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[1] After reviewing briefly the theory of the gyroresonant interactions between a
quasimonochromatic whistler-mode wave and energetic electrons trapped in the
magnetosphere, we extend this theory to consider such interactions for a natural whistler
arising from a lightning discharge in the Earth’s atmosphere. It is shown that, near the
equatorial plane of the magnetosphere, whistler components above the nose frequency can
accelerate energetic electrons. This acceleration takes place when the gyroresonant
electrons are trapped by the wave field. The acceleration rate in this regime is much
greater than is stochastic acceleration in the untrapped regime. It is not accompanied by
pitch angle scattering which characterizes the untrapped regime. For example, at L = 3, a
gyroresonant electron with an energy of �6 keV and a pitch angle of 45� could have its
energy increased by �24% to 7.4 keV and its pitch angle changed to 70� after a single
interaction with a whistler whose frequency changes from 1/3 to 1/2 the equatorial
gyrofrequency. Highly anisotropic distributions of van Allen radiation belt electrons with
‘‘pancake’’ pitch angle distributions can result from such an acceleration. INDEX TERMS:
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1. Introduction

[2] Friedel et al. [2002] has recently reviewed ten differ-
ent mechanisms by which electrons may be accelerated to
large energies in the magnetosphere. Amongst these are
electromagnetic ion cyclotron waves and whistler-mode
waves. Summers and Ma [2000] have shown that electrons
can be accelerated to >1 M, stochastically, by enhanced
whistler-mode chorus at 3 < L < 6, beyond the plasmapause,
during the recovery phase of amagnetic storm.Meredith et al.
[2001] have followed this up, and suggested that the process
is most effective when there are periods of prolonged sub-
storm activity following the main phase of a magnetic storm.
They have suggested that, within the plasmasphere, the
dominant signals are independent of substorms, being whis-
tlers or signals from VLF radio transmitters on the ground.
[3] Here, we consider whistler signals, generated by

lightning discharges, which could contribute significantly
to the energetics of the van Allen radiation belts, especially
to the precipitation [Dungey, 1963] and acceleration [Helli-

well and Bell, 1960] of radiation belt electrons. The main
reason for this is the very high efficiency of whistler-
electron interactions associated with the Doppler-shifted
cyclotron resonance. Whistler-triggered signals observed
on the ground provide important evidence of the occurrence
of such an interaction [Helliwell, 1965; Smith et al., 1985;
Helliwell, 1993].
[4] Theoretical investigations of triggered VLF emissions

generated by quasimonochromatic signals from ground-
based VLF transmitters [Sudan and Ott, 1971; Nunn,
1974, 1993; Nunn et al., 1999; Karpman et al., 1974;
Istomin et al., 1976; Vomvoridis et al., 1982; Molvig et
al., 1988; Carlson et al., 1990; Omura et al., 1991; Hobara
et al., 2000; Trakhtengerts et al., 2001] have shown that
generation of triggered whistler-mode signals is due to the
acceleration of electrons trapped in the potential well of a
pump-wave. These electrons form an electron beam with a
small spread of geomagnetic field-aligned velocities, and
serve as a source of secondary whistler-mode radiation
[Sudan and Ott, 1971; Istomin et al., 1976; Hobara et al.,
2000; Trakhtengerts et al., 2001].
[5] Similar effects should take place for the wave packet

of a whistler, generated by a lightning discharge. However,
the change of the whistler’s frequency in space and time due
to dispersion prevents the direct application of the theory
developed for quasimonochromatic signals. Some very
important modifications to the theory are necessary, and
these are discussed here for the first time.
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[6] In section 2, we review the basic features of the theory
of cyclotron interactions between energetic electrons and a
quasimonochromatic whistler wave in an inhomogeneous
(dipolar) geomagnetic field. The generalization of this for the
case of a whistler whose frequency changes appreciably with
time is given in section 3. We then consider the acceleration
of electrons by a lightning-generated whistler wave packet
with changing frequency in section 4. Discussion of the
results obtained and some conclusions are given in section 5.

2. Basic Equations: Acceleration of Energetic
Electrons by a Quasimonochromatic Whistler
Packet

[7] As is well known, whistler waves can propagate in the
Earth’s magnetosphere in ducted and unducted modes. We
consider the first case, when a whistler-wave packet is
trapped within a geomagnetic-field aligned column of
enhanced plasma density, which serves as a waveguide
directing the wave energy along the geomagnetic field. If
the relative density enhancement is small, and the duct
width is much larger than the whistler wavelength in the
plasma (l � 1 km), this ducted mode can be treated as a
plane wave with ~k k ~B.
[8] The equations of an electron’s motion in an inhomo-

geneous magnetic field~B, in the presence of a whistler wave
whose wave vector ~k is antiparallel to ~B, can be written in
their simplest form if we use as variables the kinetic energy
W and the first adiabatic invariant m of the electron, and if
we take the coordinate z along the magnetic field line
instead of time t:

W ¼ m

2
v2k þ v2?

� �
; m ¼ mv2?

2B
;

vk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

m
W � mBð Þ

r
;

ð1Þ

where vk and v? are the electron’s velocity components
along and across the geomagnetic field, B = ~B

�� ��, and m is
the electron mass. The relation between z and t for a test
electron in terms of their initial values z0 and t0 is

t � t0 ¼
Zz

z0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

W � mB z0ð Þð Þ
q ð2Þ

where z0 is the variable of integration along the field line.
[9] The equations of a test electron’s motion in these

variables are written [Sudan and Ott, 1971; Nunn, 1974,
1993; Karpman et al., 1974] in the form:

dW

dz
¼ �e

mB
W � mB

� 	1=2

Re A exp iyð Þð Þ ð3Þ

B
dm
dz

¼ �e
mB

W � mB

� 	1=2

1� nbk
� �

Re A exp iyð Þð Þ ð4Þ

dy
dz

¼ 2

m
W � mBð Þ

� 	�1=2

w� wB � kvk

 �

; ð5Þ

where y = � � j is the phase difference between the wave
electric field and the electron’s perpendicular velocity. Here,
by definition, @�

@t = w, @�
@z = �k, and @j

@t = wB, A is the
amplitude of the whistler-mode wave electric field, n = jkjc/
w is the whistler-mode refractive index, bk = vk/c, and c is
the velocity of light in free space. In equation (5) we have
omitted the term which is proportional to the wave
amplitude A and which gives a small change to the solution
of equation (3)–(5). We consider an electron moving in the
+z direction, which interacts via cyclotron resonance

w� wB � kvk � 0 ð6Þ

with a whistler-mode wave with k < 0 (i.e., propagating in
the �z direction) as shown in Figure 1. We assume that the
whistler wave amplitude is given and changes only slowly
along the trajectory of the energetic electrons. For the
gyroresonant electrons, when the equality (6) is satisfied,
the system of equations (3)–(5) has an integral of motion,
which can be written as

W � mc

e
wm ¼ const: ð7Þ

This can be demonstrated by differentiation of (7) with
respect to z, and using (3) and (4). This integral exists if the
wave frequency w is constant.
[10] For the case of a small-amplitude whistler b � B,

where b is the wave magnetic field amplitude, and a slowly
varying geomagnetic field, we use the adiabatic approach to
solve the system of equations (3)–(5) following Laval and
Pellat [1970] and Karpman et al. [1974]. The right hand side
of (5) is presented in the form of a Taylor series expansion
over the small parameters near the point of the exact
resonance (6) (see below). Differentiating both parts of
equation (5) with respect to z, and using (3)–(4), we obtain:

d2y
dz2

� l�2
tr cosyþ a ¼ 0 ð8Þ

Figure 1. Diagram indicating the interaction occurring near
the equatorial plane (L = 3) between a whistler and an
energetic electron traveling in the opposite direction. The
electron enters the interaction region at the entrance, at the
equator where z = 0. It leaves the interaction region at the exit,
about 5000 km (using the numbers given in section 5) away
from the equator, with a higher energy, having interacted with
the ducted whistler above its nose frequency wN.
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where the trapping length ltr is equal to

ltr ¼
vR

�B

; ð9Þ

�B ¼ kv?wbð Þ1=2 ð10Þ

is the frequency of electron oscillations in the potential well
of the wave (see Figure 2), and wb = (e/mc)b is the electron
gyrofrequency in the wave magnetic field b. The resonance
velocity for the electrons is

vR ¼ w� wB

k
> 0: ð11Þ

The inhomogeneity factor a is

a ¼ k
d

dz

vRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

W � mBð Þ
q

0
B@

1
CA

zR

ð12Þ

where zR is the point of exact resonance (6). In the
differentiation in (12), W and m are assumed to be
independent of z. Equation (8) is valid for the electrons with
vk close to the resonance velocity vR, and includes only first
order terms of the small parameters e1 = b/B and e2 = ltr/l;
here, l is the characteristic scale length of B and k changes. To
have the solution of (8) in a standard form we introduce a
new variable x, which is connected to y by the relation

2x ¼ y� 3p=2 ð13Þ

For ltr and a constant over z, equation (8) has the energy
integral [Shklyar et al., 1992]

_x
2
l2tr þ sin2 xþ 2al2trx ¼ const ð14Þ

where _x = dx/dz. It follows from (14) that there is a trapping
threshold, which is determined by the condition that the
effective potential Ueff = sin2x + 2altr

2x has a minimum (see
Figure 2), i.e.,

2al2tr
�� �� 
 1: ð15Þ

For j2altr2 j � 1, trapped particles satisfy the condition k2 > 1,
where

k2 ¼ _x
2
l2tr þ sin2 x

� ��1

: ð16Þ

[11] If a and ltr are slowly changing functions of z, the
integral relation (14) is not valid. However, in the case
j2altr2j � 1, k can be found using the adiabatic approach
[see Karpman et al., 1974]. For trapped particles (k2 > 1),
this approach gives the following relation:

d

dz

E 1= kj jð Þ � 1� k�2ð ÞK 1= kj jð Þ
ltr

� �
¼ 0 ð17Þ

where jkj is the modulus of k.
[12] This equality permits us to find the condition for

stable trapping: dk2/dz > 0 (k2 > 1). In (17), E and K are the
full elliptic integrals of the first and second type, respec-
tively. Using a Taylor series expansion of E and K for jkj > 1,
we find that the inequality dk2/dz > 0 is fulfilled [Hobara et
al., 2000] when

d

dz
ltr < 0 ð18Þ

[13] The acceleration of trapped electrons (i.e., the net
growth of energy W) for a whistler-mode wave of constant
frequency w occurs when the value of the resonance
velocity jvRj is decreasing along the electron trajectory
[Istomin et al., 1976; Hobara et al., 2000]. In this case
the inequality (18) is obeyed. Changes of W and m are
obtained from the relation (7), and using vk

2 � 2
m
(W � mB)

= vR
2 [Istomin et al., 1976; Hobara et al., 2000].

3. Acceleration of Electrons by a Whistler Wave
Packet With Changing Frequency

[14] The cyclotron interaction of an energetic electron
with a whistler of changing frequency w(z, t) is described by
the same system of equations (3)–(5). Now, w(z, t) and
k(w(z, t), z) are known functions of z and t. As a result, an
additional term appears in the expression for the inhomo-
geneity factor a in comparison with (12). The expression
given in (7) is not the motion integral in this case. Thus, it is
necessary to generalize the results obtained above for the
case of a changing frequency w(z, t).
[15] The change of frequency of a wave packet along its

ray path is given by the standard equation of geometrical

Figure 2. Variation of the effective potential of the
whistler wave above its nose frequency wN, with distance
z from the equator (where z = 0); the shaded regions show
where gyroresonant electrons are phase trapped by the
wave. In reality, there are far more oscillations than shown,
because the wavelength in the medium is much less than
�1000 km.
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optics in a medium whose properties do not change with
time [Bernstein and Fridland, 1984]:

@w
@t

� vg
@w
@z

¼ 0: ð19Þ

Here vg is the group velocity, which in general depends on w
and z; the fact that ~k is parallel to~vg and antiparallel to~vk
and the z direction is taken into account (see Figure 1).
Thus, w is a function of the argument t +

Rz
dz0

vg
. In accordance

with relation (2), we should take w(z, t) for the frequency
experienced by the test electron at z, t in the form

w z; tð Þ ¼ w t þ
Zz

dz0

vg

0
@

1
A

¼ w t0 þ
Zz

z0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

W � mB z0ð Þð Þ
q þ

Zz

dz0

vg

0
B@

1
CA ð20Þ

[16] In this case, the inhomogeneity factor a is defined by

a ¼ k
d

dz

vR w; zð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

W � mBð Þ
q

2
64

3
75 ¼ a1 þ a2: ð21Þ

Here, as earlier,

a1 ¼
k

2

2wB þ w
wB � w

þ v2?
v2R

� 	
d lnwB

dz
ð22Þ

is the value of a for the case of w = const defined by (12),
and the new term a2 results from differentiation over w
which, in our case, is itself a function of z, as determined by
the expression (19):

a2 ¼ k
@vRw=@wffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

W � mBð Þ
q dw

dz
¼ � k

2

2wþ wB

wB � w
d lnw
dz

ð23Þ

To obtain (21)–(23) we took into account that, for whistler
waves in the Earth’s magnetosphere [Helliwell, 1965],

k ’ wwB

wB � w

� 	1=2

p ð24Þ

where p = wp/(wB
1/2c) � const and wp is the electron plasma

frequency. It is assumed that along a particular flux tube
(i.e., along the duct axis) the electron density is proportional
to the geomagnetic field.
[17] Trapping of electrons by the wave takes place under

the same condition (15), but with a defined by (21). The
trapping is stable if the condition (18) is obeyed, where the
expression (19) for w(z, t(z)) is taken into account. For stable
trapping, the field-aligned velocity component vk of the
electron when it exits from the whistler packet is equal to

[18] The system of equations (3)–(5) enables us to find
the change of the first adiabatic invariant m. From equations
(3)–(4) we have, similarly to (7):

dm
dz

¼ e

mcw z; tð Þ
dW

dz
ð26Þ

Putting the relation W = mB +
mv2k
2

� mB +
mv2

R

2
into (26), after

some algebraic manipulations we obtain

dm
dz

þ dwB=dz

wB � w
mþ e

2c wB � wð Þ
dv2R
dz

¼ 0 ð27Þ

where

dv2R
dz

¼ wB � wð Þ2

wBwp2
2þ w

wB

� 	
dwB

dz
� 2þ wB

w

� � dw
dz

� �
: ð28Þ

[19] The solution of the differential equation (27) for m
has the form

m ¼ ment �
e

2p2c

Zzext
zent

dz exp

ZwB zð Þ

wB zentð Þ

w0
B � w


 ��1
dw0

B

2
64

3
75

� 2wB

w
� 1� w

wB

� 	
d lnwB

dz
þ wB

w
þ 1� 2w

wB

� 	
d lnw
dz

� �
ð29Þ

where zent and zext are the coordinates of the forward and
trailing edges of the wave packet at the times of electron
entry and exit from the packet, respectively, and ment is the
value of m when the test electron enters the wave packet. In
the case of a constant wave frequency, equation (28) is
consistent with the results published earlier [Istomin et al.,
1976; Hobara et al., 2000]. When the rate of change of
wave frequency is higher than that of wB (for example, near
the equator, where wB ’ const), the change of magnetic
moment and hence the electron acceleration is determined
by the following expression:

mext � ment ¼
e

2p2c

wB

went

� wB

wext

þ ln
wext

went

� 2
wext � went

wB

� �
ð30Þ

Here went and wext refer to the wave frequency at the point of
particle entrance and exit, respectively. Electron accelera-
tion occurs if wext > went.
[20] Expression (30) does not contain the whistler ampli-

tude b. However, it is borne in mind that (30) is valid if the
inequality (15), which includes the wave amplitude, is
satisfied along the entire acceleration path. In the following
section, we analyze this criterion for a particular case of a
whistler generated by lightning.

4. Case of Acceleration by a Whistler Wave
Packet, Generated by a Lightning Discharge

[21] Now we consider an important case of acceleration
when a whistler wave packet with changing frequency is
generated by a lightning discharge in which all frequencies
are emitted instantaneously. As is well-known [Helliwell,

vk zextð Þ ¼ vRj j ¼ wB � w z; tð Þ
k

� �
zext

: ð25Þ
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1965], equation (19) expresses the propagation and disper-
sion of the whistler wave w(z, t) everywhere, where the
condition for geometrical optics is valid, and gives rise to
the nose whistler phenomenon. Let us represent the fre-
quency dependence of an electromagnetic signal generated
by lightning at the point z = l (ground level of a particular
magnetic field line) using the model

w ¼ w0 þ d � t ; 0 
 t 
 � � d�1 ð31Þ

The parameter d has a very large value for real lightning
discharges (i.e., the causative atmospheric is approximated
here by an extremely steep ramp in frequency). Integrating
equation (19), we obtain the frequency w(z, t) at any
arbitrary point z:

w ¼ w0 þ d � t þ d
Zz

l

dz0

vg z0;wð Þ ð32aÞ

or, using (2),

w ¼ w0 þ d � t0 þ d
Zz

z0

dz0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m

W � mB z0ð Þð Þ
q þ d

Zz

l

dz0

vg z0;wð Þ ð32bÞ

[22] From (32b) we find:

dw
dz

¼ 1

vR
þ 1

vg

� 	� Zz

l

dz0

v2g

@vg
@w

þ d�1

0
@

1
A ð33Þ

[23] For a whistler wave, we define q as

q �
Z l

z

dz0

v2g

@vg
@w

¼ p

4

Z l

z

y3=2 y� 4ð Þ
w3=2 y� 1ð Þ5=2

dz0 � Tg

2w
wBL � 4w
wBL � w

ð34Þ

where y = wB/w is the magnetoionic variable and Tg(w) =Rl
0

dz0/vg(w, z
0) is the group delay from the lightning flash to

the equator. Strictly speaking, the relation (33) supplemen-
ted by (34) serves as a differential equation for w(z) (in (34),
w depends on z, not z0). However, to estimate dw/dz near the
equator (z = 0) we can simplify the expression for q and
obtain the last equation in (34). Herewith, the subscript L
refers to values taken at the equatorial plane. Substituting
(33)–(34) into (23), and assuming that d ! 1 so that d�1

! 0, we obtain

a2 ¼ 1þ wB

2w

� �2

v2Rq

 ��1� 1þ wBL

2w

� �2 2w
v2RLTg

wBL � w
wBL � 4w

: ð35Þ

[24] To study electron acceleration due to the whistler
near the equator (wB ’ wBL) we use the expression (9) and
write the condition for trapping (15) in the form

2a2l
2
tr

�� �� ¼ 4vRLvgL

v?lwbL

1þ wBL

2w

� �2

4� wBL

w

��� ����1


 1: ð36Þ

Considering the case ~kk~B we actually assumed that, as a
whistler wave propagates in a duct, the wave amplitude b
changes along this duct in accordance with the law for the
conservation of energy flux [Hobara et al., 2000].
Neglecting absorption, this law relates the wave amplitude
at the entrance to the duct in the ionosphere (I) to that in the
equatorial plane (L):

bL¼
wBL

wBI

vR0

vRL

� 	1=2

bI �
wBL

wBI

� 	1=2

1� w
wBL

� 	�3=4

bI : ð37Þ

Substituting the expressions for vR0, vRL, and bL, and putting
l ’ 1.38 LRE for a dipolar geomagnetic field line [Lyons and
Williams, 1984] into (36), we obtain the trapping condition
in the form

4w2
BLc

2L1=2

1:38w2
pLv?REwbI

j wð Þ 
 1: ð38Þ

Here

j wð Þ ¼ 1� w
wBL

� 	15=4

1þ wBL

2w

� �2

4� wBL

w

� ��1

; ð39Þ

L is McIlwain’s parameter for the flux tube, and RE is the
Earth’s radius. The dependence of the left hand side of (38)
on L is determined by the multiplier wBL

2 L1/2/wpL
2 . If it is also

assumed that on different geomagnetic flux tubes the
electron density in the plasmasphere is proportional to B,
this multiplier becomes L�5/2.
[25] We can see from (36) that the conditions for trapping

(17) and for the validity of the adiabatic approach are
broken at the nose frequency wN ’ wBL/4. This is a very
important front point of a whistler wave packet, which plays
similar role as the sharp leading edge of a constant-fre-
quency wave packet. Resonant electrons crossing this edge
get trapped in the wave potential well. For a whistler, the
situation is more complicated, since an electron near the
packet front moves in the field of two frequencies with a
frequency gap increasing along the particle trajectory.
Therefore, a special consideration, which is beyond the
scope of this paper, is needed to say by which frequency
branch of a whistler, w < wN or w > wN, an electron is
trapped.

5. Discussion and Conclusions

[26] The relations (30), (36), and (38) permit us to
estimate the electron acceleration by a whistler for the
conditions occurring in the Earth’s magnetosphere. As
follows from (28)–(30), acceleration near the equatorial
plane takes place if dw

dz
> 0, or w(zext) > w(zent). Therefore,

electron acceleration in this case is effective only for the
higher-frequency components of a whistler, above the nose
frequency wN, where wN � 0.25wBL in our approximation.
From the inequality (18) it is easy to show that the condition
dw
dz
> 0 is also necessary for stable particle trapping. Trapping

occurs when the condition (36) is met. For that it is
necessary to move from the nose frequency to higher
frequencies.
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[27] Let us consider a quantitative example. According to
(24) and (25), an electron is in gyroresonance with the wave
at the equator if its parallel energy is

WkL ¼ WRL ¼ 1� w=wBLð Þ3

w=wBLð Þ W0 ; ð40Þ

where W0 = 0.5 mc2 (wBL/wpL)
2. Putting, as Rycroft [1976]

did, L = 3, the density of cold plasma NcL = 103 cm�3, and
w = wBL/3 (which is equivalent to about 10 kHz), we obtain
W0 ’ 3.32 keV and WkL ’ 2.95 keV. If the electron pitch
angle is 45�, W?L is also ’2.95 keV, and the total energy of
the gyroresonant electron is W ’ 5.9 keV. These parameters
correspond to vRL ’ 0.11 c. Substituting these values in
(38), we find the whistler amplitude necessary to trap the
gyroresonant electrons at the entrance to the whistler-wave
packet. Taking into account that, according to (39), j(w =
wBL/3) � 1.36, we obtain bL ’ 115 pT.
[28] This amplitude is rather high, but consistent with

values extrapolated to the equatorial plane from observations
of whistlers in the ionosphere above a thunderstorm [Kelley
et al., 1985]. Note that the influence of the magnetic field
inhomogeneity and the wave frequency variation on trapping
is opposite for electrons moving off the equator, if w > wB/4.
Therefore, the parameter a decreases its absolute value as
the distance from the equator increases, until it vanishes at
some distance. For the parameters chosen, this distance is
about z ’ 0.36 L RE. If the wave magnetic field at equator is
bL = 20 pT, then the trapping conditions for w = 0.3wBL are
satisfied from z = 0.29LRE to z = 0.41LRE. For higher
frequencies, the trapping criterion at the equator is satisfied
much more easily, since the frequency sweep rate is lower:
for w = 0.5wBL and with the other parameters the same as
those above, we obtain bL ’ 29 pT and bI ’ 158 pT.
[29] The transverse energy increase of an electron �W?

due to a single interaction with a whistler wave packet can be
estimated from (30). Putting went = wBL/3 and wext = wBL/2
(the latter corresponds to about 15 kHz), we obtain �W? ’
1.07 keV and W0 ’ 3.56 keV. Under these conditions,
mvRext

2/2 � W0/4 � 0.83 keV. Now we can estimate the
change of the total energy:

�W ¼ �W? þ�Wk ¼ �W? þWR ext �WR ent ’ 3:56keV

þ0:83keV� 2:95keV ’ 1:44keV:

In other words, the total energy increases by about 24%,
from 5.9 keV to 7.35 keV. The pitch angle also increases,
from 45� to arctan(v?ext/vkext) ’ 70�.
[30] Table 1 compares the change of energy components

and the resulting electron pitch angle for three typical values
of L and NcL, the cold plasma density in the equatorial
plane. It is not surprising that the final pitch angle aext does
not depend on these values. Indeed, for the near-equatorial
acceleration and a given initial pitch angle aent, aext is
solely determined by the frequencies at the entrance to and
exit from the acceleration region, normalized to wBL.

[31] On the plasmapause (L = 4), the energy increase
during a single interaction with a whistler is from 35 keV to
43.5 keV. For a whistler propagating outside the plasma-
pause (at L = 5), a rather unusual occurrence, the energy
increase is from 92 keV to 114 keV.
[32] We can also estimate the maximum flux density of

accelerated electrons, using the conservation of total energy
flux of waves and particles. In our case, the conservation
law is written in the form

Pwext ¼ Pe � vkext nh �W ; ð41Þ

where Pw ’ vgbL
2 /(8p) is the whistler-wave energy flux, and

nh is the number density of accelerated electrons. The
resulting flux density of electrons is equal to

Se � vkext nh ’
vgb

2
L

8p�W
: ð42Þ

For the parameters used above for L = 3, �W � 1.44 keV
and bL � 102 pT, and we obtain Se � 105 cm�2 s�1.
[33] It is important to note that the threshold whistler

amplitude for trapping is proportional to the ratio vk/
v?(36), which decreases during the acceleration process.
This means that the high frequency components of whistlers
can assist in the formation of highly anisotropic energetic
tails in the distribution function of the radiation belt electrons
(‘‘pancake’’ pitch angle distributions). The experimental
data presented by Bell et al. [2000] could be considered as
some experimental evidence for such acceleration.
[34] We can compare this acceleration of gyroresonant

electrons in the trapping regime with the stochastic accel-
eration of electrons by whistlers, when trapping is absent. In
the latter case, acceleration takes place in multiple interac-
tions of an electron, oscillating between the magnetic mirror
points, with many whistlers; it is accompanied by pitch angle
scattering. The maximum change of electron energy in this
case is comparable to the energy gain in the trappng regime
(30) and is described by the relation (7) [see, e.g., Brice,
1964]. However, the efficiency of such acceleration (i.e., the
acceleration rate) is much smaller; moreover, this process is
accompanied by the loss of gyroresonant electrons due to
pitch angle scattering [Smith et al., 2001].
[35] The interaction of gyroresonant electrons with whis-

tlers at frequencies below the nose frequency fN ’ fBL/4 is
not so simple. According to the general result (30), an
electron should lose its energy during such an interaction,
but the trapping is unstable in this case. As a result, an
electron leaves the whistler packet before it reaches the
wave packet’s trailing edge.
[36] If the interaction takes place far from the equator and

the whistler wave packet with w < wN propagates towards a
decreasing geomagnetic field, the magnetic field inhomoge-
neity and the frequency variation have opposite contributions
to the total inhomogeneity factor a (a1 < 0 and a2 > 0) and
can compensate for each other. This case requires a special
consideration in a future paper.

Table 1. Parameters of Electron Acceleration by Whistlers in the Regime of Nonlinear Trapping

L NcL, cm
�3 wBL, s

�1 WRent, keV �W?, keV �Wk, keV �W, keV aext, deg

3 103 2 � 105 2.95 3.56 �2.12 1.44 70.35
4 30 8.6 � 104 17.5 21.13 �12.59 8.54 70.35
5 3 4.4 � 104 45.9 55.39 �33.01 22.38 70.35
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[37] The general conclusions of this paper are as follows.
� The velocity space for electrons can be divided into

two parts along the vkL axis, the boundary between the parts
corresponding to the resonance velocity vR* for the nose
frequency fN (40). This separation is shown in Figure 3.

� Electrons with vkL < vR* can be stably trapped by a
whistler wave with frequency f > fN and accelerated
according to (30).

� Estimates show the very high efficiency of this
acceleration; the increase of the gyroresonant electron energy
reaches �20% of its energy in one interaction (see Table 1).

� Acceleration in such a regime leads to the formation of
highly anisotropic electron distributions, whereas the
interaction with the low-frequency components of whistlers
( f < fN) results mainly in pitch angle scattering and the loss
of van Allen belt electrons.

� It would be not only interesting but also extremely
important to investigate experimentally the relationship
between thunderstorm activity and the appearance of highly
anisotropic energetic electrons, with larger fluxes well away
from the loss cone, in the van Allen radiation belts.
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Figure 3. The minimum gyroresonance velocity (at the
equator), normalized to the value at the nose frequency, is
plotted here against the ratio of the whistler wave frequency
to the equatorial gyrofrequency. At frequencies above the
nose frequency (taken as 0.25wBL), gyroresonant electrons
are accelerated and their pitch angles increase; below the
nose frequency, gyroresonant electrons suffer pitch angle
diffusion but their energy is not changed appreciably.
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