although the results of this simulation are scarcely affected by the choice of
parameter a.

The current version of the code neglects all components of conductivity tensor o
except the zz component. When the transmitter and receiver are both vertical electric
dipoles, this is amply justified to an overall accuracy of order a few percent. A more
advanced version of this code due to R. Yeo [Clilverd et al., 1999] uses the full o
matrix and by means of NOSC LWPC propagation code also permits an inhomogeneous
background ionosphere. Clearly for large LIE patches and/or patches with large d N,
the Born approximation will break down, since the total field at a point in the LIE will
not be well approximated by the zero order incident field. Using a 2D Finite Element
modelling of VLF scattering it was shown in Nunn et al. [1998] and Baba et al. [1998]
that for an LIE with horizontal dimensions ~100 km the Born approximation fails for
maximum electron density perturbations >6 el cm 3. The dominant cause of non-Born
behaviour is the progressive exclusion of the incident field from the interior of the LIE
due to the classic and well known skin depth effect. When the skin depth is of the order
of the vertical dimension of the LIE, then nonlinear scattering may be anticipated. The
current version of the code calculates an attenuation factor for the incident field inside
the LIE due to the skin depth effect, but in the present calculations 0N, is small and
the situation is fairly close to linear Born scattering.

The physical volume of the LIE is enclosed by a 3D spatial box, containing a grid
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of 120 x 300 x 60 points in x,y, z respectively. The incident field E, is computed at
each elemental point, from which the source current Jeg may be derived. The scattered
field is that radiated by the source current field Jeg(r) located within the body of the
LIE. It is clearly necessary to calculate the transmissivity between the transmitter and
every point in the LIE, as well as between every point in the LIE and the receiver.
Transmissivity of the direct path transmitter to receiver is also required. To handle the
subionospheric VLF propagation problem the code uses the well known modal theory
of Wait [Wait, 1970]. Numerical experimentation has shown that at ranges shorter
than ~50 km the modal expansion does not provide a satisfactory description of the
field E(r), and so in this code calculations of scattered field from LIE elements closer
than ~50 km to the receiver will be subject to some inaccuracy. However due to the
rapid variation of scatter phase with element position in the immediate vicinity of the
receiver scatter field strength will be low for areas of the LIE directly overhead the
receiver. The code uses the NOSC MODEFNDR [Morfitt and Shellman, 1976] suite of
programs in order to compute VLF modal propagation. These codes incorporate Earth
curvature and an anisotropic ionosphere, and a ground-plane of specified conductivity
and dielectric constant. These programs have the disadvantage of being inaccurate

at very high altitudes >90 km, and future research involving either short ranges or
scattering from high altitudes should have transmissivities calculated from a full wave
VLF program. For the NPM, NAA, NSS and NLK transmitters, MODEFNDR returns
19, 21, 20 and 23 modes respectively. These include both TM and TE modes, and all
are used in the propagation calculations. Even for the scattered field, which has a short
range, the highest order modes are highly attenuated and were found to have negligible

amplitudes at the receiver, thus confirming the validity of the modal expansion.
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4.3 Modelling results

The results from the code are presented in Figures 5, 6, 7, and 8. The centre of
the E-W orientated elliptical LIE is moved along the GCP from -200 km from the
receiver (i.e. behind the receiver) out to a range of 2000 km, in steps of 10 km. Both
scatter magnitude (dB) and scatter phase (°) are plotted against distance. Figure 5
represents the calculations for NPM received at Faraday. The scatter amplitude (solid
line, upper panel) increases with patch center distance from the receiver until about
1200 km when values of —6 dB occur. This result upholds our initial assumption that
the Trimpi perturbation size is proportionally related to the amount of the GCP on
which precipitation is occurring - at least, for the 1000 km of the path nearest to the
receiver.

At greater distances than this the amplitude falls to values of —14 dB at ~1800 km,
because the LIE-receiver range is increasing. The calculated Trimpi amplitudes are
very closely proportional to the electron density perturbation of the LIE (§N?). Thus a
doubling of LIE density gives a +6dB increase in Trimpi magnitude. Calculated Trimpi
phases are almost independent of LIE density, as shown by the lower panel in which 1,
3, and 5 el cm 3 phase results are plotted to provide an idea of the variability.

The distance at which the maximum amplitude occurs is dependent on the
dimensions of the patch. In this case the NPM-Faraday path is orientated east-west
through the major axis of the patch. When the center is 1000 km from Faraday, the
eastern edge is overhead at Faraday. If the patch is moved towards Faraday then some of
the patch will be eastwards of the receiver and have little influence, thus the amplitude
is less for distances less than 1000 km. For distances greater than 1000 km, the whole
patch influences the path but being further from the receiver the resultant scatter
amplitude is smaller. The scatter phase for NPM-Faraday is shown by a solid line (lower
panel). An increase in phase occurs as the distance from Faraday is increased, from

~110° at 0 km to about 150° at 1500 km, although there is little variation in phase
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between 300-1000 km.

The model results can be compared with the scatter values given in Table 2 for
NPM-Faraday. On 23 April 1993 the scatter amplitude values range from —5.8 dB to
—12.9 dB, and are represented on the plot by a hatched region which overlaps the line at
patch center distances of 0-2000 km from the receiver. The scatter phase values range
from 124° to 135°. These are equivalent to distances of about 200-1100 km. On 24 April
1994, where there was some evidence that the patches appeared to be situated more
eastwards than on 23 April 1994, we see that the lower amplitudes and lower phases are
consistent with the center of the patches being within 100-200 km of Faraday.

Figure 6 shows the effect of the patch location on the NAA-Faraday path.

The variation of scatter amplitude and phase with distance are similar to that for
NPM-Faraday. When the center of a patch is overhead of Faraday the amplitudes are
about —35 dB and the phase is close to 0°. The phase values for NAA-Faraday from
Table 2 indicate that on 23 and 24 April the latitudinal mid-point of the patches were
close to overhead at Faraday. The scatter amplitudes on 23 April mainly have values
of -30 dB which is also consistent with patches close to the receiver. However on 24
April the scatter magnitudes are well above the modelled results. One possiblilty is
that within the patches there are regions of increased density, in this case by a factor of
about 4 (or 6 el cm™?).

The model calculations for the NSS-Faraday path are shown in Figure 7. The
nearest equivalent data set in Table 2 is NSS-Rothera. As the Rothera receiver is
300 km further polewards than Faraday the patch center estimate will be 300 km larger
on the graphs. Thus, for amplitude values of between —15 dB and —20 dB, and phases
of 60°—80°, distances of 200400 km from Rothera are indicated. This is equivalent
to the patch being overhead close to the longitude of Faraday, as estimated using
NAA-Faraday. Limited amounts of data are available for NSS-Palmer, which is a close

equivalent to NSS-Faraday. Amplitudes of ~—20 dB and phases of ~310° are indicative
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of near overhead patches in agreement with the other estimates.

From Figure 7 it is also possible to estimate the amplitude and phase of NSS-Halley
Trimpi events. This assumes similar modal make-up along the NSS GCPs to Halley and
Faraday. The distance from the point where the L=2.5 contour crosses the NSS-Halley
GCP to the Halley receiver is ~2000 km. Using this distance in Figure 7 we find that
the calculated scatter amplitude is —20 dB and the phase is 300°. These values are in
good agreement with those for NSS-Halley in Table 2. This result was confirmed in a
separate computation in which a circular LIE was placed on the Halley-NSS GCP with
a latitudinal dimension of 500 km at a range of 1850 km from Halley. The calculated
Trimpi had a scatter amplitude of -20.4 dB and a scatter phase of 314°.

The scatter values for NLK-Faraday are shown in Figure 8. The Trimpi data from
NLK-Palmer is equivalent in this case. Amplitude values of —23 dB for 23 April and
—22 dB for 24 April give a wide range of distances of the patches from the receiver
(200-1600 km). However phase values of ~110° suggest that the patch mid-point is
within 200 km of the receiver. The NLK-Rothera data show similar amplitudes and
slightly higher phases to NLK-Palmer which is consistent with patch centers further

from Rothera than Palmer/Faraday.

5. Discussion

Using Trimpi events observed on many transmitter-receiver GCPs we have
estimated precipitation patches to be large i.e. at least 1500 km x 600 km, with
the longer axis orientated east-west. Calculations using a 3-D Born scattering model
provides results which are consistent with this picture, where patch densities are 1.5
el cm 2 above ambient at about 84 km. There were a high proportion of the Trimpi
events during 05-11 UT on 23 and 24 April 1994 which could be associated with strong
lightning flashes (those with high peak return stroke currents) in eastern USA. Thus, we

are even more confident that the Trimpi observed were caused by field-aligned electron
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precipitation. But is it possible to determine if the Trimpi events were caused by ducted
or nonducted VLF waves?

The nonducted wave mechanism proposed by Lauben et al. [1999] and Johnson et
al. [1999] does not require the presence of an associated conjugate-hemisphere whistler.
However, the ducted wave mechanism would produce an amplified field-aligned whistler
signal that will probably penetrate the ionosphere in the conjugate hemisphere and may
be observed on the ground. Broadband recordings (0.5-10 kHz) were made synoptically
at Faraday for 1 minute at 05, 20, 35, and 50 minutes past each hour of the day. Only 2
Trimpi events, of the 47 where we know the location of the >100 kA causative discharge,
occurred during these minutes. Neither event could be associated with a whistler.
Broad band recordings were also made at Palmer, where whistlers were also absent prior
to several other Trimpi events that occurred during recording times. However, if the
whistlers were penetrating through the ionosphere close to the center of the precipitation
patch they would be at least 700 km from the receivers (probably 200-400 km more if,
as expected, the whistlers exit equatorwards of the field line on which they propagate)
and would thus be expected to be very faint, possibly undetectable [Smith et al., 2001].

The patch dimensions determined by the nonducted whistler mechanism are
~1200 km x ~450 km. This estimate is made from the figures of Johnson et al. [1999],
but ignores the contribution to the patch size of ionisation occurring at higher L-shells
than L=3.0. Above L=3.0 precipitating electrons would tend to be less energetic
and be unable to penetrate below the D-region and would thus not influence any
transmitter-receiver GCPs [Clilverd et al., 1999]. The patch dimensions are similar to
those determined in this paper. The distance from the causative discharge to the lowest
latitude of the patch in Johnson et al. [1999] was 7° in latitude or 700-800 km. The
events studied in this paper had causative discharges at 34°N. Thus the lowest latitude
of the patch would be predicted to be at the conjugate region to 41°N (near 75°W)

i.e. at 67°S, 80°W. This location is significantly polewards of the position estimated
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for the events studied in this paper, where the lower latitude boudary is close to the
conjugate latitude of the causative lightning ~60°S. However, this picture was developed
for lightning and precipitation occuring in the same hemisphere and may not be truely
representative of the opposite hemisphere to the causative lightning. Additionally,
Johnson et al. [1999] found that they had to shift the location of the precipitation patch
slightly equatorwards of that predicted in order to reproduce their Trimpi data in the
northern hemisphere. Further modelling studies of the kind described by Lauben et al.
[1999] would help clarify this point. Another characteristic of the non-ducted whistler
mechanism would be to see systematically changing onset delay times for different paths
studied. The time resolution used in this study is too large to provide any information
about the relative time delays.

Fully ducted VLF waves would produce electron precipitation patches of the size
of the duct in the wave interaction region near the equatorial plane. Evidence for
small (~100 km) duct sizes is compelling [Strangeways, 1999]. Thus it is unlikely
that the patch dimensions determined in this study are due to fully ducted waves.
However, Strangeways [1999] suggests a mechanism in which field aligned VLF waves
near the equatorial plane radiate power into modes with larger wavenormal angles to
the geomagnetic field direction. This results in larger regions from which precipitating
electrons arise, particularly polewards of the duct center. This mechanism also predicts
elliptical patch shapes, rather than circular. As some of the wave energy would remain
ducted a whistler occurring in the conjugate hemisphere would be possible. The lack
of whistlers recorded at Faraday and Palmer in this study would argue against this
mechanism. Further, it is unclear why, when lightning signals can propagate up to
~1000 km before entering a duct [Carpenter and Orville, 1989], the lightning in this
study appears to cluster close to the center of the precipitation region. On the other
hand, whistlers trapped into ducts are likely to be generated by lightning which is

1-1.5° equatorwards of the duct center [Strangeways, 1981]. This would produce a patch
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of precipitation with a lower latitude boundary close to the conjugate latitude of the

lightning, which is consistent with the findings of this paper. We should also note that
ducted whistlers have been observed in association with Trimpi events many times in
the past.

Early work on Trimpi events observed from Faraday and Halley was undertaken by
Smith et al. [1993], using lower (10-14 kHz) frequency OMEGA transmissions. Small
precipitation patch dimensions were inferred on a similar set of paths to those studied
in this paper. Primarily this was because >95% of the events were non-coincident, and
hence the patches had to be small so that they did not interact with the other paths.
However, the inferred locations of the precipitation on each path is almost identical to
those inferred in this paper. One can only assume that the higher lightning noise levels
at the frequencies studied made the observation of co-incident Trimpi events much more
difficult than with the present equipment and frequencies used.

Smith et al. [2001] used whistler occurrence rates to estimate the effectiveness
of whistler-induced electron precipitation compared with radiation belt losses due to
hiss. This work followed on from previous estimates made by Burgess and Inan [1993].
Hiss was estimated to be about a factor of 10 more effective than ducted whistlers in
depleting the radiation belts. However, the precipitation area used was ~1800 times
smaller than that estimated in this paper. Using the larger area would make lightning

~10-100 times more effective than hiss in depleting the radiation belts.

6. Summary

Using Trimpi events observed on many transmitter-receiver GCPs we have
estimated precipitation patches to be large i.e. about 1500 km x 600 km, with the
longer axis orientated east-west. Calculations using a 3-D Born scattering model
provides results which are consistent with this picture, where patch densities are 1.5 el

cm 2 above ambient at about 84 km. The model results confirmed the assumption made



23

that the size of the perturbation on the transmitter-receiver GCP was proportional to
the length of the path influenced by precipitation, at least when the precipitation was
close to the receiver end of the path.

A high proportion (38%) of the Trimpi events were associated with strong lightning
flashes in Eastern USA. The remainder of the events were likely to have been caused
by lightning further eastwards and out to sea thus being undetected by the NLDN
dataset used in this study. When lightning discharges had currents >65 kA (positive or
negative) there was a >80% chance of seeing an associated Trimpi event. The chance of
seeing any Trimpi events falls to zero for discharges of <45 kA.

The strongest Trimpi perturbations occur when the center of the precipitation
patch is ~1000 km from the receivers, which represents the case when the edge of the
precipitation patch is overhead at the receiver. This was shown when the latitude and
longitude of lightning discharges produced the most significant (S/N) Trimpi events
on NPM-Faraday when they occurred at 34°N, 76°W. The magnetic conjugate to this
location is 60°S, 80°W, which is about 700 km from Faraday. This result is consistent
with the modelling calculations for large patches.

The equatorwards edge of the precipitation patch was estimated to be at about
60°S, close to the magnetic conjugate of the lightning. Nonducted whistler precipitation
mechanisms would predict a 5-10° latitudinal gap between the lightning and the
equatorwards edge of the patch [Johnson et al., 1999]. However, this picture was
developed for both lightning and precipitation occurring in the same hemisphere and
may not be truly representative of precipitation in the opposite hemisphere to the
causative lightning. The size of the patch estimated in this study is consistent with
the size of patches predicted by nonducted whistler precipitation. The lack of observed
whistlers at the time of the Trimpi events, on the few occasions where recordings were
being made, is also consistent with the nonducted whistler mechanism.

The close association of the equatorwards edge of the precipitation patch with
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the conjugate location of the causative lightning is consistent with the quasi-ducted
mechanism suggested by Strangeways [1999]. The size and elliptical nature of the
precipitation patch predicted is also consistent with the dimensions determined in this
study. The lack of observation of whistlers in the opposite hemisphere to the lightning is
however, not consistent with the proposed mechanism, although the distances from duct
exit point to receiver may have been too large (~700 km) for the signals to propagate
detectably.

The precipitation of electrons (~100 keV) from the radiation belts is dependent on
the size of the precipitation patch - which is a result of mapping from the cross-sectional
area of the wave-particle interaction region to the ionosphere. Using the significantly
larger patch dimensions determined in this study it is estimated that lightning may well

be 10-100 times more effective at depleting the radiation belts than hiss.
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Table 1. The sign relationship of the Trimpi events received on the Antarctic

Peninsula.
GCP Bearing (°W of N at Rx) Amplitude (dB) Phase (°)
NAA-Palmer 2 +ve +ve
NAA-Faraday 2 +ve +ve
NAA-Rothera 1 +ve +ve
NSS-Palmer 10 +ve —ve
NSS-Rothera 9 +ve +ve
NLK-Palmer 41 —ve +ve
NLK-Rothera 42 —ve +ve
NPM-Palmer 84 —ve +ve

NPM-Faraday 84 —ve +ve
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Table 2. The scatter amplitude (Sc-A) and phase (Sc-P) of a representative subset of the Trimpi events -

23 and 24 April 1994. The dashed lines means that no clear measurement could be made, either due tc

levels or too small an effect.

Date Time  NAA-Faraday NSS-Rothera NLK-Palmer NLK-Rothera NPM-Faraday D
Sc-A Sc-P Sc-A Sc-P Sc-A Sc-P Sc-A Sc-P Sc-A Sc-P N
(UT)  (@B)/ ()  (B)/() (AB)/()  (dB)/()  (B)/() |
(a)
23 Apr 94 05:47:06  —23.0 +35 —-15.9 +71 —20.8 4103  —17.5 4111 —7.3 +128
23 Apr 94 05:49:02  —30.6 +39 —-20.0 459  —25.2 4105  —22.9 4101 —12.9 +124
23 Apr 94 05:50:17  —30.1 +15 —-20.3 484  —-25.1 4106  —22.4 4109 —12.5 +125
23 Apr 94 06:08:04 — —— —20.0 +64 —_ —— —18.8 +128 —5.8 +135
(b)
24 Apr 94 08:16:29 —9.2 +56 -19.6 —— —20.2 +126 -16.1 +151 —14.5 +133 -
24 Apr 94 08:53:44  —17.1 +48 — —— —25.2 4127  -23.3 +153 —-17.5 +118 -
24 Apr 94 08:55:57  —14.7 +59 — —— —21.6 +129 -21.0 +153 —-15.9 +118 -
24 Apr 94 08:57:09  —18.5 +56 — —— —22.4 4110 -25.8 4165 -19.0 +119 -
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Figure 1. A map of the region around the Antarctic Peninsula. The location of the
Palmer, Faraday, Rothera, and Halley receivers are indicated. The Great Circle Paths to
the transmitters studied are plotted, along with the L=2.0 and L=2.5 contours at 100 km
altitude. An ellipse marks the possible size and location of an electron precipitation patch
producing a Trimpi event observed at the receivers.

Figure 2. An example of a Trimpi event observed on several paths during 05:47 UT
on 23 April 1994. The time resolution is 0.4 s. The onset time of the Trimpi event is
indcated by a vertical dashed line. Significant changes in amplitude and phase occur at
the beginnning of the event and typically last for 30-40 s. The unperturbed behaviour
of the signals is indicated by the long dashed lines. The significance of the perturbation
is also shown, higher values representing better Signal/Noise - see text for more details.
Figure 3. The variation of Trimpi Significance on NPM-Faraday compared with the
Latitude and Longitude of the causative discharge.

Figure 4. The percentage of Trimpi events associated with lightning discarges in eastern
USA versus the current of the discharge (positive or negative) in 5 kA bins.

Figure 5. The variation of scatter amplitude (top) and phase (bottom) versus distance
from the receiver for NPM-Faraday. The shaded areas indicate observed values on 23

and 24 April 1993.
Figure 6. As Fig. 5 but for NAA-Faraday.

Figure 7. As Fig. 5 but for NSS-Faraday.

Figure 8. As Fig. 5 but for NLK-Faraday.



