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Abstract

We extend the classical algorithms of Valiant and Haussler for learning compact conjunc-
tions and disjunctions of Boolean attributes to allow features that are constructed from the
data and to allow a trade-off between accuracy and complexity. The result is a general-
purpose learning machine, suitable for practical learning tasks, that we call the set covering
machine. We present a version of the set covering machine that uses data-dependent balls
for its set of features and compare its performance with the support vector machine. By
extending a technique pioneered by Littlestone and Warmuth, we bound its generalization
error as a function of the amount of data compression it achieves during training. In ex-
periments with real-world learning tasks, the bound is shown to be extremely tight and to
provide an effective guide for model selection.

Keywords: Set Covering Machines, Computational Learning Theory, Support Vector
Machines, Data-dependent Features, Feature Selection, Sample Compression, Model Selec-
tion.

1. Introduction

We may attribute the effectiveness of Support Vector Machines (Vapnik, 1998, Cristianini
and Shawe-Taylor, 2000) to the fact that they combine two very good ideas. First, they
map the space of input vectors onto a very high-dimensional feature space in such a way
that nonlinear decision functions on the input space can be constructed by using only
hyperplanes on the feature space. Second, they construct the separating hyperplane on
the feature space which has the largest possible margin. Theoretical results on margin
classifiers (Shawe-Taylor et al., 1998) imply that good generalization is expected whenever
a large margin separating hyperplane can be found. However, for a given set of features,
there might exist solutions that provide better generalization than the maximum margin
solution. In particular, if the function to learn happens to depend only on a very small
subset of a large set of given features, then it might be better to construct a simple decision
function that depends only on a small subset of features than to find the maximum margin
hyperplane on the set of all features. We propose here to investigate this possibility.
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The pioneering work of Valiant (1984) and Haussler (1988) cannot be avoided when the
task is to construct a simple function of few relevant features. For a given set of (data-
independent) features, Valiant (1984) has proposed a very simple learning algorithm for
building a conjunction from positive examples only (or building a disjunction from negative
examples only). However, the obtained function might contain a lot of features and, conse-
quently, its generalization could be much improved if their number could be substantially
reduced. Following this, Haussler (1988) has shown that the training problem for conjunc-
tions (or disjunctions) of (data-independent) features is, in fact, reducible to the minimum
set cover problem(Garey and Johnson, 1979, Kearns and Vazirani, 1994). Although this
problem is NP-complete, there exists an approximation algorithm, known as the greedy set
cover algorithm, with a very good worst case guarantee (Chvátal, 1979). Therefore, Haus-
sler (1988) has proposed to use this algorithm, on the remaining examples that are not used
by the algorithm of Valiant, to reduce the number of features. Consequently, this two-step
learning algorithm efficiently PAC learns the class of conjunctions (and disjunctions) of few
relevant (data-independent) features.

Despite this impressive theoretical result and the fact that these papers of Valiant (1984)
and Haussler (1988) are considered as basic building blocks of computational learning the-
ory, nobody seems to have tried these algorithms in practice on “real-world” data. In fact,
these algorithms have two characteristics that may make them unattractive for the practi-
tioner. First, they are defined on Boolean attributes only and, second, they do not provide
an accuracy-complexity tradeoff. The constraint of having to use Boolean attributes may
be trivially relaxed by just providing a set of Boolean-valued features i.e., Boolean-valued
functions defined on the input domain. The second characteristic is, however, clearly a
deficiency from a practical point of view. Indeed, real-world data are often noisy and, con-
sequently, simpler functions that make some errors on the training data might be preferable
to a more complex function that makes no training errors. Because the amount of noise
is problem specific, a learning algorithm should provide to its user a means to control the
tradeoff between the accuracy and the complexity of a classifier. For example, Support Vec-
tor Machines (SVM) provide such a control to the user via a “soft margin” parameter C.
With an infinite value of C, the learning algorithm will attempt to achieve a training error
of zero with the largest separating margin. But finite values of C specify quantitatively the
tradeoff between the number of training errors and the margin achieved on the correctly
classified examples. It is well known that finite values of C often give SVM classifiers with
better generalization than those obtained with an infinite value of C.

Therefore, in Section 3, we have generalized the two-step algorithm of Valiant (1984)
and Haussler (1988) in such a way that it is now possible to control quantitatively the
tradeoff between the complexity and the accuracy of a classifier. But such a control is best
achieved when the provided set of Boolean-valued features is built from the training data.
For example, it is only for such data-dependent feature sets that it is always possible to
construct a function that makes zero error on any training set (provided that there are no
identical input examples with different class labels). Hence, our generalized algorithm is able
to use any set of (Boolean-valued) features, including those that are constructed from the
training set. In Section 4 we introduce an example of such a feature set, that we call data-
dependent balls, and use it (in Section 6) on several real-world data sets provided by the UCI
repository (Blake and Merz, 1998). We find that the performance of our algorithm compares
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favorably to the SVM in the sense that its generalization is often very close or better than
that of the SVM but, not surprisingly, the classifier is always much sparser than the one
returned by the SVM. This is because our algorithm tries to build the smallest conjunction
(or disjunction) of features whereas the SVM constructs the largest margin hyperplane over
all the features. Hence, the two algorithms are fundamentally different. We propose to call
our learning algorithm the Set Covering Machine (SCM) because the training problem for
conjunctions (or disjunctions) is basically the minimum set cover problem.

Unfortunately, the VC dimension (Vapnik, 1998) of the set of functions supported by
the SCM is not defined whenever the SCM uses data-dependent features. Indeed, the VC
dimension is a characteristic of a class of functions alone, without any reference to the
training data. Consequently, we cannot use the “standard tools” of computational learning
theory to bound the generalization error of SCMs with data-dependent features. However,
since the SCM tries to build a small conjunction (or disjunction) of few relevant features,
it is reasonable to expect good generalization whenever an SCM with few relevant features
and few training errors has been found. Consequently we seek a bound on the generalization
error of SCMs in terms of the sparsity achieved on the training data. A general framework
for obtaining bounds in terms of what has been achieved on training data is presented
by Shawe-Taylor et al. (1998), where the so-called luckiness framework is introduced. For
the case of SCMs, luckiness is measured in terms of the sparsity achieved (Herbrich and
Williamson, 2002) and it turns out that we could extend the compression scheme intro-
duced by Littlestone and Warmuth (1986), and later studied by Floyd and Warmuth (1995)
and Ben-David and Litman (1998), to bound the generalization error of SCMs in terms of
its training error and the number of data-dependent balls present in the classifier. This
theory is presented in Section 5.

In view of the recent success of SVMs, let us mention a fundamental objection that one
might have about the effectiveness of a learning algorithm whose task is to construct a small
conjunction (or disjunction) of few relevant features. Since conjunctions and disjunctions are
(just) subsets of the set of linearly separable functions, we might believe that the maximum
margin solution over a given set of features will generally exhibit better generalization than a
small conjunction (or disjunction), over the same set of features, obtained from the Valiant-
Haussler greedy set cover algorithm. If this is true even in the case where there exists a
small conjunction (or disjunction) that makes little training error, then our proposed task
would be hopeless since an SVM classifier would always be better. In the next section we
provide empirical evidence that this is not the case by comparing the performance of the
maximum-margin with a small conjunction returned by the Valiant-Haussler algorithm on
data sets for which there exists a small conjunction that makes zero error with them. In
fact, for these data sets, the generalization of the small conjunction is substantially better
than the one obtained from the maximum margin.

Finally, it is worth mentioning the important recent theoretical result of Ben-David
et al. (2001) who showed that an overwhelming majority of the family of concept classes of
finite VC dimension cannot be embedded in half spaces of arbitrarily high dimension with
a large margin. This theoretical work, along with our empirical results of Section 2, shows
that other learning approaches, not based on margins, are needed in many circumstances.
In this paper, we present one approach, based on sample compression, which uses a learning
strategy fundamentally different than the maximum margin.

725



Marchand and Shawe-Taylor

0 200 400 600 800
0

100

200

300

400

500

Number of training examples

E
rr

or
s 

on
 p

os
iti

ve

0 200 400 600 800
0

200

400

600

800

Number of training examples

E
rr

or
s 

on
 n

eg
at

iv
e

(A) (B) 

MM 

MM 

VH 

VH 

Figure 1: Comparison of the maximum margin solution (MM) with the Valiant-Haussler
set covering greedy solution (VH)

2. Small Conjunctions Versus the Maximum Margin

Consider the following question. Given a set of Boolean-valued features, and given a training
set for which there exists a conjunction of a small number of these features that makes zero
training error, does the hyperplane (on this set of features), with the largest separating
margin, always give better generalization that the small conjunction obtained from the
greedy set cover algorithm of Valiant (1984) and Haussler (1988)?

Because both algorithms construct a function on the same set of features, let us assume
w.l.o.g. that the features are the original input (Boolean) attributes. Furthermore, note
that we do not engage ourselves into the ambitious task of trying to identify precisely the
conditions under which one algorithm is better than the other one. Rather, we just want
to show that there exist unexceptional situations for which the Valiant-Haussler algorithm
is better. Hence, let us consider the case where each training and testing example is a
vector of 80 Boolean attributes whose class is determined according to the conjunction
x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5. Hence the function to learn is a conjunction of 5 attributes out of
80. Each positive example was generated by fixing xi to 1 for i = 1 . . . 5 and by choosing a
value for xi in {0, 1} uniformly and independently for i = 6 . . . 80. Each negative example
was generated by first choosing a value for xi in {0, 1} uniformly and independently for
i = 1 . . . 80 and accepting it only if at least one xi is set to 0 for some i ∈ {1 . . . 5}.

The maximum-margin solution was obtained from the support vector machine program
distributed by the department of Computer Science of the Royal Holloway, University of
London (Saunders et al., 1998). The small conjunction returned by the Valiant-Haussler
algorithm was obtained by our implementation of algorithm BuildSCM described in Sec-
tion 3 in the case where the set of features consists of the input attributes and their negations
and in the case where infinitely large values are chosen for parameters p and s. For this
input of BuildSCM, we train until we make zero training errors.

The accuracy of both the maximum margin (MM) solution and the Valiant-Haussler
(VH) solution was measured with respect to a testing set of 10000 examples—half of which
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are positive examples. The results are plotted on Figure 1 for various training set sizes—
each containing an equal amount of positive and negative examples. For both solutions
(or algorithms), the errors made on the 5000 positive testing examples are reported sepa-
rately (on Figure 1a) from the the errors made on the 5000 negative testing examples (on
Figure 1b). Each point denotes the average over 20 different training sets of the same size.

There is no question that the VH solution is substantially better here than the MM
solution on both the positive and the negative testing examples. Hence, this shows that
a small conjunction of few relevant features can indeed give better generalization than the
maximum margin hyperplane on all the features.

It is therefore worthwhile to explore the learning capabilities of a general-purpose learn-
ing machine, that we call the set covering machine (SCM), which uses the Valiant-Haussler
greedy algorithm as its main optimization tool to construct a conjunction (or disjunction)
of a small number of relevant features.

3. The Set Covering Machine

As explained in the introduction, we will present a learning algorithm that strictly general-
izes the two-step algorithm of Valiant (1984) and Haussler (1988) for learning conjunctions
(or disjunctions) of Boolean attributes to the case of learning these functions over arbitrary
sets of Boolean-valued features—including those that are constructed from the data. Fur-
thermore, the learning algorithm will provide some model-selection parameters to control
the tradeoff between training accuracy and the size of the conjunction (or disjunction). The
final learning algorithm is presented at the end of this section.

Let x denote an arbitrary n-dimensional vector of the input space X. The input space
X could be an arbitrary subset of <n. We define a feature as an arbitrary Boolean-valued
function that maps X onto {0, 1}.

Consider any set H = {hi(x)}|H|i=1 of Boolean-valued features hi(x). We will consider
learning algorithms that are given any such set H and return a small subset R ⊂ H of
features. Given that subset R, and an arbitrary input vector x, the output f(x) of the set
covering machine (SCM) is defined to be:

f(x) =
{ ∨

i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction

Throughout the paper we will use the following definition.

Definition 1 A function (or a feature) is said to be consistent with an example if it correctly
classifies that example. Similarly, a function (or a feature) is said to be consistent with a
set of examples if it correctly classifies all the examples in that set.

Let us first describe the algorithm of Valiant (1984) and then Haussler (1988) in the
case of conjunctions. The disjunction case immediately follows by symmetry.

The algorithm of Valiant Given a set of m training examples and a set H of features,
find the subset C ⊆ H of all the features which are consistent with all the positive training
examples.
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This set C has the property that
∧

i∈C hi(x) is consistent with all the m training ex-
amples whenever there exists a subset E of C such that

∧
i∈E hi(x) is consistent with all

the m training examples. Indeed, since each hi(x) ∈ C is consistent with all the positive
examples,

∧
i∈C hi(x) is consistent with all the positive training examples. Moreover, given

any negative training example x,
∧

i∈E hi(x) outputs 0. Hence,
∧

i∈C hi(x) will also output
0 since E ⊆ C. Thus

∧
i∈C hi(x) is consistent with all the negative training examples as well.

However, |C| might be very large and, as we will see below, the generalization error
is expected to be small only for a classifier that contains few relevant features. Hence to
reduce their number, first note that each feature in C is consistent with all the positive
training examples and some negative training examples. Suppose that there exists a subset
E of C such that

∧
i∈E hi(x) is consistent with all the m training examples and let Qi denote

the set of negative training examples that are consistent with feature hi. Since
∧

i∈C hi(x)
is consistent with the set N of all the negative training examples, the union

⋃
i∈C Qi must

be equal to N . We say that
⋃

i∈C Qi is a cover of N . Therefore, the problem of finding
the smallest subset of features in C whose conjunction is consistent with N is identical to
the problem of finding the smallest collection V of sets Qi for which

⋃
i∈V Qi is a cover of

N . This is the well known (and NP -complete) Minimum Set Cover Problem(Garey and
Johnson, 1979). Hence, it is hard to find the set cover of the minimum size but, fortunately,
the well known set cover greedy algorithm has a good worst-case bound. If z denotes the
smallest number of sets Qi that cover N , then the set cover greedy algorithm will always
find a cover of at most z ln(|N |) sets (Chvátal, 1979, Kearns and Vazirani, 1994). Note that
this bound has no dependence on the number of subsets (or features) in C and has only a
logarithmic dependence on |N |. We will therefore use this algorithm to find a small number
of features in C that cover N (hence the name: set covering machine).

The set covering greedy algorithm is a very simple algorithm: first choose the set Qi

which covers the largest number of elements in N , remove from N and each Qj the ele-
ments that are in Qi, then repeat this process of finding the set Qk of largest cardinality and
updating N and each Qj until there are no more elements in N . Therefore the following
algorithm was proposed by Haussler (1988).

The algorithm of Haussler Given a set of training examples and a set H of features, let
C be the subset of H returned by the algorithm of Valiant. Use the set covering greedy algo-
rithm to find a small subset R ⊆ C of features that covers all the negative training examples.

The hypothesis returned by this algorithm,
∧

i∈R hi(x), will be consistent with all the
training examples and will contain a small set of features whenever there exists a small set
of features in the initial set H of chosen features whose conjunction is consistent with all
the training examples. However this guarantee can generally be achieved only for features
that are constructed from the training data (like the set of data-dependent balls presented
in Section 4) and only when there does not exist a pair of (contradictory) training examples
having the same input vector and opposite class labels.

We can construct a disjunction (instead of a conjunction) with minimal changes in these
algorithms. For the algorithm of Valiant, we just find the set C of all the features in H that
are consistent with the training set of negative examples. For the algorithm of Haussler, we
use the greedy set covering algorithm to find a small subset R ⊆ C of features that covers
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all the positive training examples. By using the same arguments as above, we find that∨
i∈R hi(x) will be consistent with all the training examples whenever there exists a small

set of features in the initial set H of chosen features whose disjunction is consistent with all
the training examples.

However, as we have argued in the introduction, this two-step learning algorithm is un-
satisfactory because it does not permit its user to control the tradeoff between the accuracy
achieved on the training data and the complexity (here the size) of the classifier. Indeed,
a small conjunction which makes a few errors on the training set might give better gener-
alization than a larger conjunction (with more features) which achieves a training error of
zero.

One way to include this flexibility into the SCM is to stop the set covering greedy
algorithm when there remains a few more training examples to be covered. In this case, the
SCM will contain fewer features and will make errors on those training examples that are not
covered. But these examples all belong to the same class: negative for conjunctions, positive
for disjunctions. This might be desired for asymmetric loss functions but, in general, we do
need to be able to make errors on training examples of both classes. Hence, early stopping
is generally not sufficient and, in addition, we will need to consider features that would not
be selected by the algorithm of Valiant.

To describe our algorithm in a way which is technically valid for both conjunctions and
disjunctions, we introduce the following definition.

Definition 2 If the SCM is constructing a conjunction, let P be the set of positive training
examples and let N be the set of negative training examples. If the SCM is constructing a
disjunction, let P be the set of negative training examples and let N be the set of positive
training examples.

Similarly, a positive example in the conjunction case (or a negative example in the
disjunction case) will be called a P-example. Whereas, a negative example in the conjunction
case (or a positive example in the disjunction case) will be called a N -example.

Hence, for both cases, P refers to the subset of training examples for which each feature
returned by the Valiant algorithm must be consistent with. Similarly, N refers to the set
of examples that needs to be covered by the greedy set covering algorithm.

From the above discussion, we want to allow a feature to make a few errors on P provided
that many more examples in N can be covered by this feature. Hence, for a feature h, let
us denote by Qh the set of examples in N covered (i.e., correctly classified) by feature h
and by Rh the set of examples in P for which h makes an error. Given that each example
in Rh should decrease by some fixed penalty p the “usefulness” of feature h, we define the
usefulness Uh of feature h to be the number |Qh| of examples in N that h covers minus the
number |Rh| of examples in P misclassified by h times some penalty p:

Uh
def= |Qh| − p · |Rh| (1)

Hence, the learning algorithm for the SCM is modified as follows. In contrast with the
algorithm of Valiant, we consider all the features in our initial set H, including the features
which make some errors on P. Each feature h ∈ H is covering a subset Qh of N and makes
an error on a subset Rh of P. Next, we modify the set covering greedy algorithm in the
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following way. Instead of using the feature that covers the largest number of examples in
N , we use the feature h that has the highest usefulness value Uh. We removed from N and
each Qg the elements that are in Qh and we removed from each Rg the elements that are
in Rh. Note that we update each such set Rg because a feature g that makes an error on
an example in P does not increase the error of the machine if another feature h is already
making an error on that example. We repeat this process of finding the feature h of largest
usefulness Uh and updating N , and each Qg, and each Rg until only a few elements remain
in N (in the case of early stopping).

Here is a formal description of our learning algorithm. The penalty p and the early
stopping point s are the two model-selection parameters that give the user the ability
to control the proper tradeoff between the training accuracy and the size of the function.
Their values could be determined either by using a resampling method, such as k-fold cross-
validation, or by computing our bound (see Section 5) on the generalization error based on
what has been achieved on the training data. Note that our learning algorithm reduces to
the two-step algorithm of Valiant (1984) and Haussler (1988) when both s and p are infinite
and when the set of features consists of the set of input attributes and their negations.

Algorithm BuildSCM(S, T, p, s,H)

Input: A training set S of examples, a machine type T (which is either “conjunction” or
“disjunction”), a penalty value p, a stopping point s, and a set H = {hi(x)}|H|i=1 of Boolean-
valued features.

Output: A conjunction (or disjunction) f(x) of a subset R ⊆ H of features.

Initialization: R = ∅.

1. If (T = “conjunction”) then let P be the set of positive training examples and let N
be the set of negative training examples.
Else then let P be the set of negative training examples and let N be the set of
positive training examples.

2. For each feature hi ∈ H, let Qi be the subset of N covered by hi and let Ri be the
subset of P for which hi makes an error.

3. Let hk be a feature with the largest value of |Qk| − p · |Rk|.
4. Let R← R∪ {hk}. Let N ← N −Qk and let P ← P −Rk.

5. For all i do: Qi ← Qi −Qk and Ri ← Ri −Rk.

6. If (N = ∅ or |R| ≥ s) then go to step 7 (no more examples to cover or early stopping).
Else go to step 3.

7. Return f(x) where:

f(x) =
{ ∨

i∈R hi(x) for a disjunction∧
i∈R hi(x) for a conjunction
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4. Data-dependent Balls

The above description of the SCM applies for any chosen set H of Boolean-valued features.
However, the user has the greatest control for choosing the proper tradeoff between training
accuracy and function size when the set of features is constructed from the training data.
Let us examine a simple data-dependent set of features which has the property that there
always exists a subset for which a conjunction will make zero training errors (provided that
we do not have any pair of training examples with the same input vector and opposite class
labels).

For each training example xi with label yi ∈ {0, 1} and (real-valued) radius ρ, we define
feature hi,ρ to be the following data-dependent ball centered on xi:

hi,ρ(x) def= hρ(x,xi) =
{

yi if d(x,xi) ≤ ρ
yi otherwise

where yi denotes the Boolean complement of yi and d(x,x′) denotes the distance between
x and x′. Note that any metric can be used for d. So far, we have used only the L1, L2 and
L∞ metrics but it is certainly worthwhile to try to use metrics that actually incorporate
some knowledge about the learning task. Moreover, we could use metrics that are obtained
from the definition of an inner product k(x,x′). Indeed, it is well known (Vapnik, 1998),
that for any positive definite kernel k(x,x′) there exists a mapping φ(x) such that k(x,x′) =
φ(x) ·φ(x′). In that case, we can choose d(x,x′) to be the Euclidean distance between φ(x)
and φ(x′):

d(x,x′) = ||φ(x)− φ(x′)|| =
√

k(x,x) + k(x′,x′)− 2k(x,x′)

Given a set S of m training examples, our initial set of features consists, in principle,
of H =

⋃
i∈S

⋃
ρ∈[0,∞[ hi,ρ. But obviously, for each training example xi, we need only to

consider the set of m− 1 distances {d(xi,xj)}j 6=i. This reduces our initial set H to O(m2)
features. In fact, from the description of the SCM in the previous section, it follows that,
for each greedy step, the ball h of largest usefulness value Uh always has a radius such that
a P example is located at its border. Hence, for each example xi, we will consider all the
balls of center xi having a radius d(xi,xj) + ε for every xj ∈ P such that ε is a very small
positive real number if xi ∈ P and a very small negative real number if xi ∈ N . Therefore,
we say that xi is a ball center and xj is a ball border .

In fact, we can reduce the size of H to exactly m features when p = ∞. Indeed, in that
case, each feature must be consistent with all P. This implies that a data-dependent ball
centered on a P-example must have a radius large enough to enclose all examples in P. But
among every ball that satisfies this constraint, the ball h that has the smallest radius will
have the largest Qh. Hence for each ball having a P center, we need only to consider the
smallest radius that includes every P-example. Similarly, for each ball having an N center,
we need only to consider the largest radius that excludes every P example. Hence, for m
training examples, we only need to consider exactly m data-dependent balls in the initial
set H of features when p = ∞.
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5. Performance Assessment

We now develop the necessary framework to enable estimates of the generalization perfor-
mance of the SCM that uses data-dependent balls for its set of features. We follow the
probably approximately correct (PAC) framework, which posits an underlying distribution
generating the training data and defines the error of a hypothesis h as the probability that
a randomly drawn test point is misclassified by h. In this framework bounds on the gen-
eralization error are required to hold with high probability, hence bounding the tail of the
distribution of possible errors.

We seek a bound sensitive to the hypothesis selected. Bounds of this type are data-
dependent in that they depend on properties of the solution obtained, in our case the number
of features it uses. A general framework for analyzing data-dependent structural risk mini-
mization is given in Shawe-Taylor et al. (1998), where the so-called luckiness framework is
introduced. The assessment of the generalization of the SCM will require a data-dependent
analysis since the features used depend on the particular training examples. The analysis,
however, can be made by extending an older result due to Littlestone and Warmuth (1986).
See also Floyd and Warmuth (1995) and Ben-David and Litman (1998).

Littlestone and Warmuth show that if we can reconstruct our hypothesis from a small
subset of the training examples — the so-called compression set — then with high confidence
the generalization can be bounded in terms of the size of this set. Here we extend the
Littlestone and Warmuth technique by using a compression scheme that allows for specifying
subsets of the compression set that can be treated separately for the reconstruction of the
hypothesis. We begin by defining our expanded compression scheme.

Definition 3 Let X be the input space and let X = (X × {0, 1})m be the set of training
sets of size m with inputs from X. Let A be the learning algorithm BuildSCM that uses
data-dependent balls for its set of features. Given a training set S ∈ X , A(S) denotes the
SCM classifier returned by algorithm A. If learning a conjunction then let P ⊆ S be the set
of positive training examples and let N ⊆ S be the set of negative training examples, with
the notations reversed when learning disjunctions (according to Definition 2).

The compression function Λ induced by A is the map

Λ : S 7−→ Λ(S) def= (ΛC
P(S), ΛC

N (S), ΛB
P (S)),

such that the compression subsets ΛC
P ⊂ P and ΛC

N ⊂ N are the ball centers returned
by algorithm A and ΛB

P ⊂ P is the set of ball borders returned by A that are not already
contained in ΛC

P . Hence, each example in Λ is specified only once and a ball border can be
the border of more than one ball (and can also be the center of another ball). Note also that
no errors are made by A(S) on examples in Λ(S).

Consider a map Φ from arbitrary compression sets SC
P ⊂ P, SC

N ⊂ N , SB
P ⊂ P to a set

F of Boolean-valued functions

Φ : (SC
P , SC

N , SB
P ) 7−→ f ∈ F

Such a map Φ is said to be a reconstruction function relative to the compression function
Λ induced by learning algorithm A iff for any training set S ∈ X ,

A(S) = Φ(Λ(S)).
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We will see below that it is the mere existence of a reconstruction function Φ relative
to Λ that will enable us to bound the generalization error of SCMs as a function of |Λ|.

In the definition above, the splitting of Λ(S) into three disjoint subsets represents some
additional information that will be needed for Φ to reconstruct the same function as A(S).
Indeed, it is easy to realize that it is impossible to reconstruct A(S) from a single set Λ(S)
containing no internal structure. Consider, for example, the case where A(S) contains a
single ball with a P-example for its center. Then Λ(S) would contain only two examples: a
center and a border. It is impossible to construct the ball without knowing which example
is the center. Hence, from the set of P-examples in Λ(S), Φ needs to know which examples
are centers.

Lemma 4 Let A be the learning algorithm BuildSCM that uses data-dependent balls for
its set of features. Let Λ be the compression function induced by A defined in Definition 3.
Then there exists a reconstruction function Φ relative to Λ if A(S) correctly classifies every
example in Λ for any training set S.

Proof Given arbitrary compression subsets SC
P ⊂ P, SC

N ⊂ N , SB
P ⊂ P as defined in Defi-

nition 3, function Φ first constructs the following set of balls. For each xi ∈ SC
P , it creates

a ball centered at xi with radius d + ε where d = maxj∈SB
P∪SC

P
d(xi,xj) and ε is the same

arbitrary small positive real number used by algorithm A. Similarly, for each xi ∈ SC
N , it

creates a ball centered at xi with radius d − ε where d = minj∈SB
P∪SC

P
d(xi,xj). Function

Φ then builds a conjunction of these balls if the P-examples are positive examples, other-
wise it builds a disjunction of these balls. This implies that the compression subsets are
always correctly classified by Φ. Since, in the statement of the lemma, we have added the
additional constraint that A(S) always correctly classifies every example in Λ, then we have
that A(S) = Φ(Λ(S)) for any training set S.

Hence, the reconstruction function Φ defined above is always capable of reconstructing
the function returned by A only when A(S) always correctly classifies every example in Λ.
Hence, this means that our bound on the generalization error will hold only if BuildSCM is
modified in such a way to ensure that each ball border and center will be correctly classified
by the returned classifier. This is easily done by imposing the constraint that, at each
greedy step, we only consider balls which are consistent with every P-example present in
the centers and borders of the previous balls in R. That constraint was imposed for the
numerical experiments presented in Section 6 (releasing that constraint did not change the
results significantly).

The refinement that we will present of the Littlestone and Warmuth bounds is to take
account of the number of positive/negative examples in the training set. These numbers can
provide tighter constraints on the choices for the sets ΛC

P , ΛC
N , and ΛB

P . A naive inclusion of
these constraints undermines the assumptions of the proof technique. Some extra machinery
is required to carry though the argument under these conditions.

Recall that, in the PAC framework, the underlying fixed (but unknown) probability
distribution P generates both the training and the testing examples. The aim is to bound
with high confidence the expected loss of the function returned by the learning algorithm,
where by high confidence we mean that most random training samples will satisfy the bound.
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For the purposes of the next theorems we consider the binary loss function l(f, (x, y)) = 1 if
f(x) 6= y, and 0 otherwise. The corresponding expected loss (i.e., the generalization error)
is then given by

E[l(f)] def= P{(x, y): f(x) 6= y}.
We also consider the error probability separately on P and N examples:

erP(f)def= P{f(x) 6= y|(x, y) ∈ P} and erN (f)def= P{f(x) 6= y|(x, y) ∈ N}.

Further let êr(f, S) denote the sample error:

êr(f, S)def= |{(x, y) ∈ S: f(x) 6= y}|

and let êrP(f, S) denote the number of P points misclassified (with a similar definition for
êrN (f, S)).

There will be a number of parameters involved in the bounds which would make them
very opaque if written out in full at each stage. We therefore introduce notation for the
collection of parameters. Let m(S) denote the vector (m,mp,mn, cp, cn, bp, kp, kn), where

m
def= |S|,mp

def= |P|,mn
def= |N |, cp

def= |ΛC
P(S)|, cn

def= |ΛC
N (S)|, bp

def= |ΛB
P (S)|, kp

def= êrP(A(S), S),

and kn
def= êrN (A(S), S). Finally, we denote with B(m) the following number of ways of

choosing the compression set and P and N errors:

B(m) def=
(

mp

cp

)(
mp − cp

bp

)(
mn

cn

)(
mp − cp − bp

kp

)(
mn − cn

kn

)

Theorem 5 Given the above definitions, let A be the learning algorithm BuildSCM that
uses data-dependent balls for its set of features with the constraint that the returned function
A(S) always correctly classifies every example in the compression set. With probability 1−δ
over all random training sets S the expected loss E[l(A(S))] of A(S) is bounded by

E[l(A(S))] ≤ 1− exp
{
− 1

m− cp − bp − cn − kp − kn

(
lnB(m(S)) + ln

1
δ(m(S))

)}

where δ(m)def=
(

π2

6

)−5
· ((cp + 1)(cn + 1)(bp + 1)(kp + 1)(kn + 1))−2 · δ

Proof We will use the notation i = (i1, . . . , id) for a sequence of strictly increasing in-
dices, 0 < i1 < i2 < · · · < id ≤ m, where with |i| we denote the length d of the se-
quence. If the sequence i′ contains all the indices in i, we write i ⊂ i′. For S ∈ X ,
Si = ((xi1 , yi1), . . . , (xid , yid)). We will be using indices to select points among P or N . For
example, Pi is the sequence whose first entry is the i1-st P example. For a compression set
Λ(S) with S clear from the context we denote the indices of the sets ΛC

P(S), ΛC
N and ΛB

P
by icp, icn and ibp denoting them collectively by iλ, where it is understood that ΛC

P(S) = Picp ,
etc.

We first argue conditional on a fixed set of integers, m(S) = m where

m def= (m,mp,mn, cp, cn, bp, kp, kn).
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By the existence of a reconstruction function relative to the compression function Λ induced
by learning algorithm A, and the fact that the compression set is correctly classified by its
reconstruction, we can obtain the following probability bound

P

{
S ∈ X : E[l(A(S))] ≥ ε

∣∣∣∣ m(S) = m
}

≤ B(m(S))P
{

S ∈ X : iλ = i0,E[l(A(S))] ≥ ε,

êr(A(S),Pip) = kp, êr(A(S),Nin) = kn

∣∣∣∣ m(S) = m
}

, (2)

where i0, ip, and in are fixed disjoint index sequences with |ip| = kp and |in| = kn. Note that
the two empirical error expressions imply that the mistakes are made on precisely the points
in positions ip and in. With this choice of indices fixed, we now consider conditioning the
second factor on the actual points generated in these positions, that is Λ(S) = S0 for some
fixed sequences S0. Similarly, Sip = Sp and Sin = Sn for fixed sequences Sp and Sn. This
implies that the function A(S0) is also fixed. We will bound this conditional probability
independently of the particular points, hence bounding the unconditioned expression. Note
that we will frequently be excluding the positive (negative) examples contained in the
compression or error sets. We therefore introduce the notation tp

def= cp + bp + kp for the

total number of such positive examples and tn
def= cn + kn for the number of such negative

examples.

P

{
S ∈ X : E[l(A(S0))] ≥ ε, êr(A(S), S \ (Sp ∪ Sn)) = 0,

∣∣∣∣iλ = i0,Λ(S) = S0,Pip = Sp,Nin = Sn,m(S) = m
}

= (1− erP(A(S0)))mp−tp(1− erN (A(S0)))m−tn−mp

(
m− tn − tp

mp − tp

)
p

mp−tp
P (1− pP)m−tn−mp

≤
m−tn∑

m′=tp

(1− erP(A(S0)))m′−tp(1− erN (A(S0)))m−tn−m′

(
m− tn − tp

m′ − tp

)
p

m′−tp
P (1− pP)m−tn−m′

= [(1− erP(A(S0)))pP + (1− erN (A(S0)))(1− pP)]m−tn−tp

= (1− E[l(A(S0))])
m−tn−tp ≤ (1− ε)m−tn−tp , (3)

since the remaining points are correctly classified with probability 1 − erP(A(S0)) for
P points and 1 − erN (A(S0)) for N points and the expected loss is erP(A(S0))pP +
erN (A(S0))(1 − pP). Note that although we bounded the probability using a sum over
m′, this is simply a manipulation and does not mean that we have varied mp.
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Let us denote by U(m) the bound stated in the theorem. By using the bound on the
conditional probability to combine equations (2) and (3), we obtain

P

{
S ∈ X :E[l(A(S))] ≥ ε

∣∣∣∣ m(S) = m
}
≤ B(m(S))(1− ε)m−tn−tp .

P

{
S ∈ X :E[l(A(S))] ≥ U(m)

}

=
∑
m

P

{
S ∈ X :E[l(A(S))] ≥ U(m)

∣∣∣∣ m(S) = m
}

P

{
S ∈ X : m(S) = m

}

=
∑
m

δ(m)P
{

S ∈ X : m(S) = m
}
≤ δ

m∑

mp=0

P

{
S ∈ X : |S ∩ P| = mp

}
= δ,

where in the first inequality of the final line we have taken into account that the sum
of δ(m) over all possible realizations of m for a fixed mp and mn is less than δ (since∑∞

i=1(1/i2) = π2/6), while the final equality follows from the fact that the sum over the
probabilities of observing mp positive examples for different values of mp is 1.

Note that the bound of Theorem 5 is presented in a non-standard format in order to
obtain a tighter bound. Normally, the approximation (1 − x)k ≤ exp(−kx) is used in
Equation 3 to simplify the bound. This would give a bound in the more familiar form

E[l(A(S))] ≤ 1
m− cp − bp − cn − kp − kn

(
ln B(m(S)) + ln

1
δ(m(S))

)
.

Hence, Theorem 5 shows that good generalization is expected whenever a SCM with
few training errors and few data-dependent balls is found by BuildSCM. Moreover, in
comparison with traditional bounds based on VC dimension (Vapnik, 1998), our sample
compression bound is tight and non trivial (i.e., always less than one). Hence, there is hope
that this bound will be effective at finding the best model-selection parameters (here p and
s) based on what BuildSCM has achieved on the training set only.

Note that the bound is larger due to fact that we have decomposed the compression set
Λ into three disjoint subsets (ΛC

P , ΛC
N ,ΛB

P ). However, we can restrict further the set of data-
dependent balls by imposing that only N -examples are allowed to be used for ball centers.
In that simpler case we only need (ΛC

N ,ΛB
P ) to be able to reconstruct the same function as

the one returned by BuildSCM. Furthermore, for this simpler case, we have cp = 0, and
the number of balls is given by cn. Hence, Theorem 5 has the following corollary.

Corollary 6 Given the same definitions as those used for Theorem 5, let A be the learning
algorithm BuildSCM that uses data-dependent balls for its set of features, with only N -
examples as centers, and with the constraint that the returned function A(S) always correctly
classifies every example in the compression set. With probability 1 − δ over all random
training sets S the expected loss E[l(A(S))] of A(S) is bounded by

E[l(A(S))] ≤ 1− exp
{ −1

m− cn − bp − kp − kn

[
ln

(
mn

cn

)
+ ln

(
mp

bp

)

+ ln
(

mn − cn

kn

)
+ ln

(
mp − bp

kp

)
+ ln

(
1

δ(cn, bp, kp, kn)

)]}
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where:

δ(cn, bp, kp, kn) =
(

π2

6

)−4

· ((cn + 1)(bp + 1)(kp + 1)(kn + 1))−2 · δ

For the same number of balls and training errors, the bound of Corollary 6 is smaller
than the one provided by Theorem 5. Hence, in that case, a simpler SCM that uses only
N -examples for ball centers might be preferable than the more complex SCM that uses
examples of both classes for centers. However, this might not be the case if the simpler
SCM makes more training errors. Because of this non-trivial tradeoff between training
accuracy and function complexity, both types of SCMs should be tried in practice.

Our bounds indicate that good generalization is expected if we can find a small and
simple SCM with few training errors. But when do we expect to find such a small and simple
SCM? More specifically, we seek to find the conditions on the training data for which we
are guaranteed to find a small and simple SCM. In the next theorem, we show that these
conditions are easily identified in the case of conjunctions and disjunctions because the
training problem for them reduces to the minimum set cover problem. The simple proof
follows directly from Chvátal (1979) and Kearns and Vazirani (1994). We include it here
for completeness.

Theorem 7 Consider any training set S = P ∪N of examples and any set H of features,
possibly constructed from the data, for which there exist a subset of r features that covers all
N . Then BuildSCM, with both p and s set to infinity, will return a function that contains
at most r ln(|N |) features.

Proof If there exist r features of H that cover all N , then BuildSCM will find a first
feature that covers at least |N |/r examples of N . Hence after l greedy steps, the number
of examples from N that remain to be covered is at most |N |(1 − 1/r)l < |N | exp(−l/r) .
Therefore, the value of r ln(|N |) for l is sufficient to guarantee that less than 1 example of
N will not be covered.

We can, in fact, generalize Theorem 7 to the case where there exists a smaller subset of
features that partially covers N .

Theorem 8 Consider any training set S = P ∪N of examples and any set H of features,
possibly constructed from the data, for which there exists a subset of r features that covers
mn−k examples of N (where mn

def= |N | and k is a nonnegative number). Let β
def= r ln(mn−k).

Then BuildSCM, with p set to infinity and s set to β, will return a function that makes
at most k errors on N .

Proof We will refer to the mn− k examples covered by the r features hypothesized in the
corollary statement as the main examples. The k excluded points will be referred to as the
excluded examples, while the r features used will be termed the main features. Consider
the point at which the i-th feature is sought during the learning algorithm. Suppose that
there remain `i of the mn − k main examples still not covered. Since all of these examples
can be covered by the r main features, by the pigeon hole principle there exists a feature
that can cover `i/r of them. Hence, the greedy algorithm may select a feature that covers
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at least this many examples. It may also, however, select a feature that covers fewer of
the main examples in exchange for covering some of the k excluded examples not already
covered. Hence, more generally, suppose that it selects a feature that covers ki of the
excluded examples that have not been covered by features selected at an earlier stage (for
some nonnegative value of ki). In all cases, the i-th feature covers `i − `i+1 + ki examples.
And, by the pigeon hole principle, that number must be at least `i/r. Hence, we always
have that

`i+1 − ki ≤ `i

(
1− 1

r

)
. (4)

We will prove by induction that the number of examples not covered after stage t satisfies

`t+1 + k −
t∑

i=1

ki ≤ k + (mn − k)
(

1− 1
r

)t

,

showing that mn − k examples will be covered by r ln(mn − k) features, since

(mn − k)
(

1− 1
r

)r ln(mn−k)

< (mn − k) exp(− ln(mn − k)) = 1.

The base case of t = 0 for the induction is immediate since `1 = mn − k. Suppose now the
bound holds for t− 1. Using this and equation (4) we have

`t+1 + k −
t∑

i=1

ki ≤ `t

(
1− 1

r

)
+ k −

t−1∑

i=1

ki

≤ k + (mn − k)
(

1− 1
r

)t

,

as required.

The conditions on the training data for which BuildSCM will fail to give a small and
simple SCM are easily understood. Take for example the case were all the training examples
are located very close to the border of a two-dimensional circle. In that case BuildSCM
will need O(|N |) balls to cover all the N -examples. But if we are lucky and there exists a
small subset of the training set from which we can construct a set of balls that will cover a
large fraction of N , then BuildSCM will find a good SCM.

Note that the bound on the number of features needed is independent of |H|. But a
generalization error bound based on sample compression is likely to increase with the com-
plexity of H. Indeed, larger compression sets or more information (i.e., more compression
subsets) will be required for more complex feature sets H in order to be able to reconstruct,
from the compression set, the function returned by BuildSCM.

Finally the next theorem states how the running time of BuildSCM will increase with
|H| and with its minimum subset r needed to cover all N .
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Theorem 9 Consider any training set S = P ∪N of examples and any set H of features,
possibly constructed from the data, for which there exists a subset of r features that covers
all N . Let t be the maximum time needed to compute, on an example, the function value of
a feature in H. Then, the running time of BuildSCM will be at most

t · |H| · |N | · r for infinite p
t · |H| · {|N | · r + |P| · (r ln(|N |) + 1)} for finite p

Proof For p = ∞, the time needed to find the first feature will be |H| · |N | · t since every
feature in H needs to be evaluated exactly once on every example in N . From Theorem 7,
it follows that this time must be multiplied by

r ln(|N |)+1∑

l=0

(
1− 1

r

)l

< r

in order to obtain the time needed to cover all N from features in H.
For finite p, the time needed to find the first feature will be |H| · (|N | + |P|) · t since

every feature in H needs to be evaluated on every example in N ∪ P to find the feature
with the best usefulness value. That feature is guaranteed to cover at least |N |/r examples
in N . Since these examples will be removed, the time needed to find the second feature is
at most |H| · (|N |(1− 1

r ) + |P|) · t. Hence, for the same reasons, the time needed to find
the (l + 1)th feature is at most |H| · (|N |(1 − 1

r )l + |P|) · t. The summation of all these
times for at most r ln(|N |)+1 features gives the running time bound for the case of finite p.

Let us use Theorem 9 to bound the running time of BuildSCM when it uses data-
dependent balls. First note that, when ball centers of both classes are considered, we have
|H| = |N | + |P| = m for infinite p and |H| = (|N | + |P|) · |P| = m · |P| for finite p.
But for infinite values of p, we still need to compute (|N |+ |P|) · |P| distances to find the
best radius for each center. Since it takes a time of O(n) to compute a distance (with a
standard metric such as L1 or L2) between a pair of examples of n attributes, it follows that
it takes a time of O(n · (|N |+ |P|) · |P|) to create H for both infinite and finite values of p.
Similarly, when only N -examples are used for ball centers, we have |H| = |N | for infinite
p and |H| = |N | · |P| for finite p and, consequently, we need a time of O(n · |N | · |P|) to
create H for both infinite and finite values of p.

Once H is generated, the time t needed to evaluate a feature on an example is of O(1) if
the distances are cached (i.e., stored in memory), or of O(n) if the distances are not cached.
Hence, from Theorem 9, once H is generated, BuildSCM will need at most a running time

t · m · |N | · r for infinite p
t · m · |P| · {|N | · r + |P| · (r ln(|N |) + 1)} for finite p

for the case where ball centers of both classes are used. But it will need only a running
time of at most

t · |N |2 · r for infinite p
t · |N | · |P| · {|N | · r + |P| · (r ln(|N |) + 1)} for finite p
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Data Set # of exs NNC SVM (C = ∞) SVM (finite C)
pos neg error γ size error γ C size error

BreastW 239 444 29 0.07 219.7 27 0.005 2 57.7 19
Votes 18 34 7 0.05 16.6 5 0.05 15 18.2 3
Pima 269 499 247 0.004 543.7 243 0.002 1 526.2 203
Haberman 219 75 107 0.02 92.5 111 0.01 0.6 146.4 71
Bupa 145 200 124 0.02 290.4 121 0.002 0.2 265.9 107
Glass 87 76 36 0.2 47.2 42 0.8 2 91.8 34
Credit 296 357 214 0.001 406.9 205 0.0006 32 423.2 190

Table 1: Data sets, NNC results, and SVM results.

when ball centers are restricted to N -examples. Hence we see that there is a substantial
computational advantage at using balls with centers taken only from N . This is especially
true for imbalance class problems where N ¿ P.

These running time bounds seem to be competitive with most quadratic optimizers used
for SVMs. But a direct comparison is questionable in view of the fact that the running times
bounds for quadratic optimization procedures are expressed in terms of quantities that do
not exist in our case. On the data sets used in the next section, we have found that our
implementation of BuildSCM gave substantially smaller running times than those given
by the SVM program distributed by the department of Computer Science of the Royal
Holloway, University of London (Saunders et al., 1998).

6. Empirical Results on Natural Data

We have compared the practical performance of the set covering machine (SCM) using the
set of data-dependent balls with the nearest-neighbor classifier (NNC) and the support vec-
tor machine (SVM) equipped with a Gaussian kernel (also called the Radial Basis Function
kernel) of variance 1/γ. We have used the SVM program distributed by the Royal Holloway
University of London (Saunders et al., 1998). The data sets used and the results obtained
for NNCs and SVMs are reported in table 1. All these data sets where obtained from the
machine learning repository at UCI (Blake and Merz, 1998), except the Glass data set which
was obtained from Rob Holte, now at the University of Alberta. For each data set, we have
removed all examples that contained attributes with unknown values (this has reduced sub-
stantially the “votes” data set) and we have removed examples with contradictory labels
(this occurred only for a few examples in the Haberman data set). The remaining number
of examples for each data set is reported in table 1. For all these data sets, we have used
the 10-fold cross validation error as an estimate of the generalization error. The values
reported are expressed as the total number of errors (i.e., the sum of errors over all testing
sets). We have ensured that each training set and each testing set, used in the 10-fold cross
validation process, was the same for each learning machine (i.e., each machine was trained
on the same training sets and tested on the same testing sets).

For the SVM, the values of the kernel parameter γ and the soft margin parameter C
are the ones that gave the smallest 10-fold cross validation error among an exhaustive scan
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Data Set Type p = ∞, s = ∞ p = ∞, finite s
size error size error bound

BreastW c 13.9 26 1 23 139
d 16.8 34 10 34 157

Votes c 3.7 7 1 6 23
d 3.2 7 3 7 25

Pima c 147.2 262 153 262 NA
d 124.8 230 20 208 626

Haberman c 45.5 104 1 76 202
d 46.6 128 39 127 253

Bupa c 80.6 144 58 142 334
d 68.8 131 46 118 320

Glass c 19 45 7 40 110
d 15.9 36 11 36 104

Credit c 137.4 255 121 253 634
d 123.5 225 79 217 608

Table 2: SCM results, with p = ∞, for conjunctions (c) and disjunctions (d).

of many values for these parameters. We have also reported the average number of support
vectors (in the “size” columns) contained in machines obtained from the 10 different training
sets of 10-fold cross-validation. Note that SVMs performed significantly better than NNCs
only for the soft margin case (finite values of C).

The results for the SCM are reported in tables 2 and 3. Despite the fact that we have
observed that results with the L1 metric are often better, we have only reported here the
results for the L2 metric. This was done to obtain a fair comparison with SVMs because
the argument of the Radial Basis Function kernel is given by the L2 metric between two
input vectors. The L2 metric was also used for NNCs.

We have reported in table 2 the results for SCMs trained with BuildSCM for p = ∞
and both infinite and finite values of s. Algorithm BuildSCM was permitted to use ball
centers from both N and P for all the results of this table. For infinite s, the SCM was
trained until it made zero training errors. We see that these are the largest machines and
that they often have the largest generalization error. The size, expressed as the number of
data-dependent balls, is the average of sizes obtained from the ten different training sets of
10-fold cross validation.

For finite s, and for one pair of training and testing set, the SCM was first trained until
it made zero training errors and then tested on the testing set for all possible sizes. The size
(in terms of the number of balls) that gave the least 10-fold cross validation error is reported
in table 2. This is why that size is always an integer. We see that early stopping (finite s)
is often effective at decreasing the generalization error. Finally note that the generalization
error of SCMs trained with infinite p and finite s is generally similar to the one obtained
for SVMs with infinite C.

We have reported in table 3 the results for SCMs trained with BuildSCM for finite
p values (and finite s values). The reported values of p and s (size) are the ones that

741



Marchand and Shawe-Taylor

Data Set Type Simple SCM Complex SCM
p size error bound p size error bound

BreastW c 0.8 1 18 110 1.8 2 15 99
d 0.4 1 16 108 0.4 1 16 109

Votes c 0.8 1 7 25 1.2 1 6 23
d 0.8 1 6 23 0.9 1 6 23

Pima c 1.1 3 189 621 1.1 3 189 622
d 1.1 15 206 604 4.1 16 206 624

Haberman c 1.4 1 71 202 1.4 1 71 202
d 1.8 1 93 230 1.4 12 71 NA

Bupa c 1.5 9 109 300 1.6 20 121 NA
d 3.0 10 106 292 2.8 9 107 291

Glass c 1.0 3 35 112 0.85 4 33 105
d 5.0 11 36 104 5.0 11 36 104

Credit c 0.8 4 198 579 0.8 4 198 579
d 1.0 4 195 572 1.2 4 194 570

Table 3: SCM results, with finite p and finite s, for conjunctions (c) and disjunctions (d).

gave the best results among an exhaustive scan of many values for these parameters. The
results for “Simple SCMs” refer to those obtained when BuildSCM was constrained to use
N -examples for ball centers and the results for “Complex SCMs” refer to those obtained
when BuildSCM was permitted to use examples from both N and P for ball centers. The
results for “Complex SCMs” represent a substantial improvement over the case of infinite
p reported in table 2. We see that finite p values generally give smaller SCMs with better
generalization.

The generalization error of the “Simple SCM” is almost always very similar to the one
obtained from the “Complex SCM”. The two exceptions are the disjunction for the Haber-
man data set, were the simple SCM performed substantially worse than the complex SCM,
and the conjunction on the Bupa data set, where the simple SCM performed substantially
better than the complex SCM. However, for each data set, there was always either a con-
junction or a disjunction that performed (almost) as well as the best complex SCM. Hence,
there was no significant advantage in using the more complex SCMs on these data sets, but
there was no disadvantage either (except for a degradation of time complexity).

The generalization error of SCMs trained with finite p is generally similar to the one
obtained for SVMs with finite C. The main difference is in the size of the classifier. SCMs
are always substantially smaller than SVMs.

We have also reported, in the “bound” columns of tables 2 and 3, the bound on the
generalization error obtained by computing the r.h.s. of the inequality of Theorem 5 (with
δ = .05), for each of the 10 different training sets involved in 10-fold cross validation, and
multiplying that bound with the size of each testing sets. A value of “NA” means that a
valid bound could not be found for some SCMs of the specified size among those obtained
during the 10-fold cross validation process. We see that, although the bound is not tight, it
is nevertheless non-trivial. This is to be contrasted with the VC dimension bounds which
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Data Set Type MS from 10-fold CV MS from bound Optimal
size error std size error std p size error

BreastW c 1.7 17 11 1.8 16 12 1.8 2 15
d 1 16 12 1.0 16 12 0.4 1 16

Votes c 1 6 8 1 6 8 1.2 1 6
d 1 6 8 1 6 8 0.9 1 6

Pima c 7 195 25 9.1 192 20 1.1 3 189
d 11.4 220 19 31.8 214 28 4.1 16 204

Haberman c 1.5 75 13 2.1 77 14 1.4 1 71
d 8.1 77 26 4.8 76 24 1.4 12 71

Bupa c 9.7 122 23 8.6 125 24 1.6 20 121
d 8.8 115 17 14.3 109 19 2.8 9 106

Glass c 2.6 39 20 3.5 36 24 0.85 4 33
d 7.2 41 23 6.8 38 19 5.0 11 36

Credit c 1.6 216 40 7.3 204 38 0.8 4 197
d 1.8 203 39 16.4 209 35 1.2 4 194

Table 4: SCM model-selection results for a fixed value of penalty p.

cannot even be applied for our case since the set of functions supported by the SCM depends
on the training data.

Let us now investigate the extent to which our bound can perform SCM model-selection.
More specifically, we want to answer the following question. Given a set of SCMs obtained
from BuildSCM for various values of the model-selection parameters p and s, is our bound
on the generalization error, evaluated on the training set, effective at selecting the SCM
that will give the best generalization?

Note that the results reported in table 3 are, in fact, the 10-fold cross validation estimate
of the generalization error that is achieved by the model selection strategy that correctly
guesses the best values for p and s. This model-selection strategy is, in that sense, optimal
(but not realizable). Hence, we will refer to the score obtained in table 3 as those obtained
by the optimal model-selection strategy.

The results for the model-selection strategy based on our bound are reported in table 4
for the case of a “fixed” value of p set to its optimal value and in table 5 for the case of
variable values of penalty p. In this latter case, we have used our bound to select the best
SCM among those obtained for various penalty values among a list of fifteen penalty values
(that always contained the optimal value) and for all possible sizes s. Also shown in these
tables, are the results obtained for the 10-fold cross validation model selection method.
This latter method is perhaps the most widely used—here, it consists of using 10-fold cross
validation to find the best stopping point s and the best penalty value p (in the variable p
case) on a given training set. Both model selection methods where tested by 10-fold cross
validation and compared with the optimal model (taken from table 3 and reported again in
table 4). In all cases BuildSCM could choose ball centers from examples of either N or P.
Finally, in addition to the error and size (as in the previous tables), we have also reported
the standard deviation of the results. These were obtained by computing the standard
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Data Set Type MS from 10-fold CV MS from bound
size error std size error std

BreastW c 1.6 20 15 1.8 20 15
d 1.5 27 19 1.3 28 14

Votes c 1 6 8 1 6 8
d 1.1 8 8 1.1 8 8

Pima c 6.1 209 28 18.6 205 28
d 13 219 29 25.9 215 32

Haberman c 1.2 85 20 4.3 82 17
d 5.7 82 25 4.9 72 18

Bupa c 14.2 132 29 13.9 133 27
d 8.9 120 10 13 117 19

Glass c 3.4 38 27 4 45 25
d 7.9 44 26 6 45 24

Credit c 12 221 37 22.2 215 31
d 3.8 207 33 14.9 215 36

Table 5: SCM model-selection results for variable values of penalty p.

deviation of the generalization error (per example) over the 10 different testing sets and
then multiplying it by the number of examples in the data set.

Not surprisingly, the results for variable p are almost always better than those when
p is fixed to its optimal value. Most importantly, we see that model selection by using
our bound is generally as effective as using 10-fold cross validation. Moreover, both model
selection methods are always within one standard deviation of the optimal.

7. Conclusion and Outlook

Our theoretical and experimental results indicate that the set covering machine is definitely
a good candidate for practical machine learning tasks. Our bound on the generalization
error indicates that good generalization is expected whenever we can find a small set covering
making few training errors. Moreover, we have seen that our bound is generally as effective
as 10-fold cross validation at selecting a good model.

The next important step is to generalize our bound to the case of asymmetrical loss which
frequently occurs in practice. Indeed, although our model selection parameters give us the
flexibility to control the amount of training errors on the positive examples independently
from the training errors on the negative examples, our bound only applies to the case of
symmetrical loss.

Apart from the model-selection issue, it is important to investigate several possible
extensions of the set covering machine. One possibility would be to use other metrics for
the data-dependent balls. Some background knowledge can sometimes be used to find some
symmetries that the best metric should have, but all too often we are left with a set of
unknown parameters whose best values are unknown. Intuitively, the best metric in a set of
metrics is the one which needs the smallest number of balls for the covering. Hence, there

744



The Set Covering Machine

is clearly a need to extend our theory to the case where the best metric is chosen from the
data.

Another important issue concerns the set of features used by the SCM. Indeed we should
not expect that data-dependent balls will always give the best results. We could try also
to use data-dependent half-spaces. One possibility would be to construct hyperplanes from
triples of examples. The weight vector would be constructed from a pair of positive and
negative examples and the third example would be used to identify the threshold. This
would give a larger set of features than the set of balls (since each ball is built only from
two examples) but a SCM constructed from these half-spaces might be much smaller and,
therefore, generalize better. Also note that, in the case of half-spaces, the learning algorithm
would need only to be provided with a definition of an inner product between any pair of
examples. Hence the learning algorithm would be kernel-based instead of being metric-based
as in the case of balls.

Finally there is the possibility of using larger classes of functions than conjunctions and
disjunctions. For this research direction, the next step is to consider decision lists (Rivest,
1987, Dhagat and Hellerstein, 1994) of data-dependent features. Indeed, for the same set
of features, any conjunction and any disjunction can be expressed as a decision list. But
decision lists with the presence of alternations (Dhagat and Hellerstein, 1994) cannot be
expressed as a conjunction or a disjunction. However, the training problem for decision lists
is not a minimum set cover problem (Dhagat and Hellerstein, 1994) and, consequently, a
guarantee similar to Theorem 7 cannot be provided. Nevertheless, we can still use a greedy
set cover algorithm to cover the examples of both classes and try to generate an alternating
decision list that would be much smaller than a conjunction or a disjunction. That decision
list would perhaps generalize better. We could also try to extend further to the strictly
larger class of linear threshold functions (of data-dependent features) and use the Winnow
algorithm (Littlestone, 1988) which has a good theoretical guarantee when most of the
features are irrelevant. We have found however that this algorithm was simply too slow
to be used in practice with data-dependent balls. Indeed, despite extensive running times,
we have not been able to obtain any reasonably good solutions when using O(m2) balls for
m = 700.
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