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Abstract
We have, for the first time, identified ten tenets of two-dimensional (2D)
chirality that define and encapsulate the symmetry and scaling behaviour of
planar objects and have used them to develop three new measures of
geometric 2D chirality. All three models are based on the principle of
overlap integrals and can be expressed as simple analytical functions of the
two-dimensional surface density, ρ(r). In this paper we will compare the
predicted behaviour of these models and show that two of them are fully
integrable and scalable and can therefore be applied to both discrete and
continuous 2D systems of any finite size, or any degree of complexity. The
only significant difference in these two models appears in their behaviour at
infinite length scales. Such differences could, however, have profound
implications for the analysis of chirality in new generations of planar
meta-materials, such as chiral arrays, fractals, quasi-periodic 2D crystals
and Penrose tiled structures.

Keywords: chiral, planar geometry, optical activity, overlap integral,
2D topology

1. Introduction

The importance of planar chirality in optics was probably
first highlighted by Hecht and Barron [1], who theoretically
evaluated the polarization sensitivity of incoherent light
scattered from ensembles of planar chiral molecules. Recent
experiments investigating the optical properties of planar
chiral media [2, 3] have now shown that two-dimensional
(2D) chiral objects with characteristic sizes ∼2 µm are also
capable of manipulating the polarization state of coherent
light. In particular, it was found that linearly polarized light
in the visible and infrared regions of the spectrum experiences
azimuth rotation and elliptization when diffracted from arrays
of gammadion-shaped chiral holes that are etched into a thin
metallic film and supported on a silicon substrate. These

3 Author to whom any correspondence should be addressed.

polarization changes were strongly correlated to the degree
of chirality of the gammadions and were found to reverse sign
when the handedness of the gammadions was reversed. Similar
effects had previously been predicted for significantly larger
metallic gammadions in the microwave regime [4].

It is now clear that composite planar materials whose
properties (such as 2D chirality) are artificially engineered
on the nano-scale (so-called meta-materials) could herald new
opportunities for novel devices in opto-electronics, while nano-
structured chiral surfaces could also exhibit strong enantiomer-
specific behaviour that would be of considerable interest in
many areas of chemistry [5, 6]. However, in order for the
chiral properties of these various artificial planar materials to
be designed more efficiently, a quantifiable measure of 2D
chirality is required. Over the last fifteen years there has been
significant progress in this area, but most of this work has been
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Figure 1. The labelling convention used for the sides, vertices and
angles of a triangle.

driven by the needs of stereochemists. As a consequence,
the resulting chiral measures tend to be more applicable to
microscopic systems of discrete points [7–10] where the points
themselves are usually taken to represent the spatial positions
of atomic nuclei, whether in molecules or on planar surfaces.

Unfortunately, most of the discrete chirality measures
that have so far been proposed are not easily extendible
to macroscopic systems. One reason for this is that the
spatial distribution of mass in macroscopic systems is best
described by a continuous distribution function, ρ(r) (where
ρ(r) represents the local density of point masses and is,
in effect, a two-dimensional mass density function for that
surface), rather than a set of spatially isolated discrete points.
Secondly, the methodologies (such as group theory [8, 9] and
optimized overlap integrals [10]) that these discrete 2D chiral
models employ become increasingly difficult or cumbersome
to implement as they are applied to larger and larger systems.
Attempts to simplify complex structures by considering only
the ‘most significant’ points in a structure [9] can also be
problematic as it may not always be obvious which points are
the most significant. What most experimenters desire is an
algebraic formulation of the theory of 2D chirality that can be
applied to any 2D mass distribution (discrete or continuous)
simply by summing (or integrating) the chirality function over
the density distribution function, ρ(r).

One of the first (and most promising) algebraic models
to incorporate continuous mass distributions was developed
by Osipov et al [11]. They pointed out that the simplest
chiral object in two dimensions is a scalene triangle and,
consequently, if one can construct a chirality measure for this
simple set of three points, it then becomes a trivial exercise to
extend the measure to any larger distribution of points merely
by summing over all possible triangular permutations. By
employing this approach they derived an expression for the
chirality of a single triangle of points:
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Here, a1, a2 and a3 are the lengths of the three sides of the
triangle while θ1, θ2 and θ3 are the angles opposite to sides a1,
a2 and a3, respectively. The term � is the triangle’s area. By
convention, we usually number all vertices, sides and angles
of the triangle in a clockwise direction, as shown in figure 1.

The model of Osipov et al clearly satisfies many
requirements for a truly universal macroscopic model of 2D
chirality. It changes sign under enantiomeric inversion, while

K = 0 for any isosceles or equilateral triangle, or when
the three points are co-linear. Unfortunately, it also has
three main failings. The most serious is its behaviour in the
limit of converging points. The expression for the chirality
of a set of three points in equation (1) clearly diverges as
the length of any side of the triangle tends to zero and,
consequently, it is not integrable unless a cut-off parameter is
introduced. Secondly, its scaling behaviour is inappropriate,
with K actually decreasing as the size of the object increases.
The final drawback of this model is that it is not founded
on purely geometric principles, unlike most other recent 2D
chirality models [8–10], but also involves the incorporation of
electromagnetic polarization effects through the interaction of
induced dipoles situated at each vertex of the triangle. Such an
approach tempers the generality of the model and its potential
applications. More fundamentally, however, such an approach
can also introduce unwanted confusion into the definition of
chirality. Chirality and optical activity are not synonymous.
One is cause, while the other is effect; and the absence of
one is not necessarily proof of the absence of the other. Nor
do they necessarily scale proportionately. In analysing two-
dimensional chirality we are trying to formulate a theory of
asymmetry based purely on geometric arguments that can be
applied universally, irrespective of the material nature of the
system.

In this paper we will present a new measure of 2D chirality
(K ), based on purely geometric considerations, that is scalable
and integrable and that is capable of being applied to any
generalized continuous distribution, ρ(r), for any 2D surface.
Our starting point will be to define a chirality measure for a
triangular set of points based on asymmetry in the area of that
triangle. We will present three possible methodologies for
achieving this, but will argue that an angular bisection method
(see section 6) is the only one of the three that fully satisfies
all the conditions that we require. We will then extend this
measure to larger structures by summing the chirality measure
over all possible permutations of triangles in a manner similar
to the methodology of Osipov et al [11]. In addition, we will for
the first time address the issue of scaling behaviour in 2D chiral
systems. We will argue that for any triangular set of points
there must be a chirality measure (�) that is independent of the
magnification of the structure and is therefore dimensionless.
We will then argue that a necessary condition for integrability
of our chirality measure, K , is that it must scale with the area
and mass of the system. Finally, we will outline the utility
of our new model by demonstrating its ease of use and its
consequences. We will also compare its theoretical results
with those derived using other models, as well as with the
results of recent optical experiments [2, 3].

2. Basic principles of chirality in 2D

The definition of chirality has changed little since it was
proposed by Lord Kelvin over a hundred years ago [12].
An object is said to be chiral if it cannot be brought into
congruence with its enantiomeric, or mirror image, form. This
definition of chirality is related to the concept of parity and is
only applicable to systems where the positions of the particles
are time-invariant, although Barron has recently extended this
definition to include time reversality [13]. Unfortunately, these
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definitions of chirality are still insufficient as they actually
represent a reconstitution of the definition of symmetry, or
achirality. The main drawback of defining chirality in this
way, as a negative concept, is that it implies that chirality is a
state variable with only two possible outcomes; chiral (true)
and achiral (false). Recently, though, Le Guennec [14] has
shown that in two dimensions chirality is, in fact, a continuous
measure and, consequently, it should be possible to express it
as a continuous function.

In two dimensions, the chirality measure itself is usually
defined in one of two ways [7, 8]. The chirality index of the first
kind is defined in terms of the minimum distance separating
points in a chiral object from those in their closest achiral form,
while the chirality index of the second kind is defined in terms
of the minimum distance separating a point from the equivalent
point in its enantiomer. It should be noted though that the
symmetry operations required to generate the enantiomer are
different in 2D and 3D. In three dimensions the enantiomeric
form of an object is usually generated by a spatial inversion
operation r ⇒ −r (i.e. x ⇒ −x , y ⇒ −y, z ⇒ −z). This
is also true in any other n-dimensional system provided n is
odd. However, when n is even (such as in the two-dimensional
case we will consider here), spatial inversion results only in
spatial rotation and translation of the original object. The
more general requirement for enantiomeric transformation is
for spatial reflection through a hyperplane of dimension n −1.
This is true for any n-dimensional system, whether n is odd or
even. For a 2D object, this transformation equates to reflection
of the object through any line in the plane (e.g. x ⇒ −x or
y ⇒ −y, but not both).

As discussed in the previous section, the simplest chiral
object in two dimensions is defined by a set of three points.
However, as any complex pattern or feature of finite extent
can be described by a larger set of N such points, it should be
possible to calculate the chiral index, K , simply by summing
over all the contributions arising from every possible sub-
set of three points. Thus, if we can construct a measure of
chirality for a three-point set (in other words a triangle) then
we can extend the theory to any structure, with any degree of
complexity, in a manner similar to that described previously
by Osipov et al [11]. It should be noted, however, that such
an approach is inherently non-linear as the number of possible
permutations scales as N3 (for large N ) rather than as N (where
N is the number of points or pixels defining the size of the
system), but this is entirely consistent with the behaviour of
chirality. Chirality does not scale linearly. A system of N
identical chiral objects does not necessarily possess N times
the amount of chirality of a single object. The difference is
due to additional chirality arising from how the individual
objects are arranged on a lattice (which may or may not be
periodic), and therefore scales with the size and degree of
complexity of that lattice. The contribution to K arising from
this arrangement we term structural chirality (as opposed to
molecular or elemental chirality, which is the intrinsic chirality
of an individual element). In order to formulate a measure of
chirality in 2D we need to start by outlining a set of conditions
that we believe should underpin any potential theory and define
the required behaviour of the chirality index. Once these
conditions are set we will attempt to define the theory of
chirality itself for a single triangle and thence to its generalized
form.

In two dimensions the basic chiral element is the triangle.
The chirality index (K ) of any set of N points (N > 3) can
be derived, therefore, by summing the chirality indices of all
possible permutations of triangles. This then leads to our first
condition.

Postulate 2.1. If we define Ki jk as the chirality index of a
triangular set of points {ri , r j and rk}, then

K = 1
6

N∑
i=1

N∑
j=1

N∑
k=1

Ki jk. (2)

Lemma 2.2. The chirality index of any triangle (Ki jk) must be
proportional to the mass at each vertex, i.e.

Ki jk = mi m j mk�i jk (3)

where mi , m j and mk are the masses at each of the three
vertices defined by the set of 2D vectors {ri , r j and rk} and
�i jk is another chiral function that depends only on the
spatial positions of the points i , j and k. Because �i jk is
a massless chirality measure, we refer to it as the specific
chirality index. The term ‘mass’ referred to above is a two-
dimensional quantity. In mathematical terms, it represents the
total number of point masses at a given point or in a given area
and is therefore equivalent to the integral of the 2D density
distribution function, ρ(r), over that area. In physical terms,
where the 2D chiral structure may be a patterned thin film of
varying thickness similar to those studied previously [2, 3], the
mass can be thought of as the integral of the 2D mass density,
ρ2D(r), over a given area. The 2D mass density is then just the
product of the material density of the film, ρ (=19.3 g cm−3

for gold), and the film thickness at that point, in which case the
mass term will have units of kilograms.

The proof of lemma 2.2 is trivial and goes as follows.
Suppose we start with a set of three point masses that form a
triangular set, as depicted in figure 1, but we then decompose
one of the point masses (m1, say) into a set of p coincident
smaller point masses {m1q}q=1...p such that the total mass at
point 1 (and hence of the system as a whole) is conserved.
Now suppose we sum the chirality index over every possible
permutation of triangles defined by the new set of points (m2,
m3 and the set {m1q}q=1...p), while assuming that all triplet sets
of points that contain either two or three coincident points make
no contribution to the chirality (see lemma 2.9). We can see
that the value of K in equation (2) will remain unchanged only
if Ki jk is proportional to the mass at each vertex, as indicated
in equation (3). This condition is one of the criteria that is
essential in order to ensure that the chirality index that arises
as a result of equation (2) is independent of how the mass at any
point is subdivided. It is therefore one of the essential criteria
required to ensure integrability of the chirality function.

Postulate 2.3. The chirality index should be continuous and
single-valued.

Lemma 2.4. The chirality index cannot be dimensionless but
must decrease in magnitude as the size of the structure
decreases. The necessity for such behaviour can be understood
by considering the following scenario. Suppose we take a
single point mass and decompose it into three smaller, and
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spatially separated, point masses (m1, m2 and m3), as shown
in figure 1. Let us also impose the condition that the triangle
of points that we form as a result of this procedure is scalene.
The chirality index should now be non-zero. Now suppose we
reverse the decomposition process so that the three points of
the triangle converge to form the original single point mass,
but do so subject to the condition that the angles of the triangle
remain unchanged by the convergence. If the chirality index is
dimensionless (as proposed by Solymosi et al [15] for the 3D
model of Osipov et al [16]) then, as we perform this operation,
the chirality index will remain non-zero, even as the three points
converge to form a single point. But, by symmetry, a single
point is achiral and postulate 2.3 forbids any discontinuity in
the chirality index. Hence we have a paradox. This paradox
can only be resolved if the chirality index contains a term
that is dependent on the magnification of the set of points and
hence on the actual area of each triangle. Only then will the
contributions to the chirality index from infinitesimally small
triangles vanish completely. The most obvious scaling function
to choose is one that varies linearly with area.

Postulate 2.5. If the chirality index scales linearly with the
area of the triangle �i jk , any two triangles that are similar
(i.e. their corresponding angles are identical) should have
chiral indices that are proportional. Consequently it should
be possible to define a dimensionless chirality index, �i jk , that
is a function of the ratios of the sides of the triangle or its three
angles, but is independent of its area, �i jk . By combining
equation (3), lemma 2.4 and postulate 2.5 we can conclude
that

Ki jk = mi m j mk�i jk = mi m j mk�i jk�i jk . (4)

Postulate 2.6. The dimensionless chirality index, �i jk , must
always be finite. This condition is required to ensure that the
chirality index, K , of a finite system is always finite.

Postulate 2.7. The chirality index must be inverted under any
reflection operation, i.e. as x ⇒ −x , K ⇒ −K . As the area
of the triangle will remain unchanged by such an operation,
then it is also true that �i jk ⇒ −�i jk for the same reflection
operation. Thus K and �i jk are both zero for any isosceles or
equilateral triangle.

Lemma 2.8. The chirality index of any set of three co-linear
points must be zero. This is satisfied if �i jk is finite for a co-
linear set (as �i jk = 0).

Lemma 2.9. If any two points of a triangle are coincident
in space then the chirality index must be zero. This is a
consequence of postulate 2.6 and implies that Ki jk → 0 as
|ri j | → 0, where |ri j | is the length of any side of the triangle.
Expressions for K that fail to satisfy this condition (such as
equation (1), for example) will diverge upon integration.

Starting from this set of conditions, we will now attempt
to construct a measure for �i jk and hence for K .

3. Construction of the chirality measure using
overlap integrals

In the previous section we argued that the specific chirality
index for a triangular set of points (�i jk) should have the
dimensions of area (see equation (4) and postulate 2.5).

It therefore follows that, when attempting to construct a
mathematical definition for �i jk , the crucial criterion is the
degree of asymmetry in the distribution of that area. How
we choose to assess this degree of asymmetry will ultimately
determine the form and behaviour of the chirality index (K )
itself.

In 2D the chirality index of a set of discrete points is
usually determined by comparing the position of each point
with an equivalent point in a non-chiral object (the chirality
index of the first kind) or one in its enantiomeric set (the
chirality index of the second kind). Of the two methods,
the chirality index of the first kind is the most difficult to
implement, as it involves the creation of an achiral set of points
that is closest in form to that of the original chiral set [9].
This usually involves the application of different combinations
of group symmetry operations (such as duplication, reflection
through a plane, rotation, translation, etc) to each point in the
original set individually, until an achiral set is formed. Clearly,
as the size of the original set increases so, in general, does
the number of symmetry operations. A secondary problem
is that it is not clear that there is always a unique outcome
for this generation process. In fact, the generation process
may be degenerate with the creation of multiple equivalent,
but different, achiral sets being possible. This problem of
degeneracy will inevitably increase if the size of the original
set is increased.

The chirality index of the second kind, in contrast, is
relatively simple to implement. All that is required is the
generation of the enantiomeric set, and for that a simple
inversion operation (i.e. reflection through a 1D hyperplane)
will suffice. Because only one symmetry operation is
performed, and is performed simultaneously on all points in
the original set, there can be no ambiguity or discretion in how
it is applied and therefore no degeneracy of the final outcome.
It is therefore clear that, of the two methods, the chirality index
of the second kind is superior in terms of its ease of use and its
uniqueness.

In order to formulate our desired measure of chirality
of the second kind, we need to compare the asymmetry in
the distribution of the area of our original triangle and its
enantiomer. The simplest way to do this is to superimpose
the two triangles and measure the amount of common area
that they share. This is the concept of the overlap integral.
Unfortunately, the magnitude of the common area will be
determined by the relative translation and rotation of the two
triangles. So, how do we arrive at a unique result for the overlap
integral? One way is to determine the maximum overlap of
the original triangle and its enantiomer (see figure 2(b)). This
inevitably involves an optimization process, with the relative
translation (in x and y) and rotation of the enantiomer being
the three fitting variables. In fact, it is easy to see that there are
only two free parameters (the perpendicular separation and the
rotation) as the state of maximum overlap must have a plane
of symmetry [7] (the broken line in figure 2(b)). We can then
define the specific chirality index, �i jk , as the area of those
parts of the enantiomeric triangle that are not superimposed on
any part of the original triangle in a manner similar to other
authors [10]. We call this total area the antisymmetric area,
�A.

Unfortunately, while this method yields a magnitude for
�i jk , it does not define a unique sense or handedness for the
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Figure 2. An illustration of the method of overlap integrals for
triangles. (a) The original triangle (white) with its vertices and sides
labelled and its enantiomer (shaded). (b) The condition of
maximum overlap. The dotted line is the mirror plane, the
arrowheads indicating spatially equivalent directions of view.
(c) The perpendicular bisection method. (d) The coincident vertex,
perpendicular intercept method. (e) The angular bisection method.

chirality. This is indicated by the two arrows on the mirror
plane (broken line) in figure 2(b). Suppose we define the
handedness to be the difference in areas of the original triangle
across the mirror plane and arbitrarily choose the area to the
right-hand side of the mirror plane to have a positive sense
(the area to the left thus being negative). The two arrows on
the mirror plane indicate that an observer has two possible
definitions as to which side is the right and which is the
left, both of which are geometrically equivalent. Hence the
handedness is ambiguous because the definition of left and
right cannot be applied consistently between triangles.

In order to eliminate this problem we need to define the
mirror plane with an unambiguous direction. One way to
achieve this is to pre-set the direction of the mirror plane
relative to our chiral object. In order for such a direction
to be non-arbitrary, however, it must represent a line of
high symmetry for the triangle, but because the triangle
will typically be chiral, this will not be possible, except in
exceptional circumstances (i.e. for isosceles and equilateral
triangles). However, the mirror plane can be a symmetry plane
for a sub-set of points and sides of the triangle. Three such
possibilities are shown in figures 2(c)–(e). What distinguishes
these three arrangements is that they are the only ones that map
more than one point and/or side onto another point or side of
the enantiomeric triangle. As such, they represent the three
highest symmetry arrangements attainable. The configuration
in figure 2(c), for example, is the only one that maps two points
onto each other, as well as mapping the adjoining side onto
itself. In figure 2(d) point C is mapped onto itself, as is the
opposite side of the triangle, whereas in figure 2(e) point A is
again mapped onto itself while sides b and c of the triangle
are mapped onto each other. In all these cases the mirror
plane itself is asymmetric (as denoted by the single arrowhead)
because it has a unique direction due to the way it is defined
relative to the body of the triangle. Hence the handedness is
now unambiguous and can be applied consistently for different
triangles. However, because the triangle has three sides (and

three vertices) that are all spatially equivalent, the process for
calculating the chirality in figures 2(c)–(e) must be repeated
for each side (or vertex) and the results combined so that the
resulting total represents the chirality of the whole triangle and
not the arbitrary value from only one viewpoint.

In the following sections we will calculate the chirality
index using each of the symmetry arrangements shown in
figures 2(c)–(e) and compare their results with previous models
and the list of conditions set out in section 2.

4. The perpendicular bisection method

In the symmetry model illustrated in figure 2(c) the mirror
plane is oriented so that it bisects one side of the triangle.
We can now define the chirality index as the difference in
areas subtended by our original triangle (the white triangle
in figure 2(c)) across the mirror plane. The sense of chirality
is arbitrarily, but consistently, chosen such that positive areas
(�R) lie to the right of the mirror plane (as seen by an observed
standing at the intersection of the mirror plane and the side of
the triangle it bisects and looking into the body of the triangle)
and negative areas (�L) to the left. The difference in areas is
equivalent to the antisymmetric area, �A, and gives the specific
chirality index for that side (let us call it side 1) as follows:

�1 = �R − �L = �A. (5)

It can be shown that �1 is given by

�1 = a2
2 − a2

3

a2
1 + |a2

2 − a2
3 |

� (6)

where � is the area of the triangle and the side lengths a1,
a2 and a3 are defined in a clockwise fashion, as illustrated in
figure 1. If we repeat this procedure for sides 2 and 3 of the
triangle (but using a different mirror plane for each case) we
will arrive at the following results:

�2 = a2
3 − a2

1

a2
2 + |a2

3 − a2
1 |

� (7)

and

�3 = a2
1 − a2

2

a2
3 + |a2

1 − a2
2 |

�. (8)

For arbitrary values of a1, a2 and a3 equations (6)–(8) will
each give a different result for the specific chirality index, all
of which are of equal merit. We therefore define the total
specific chirality index for the triangle as the sum of the three
terms:

�i jk = �1 + �2 + �3. (9)

The justification for this is that, when we extend this model to
larger systems, we calculate the chirality index by summing
over all possible triangular permutations (see postulate 2.1)
and hence over all possible permutations of mirror planes.
Therefore, it seems logical to do the same for each mirror
plane within each triangle. However, it should be noted that
Buda et al [10] have proposed a method of chirality products
for their 2D chirality measure.
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By applying postulate 2.1 we can now write the total
chirality index of the system as

K = 1
4

N∑
i=1

N∑
j=1

N∑
k=1

mi m j mk

× |ri j |2 − |rik|2
|r jk |2 + ||ri j |2 − |rik |2| (ri j × rik) (10)

where ri j = r j − ri , rik = rk − ri and the cross-product
ri j × rik = 2�i jk . The additional prefactor of 1/2 is required
to compensate for double counting of triangles by the triple
summation. Inspection of equations (6)–(10) shows that
this model for the specific chirality index satisfies all of the
conditions laid down in section 2. It changes sign under
enantiomeric inversion and the dimensionless chirality index
is always finite. Thus the chirality index of a triangle, Ki jk ,
is zero when the three points of the triangle are co-linear or
when any two points are coincident. However, as we shall see,
the perpendicular bisector model is not the only model that
satisfies our list of postulates and lemmas.

5. The perpendicular intercept method

If one were to envisage the purest form of chiral triangle
one would probably think of a scalene right-angled triangle.
Therefore, if we could deconstruct any triangle into two such
right-angled triangles, one left-handed and one right handed,
we could then use the difference in areas of these triangles
as our measure of chirality. This approach is illustrated in
figure 2(d) where, starting at one vertex, a perpendicular line
is drawn to the opposite side of the triangle that intercepts
that side at right-angles and splits the initial triangle into
two distinct right-angled triangles. We then define �1, the
dimensionless chirality index for vertex 1, as the difference
in areas divided by the total area. The sense of chirality is
again arbitrarily chosen such that positive areas (�R) lie to the
right of the mirror plane (this time as seen from the vertex) and
negative areas (�L) to the left, so that the final form for �1 is
as follows:

�1 = �R − �L

�R + �L
= a2 cos(θ3) − a3 cos(θ2)

a1
. (11)

The side lengths a1, a2 and a3, and the angles θ2 and θ3 are
again defined in a clockwise fashion as illustrated in figure 1.

If we repeat this process for vertices 2 and 3 we arrive at
the following expression for the dimensionless chirality index
for a triangular set of points, �i jk:

�i jk =
(

a3

a2
− a2

a3

)
cos(θ1)

+

(
a1

a3
− a3

a1

)
cos(θ2) +

(
a2

a1
− a1

a2

)
cos(θ3) (12)

and, if we use the cosine rule to substitute for the angles θ1, θ2

and θ3 in terms of the sides a1, a2 and a3, we find that

�i jk =
(

a2
2

a2
1

− a2
1

a2
2

)
+

(
a2

3

a2
2

− a2
2

a2
3

)
+

(
a2

1

a2
3

− a2
3

a2
1

)
. (13)

It can be seen that equations (12) and (13) are both similar in
form to the equation derived by Osipov et al (see equation (1)).

As such, they satisfy most of the conditions outlined in
section 2, particularly the spatial reflection criterion outlined
in postulate 2.7, but crucially they do not satisfy postulate 2.6
nor lemma 2.9. The reason for this can be understood by
considering the behaviour of the triangle illustrated in figure 1
as one side of the triangle is maintained at a constant length,
a1, while a second side (a2) is gradually reduced in length.
Crucially, during this process we ensure that the angle between
the two sides (θ3) also remains constant. The dimensionless
chirality index of the triangle (�i jk) can now be expressed in
the following form:

�i jk = 1 − r 2

1 + r 2 − 2r cos(θ3)
+ 2

(
r − 1

r

)
cos(θ3) (14)

where r = a2/a1. As r → 0 we can see that �i jk diverges
whenever cos(θ3) is non-zero. The underlying reason for this
behaviour is that, as the length of side a2 reduces, eventually
the angle of the triangle opposite side a1 will become obtuse.
This results in �1 > 1 for vertex 1, and as side a2 continues to
decrease further in length, �1 will then tend to infinity. This
problem can only be eliminated if the mirror plane through each
vertex also passes through the body of the triangle (as it does
in the perpendicular bisection method of the previous section).
Then the modulus of the dimensionless chirality index at any
vertex |�i | can never exceed unity.

6. The angular bisection method

The perpendicular bisection method described in section 4 is
not the only geometric configuration of high symmetry where
the mirror plane is always guaranteed to pass through the
body of the triangle. We can also choose a mirror plane that
bisects the angle at any vertex of the triangle, as illustrated
in figure 2(e). If we again calculate the difference in areas
subtended by the triangle across this line as a fraction of the
total area of the triangle we find that it has the following form:

�1 = �R − �L

�R + �L
= a2 − a3

a2 + a3
(15)

where �L is the area to the left of the mirror plane (again as
viewed from the vertex) and �R is the area to the right. As
before, we need to repeat the process for all three vertices
in order to arrive at an expression that properly reflects the
chirality of the triangle as a whole, rather than just the property
of a single vertex. The dimensionless chirality index is then

�i jk = a1 − a2

a1 + a2
+

a2 − a3

a2 + a3
+

a3 − a1

a3 + a1
. (16)

Inspection of equation (16) shows that �i jk will always remain
finite. In addition, when the length of any one side is zero,
�i jk = 0. Therefore, in addition to the perpendicular bisection
method, we now have a second model for �i jk that satisfies all
of our initial conditions, including postulate 2.6 and lemma 2.9.
If we define a triangle by three vectors, ri , r j and rk , we can
extend our model for chirality to any ensemble of N points as
follows:

K = 1

4

N∑
i=1

N∑
j=1

N∑
k=1

mi m j mk
|ri j | − |rik|
|ri j | + |rik | (ri j × rik). (17)
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Figure 3. Plots of the specific chirality index (�i jk) of a triangle as a function of the angle θ3 between two adjacent sides (a1 and a2) for four
different chirality models: (a) the Osipov model (equation (1)); (b) the perpendicular bisection method (equation (10)); (c) the perpendicular
intercept method (equation (13)); (d) the angular bisection method (equation (17)). In each case the numerical calculation is performed for
three different ratios of sides r = a2/a1: (i) r = 0.3 (dotted curve); (ii) r = 0.5 (full curve); (iii) r = 0.7 (broken curve). The values for �i jk

are normalized for the case a1 = 1.

Interestingly, equation (17) is invariant under any interchange
of subscript i , j or k. Therefore the user does not need to
consider the cyclic ordering to ensure that the vertices i , j
and k are arranged in a clockwise fashion, as this is already
accounted for in the equation. Consequently, it is a trivial
exercise to rewrite equation (17) in integral form:

K = 1
4

∫
ri

∫
r j

∫
rk

ρ(ri )ρ(r j )ρ(rk)

× |ri j | − |rik|
|ri j | + |rik | (ri j × rik) d2rk d2r j d2ri . (18)

In the following section we will compare the behaviour of the
three models described in sections 4–6 by applying them to a
number of simple geometric structures.

7. Results

In order to explore the behaviour of the different chirality
models we have described in this paper, it is instructive to
first consider the behaviour of each for the case of a simple
triangle of points, such as that depicted in figure 1. We have
therefore calculated the specific chirality index (�i jk) for this
system using each of the models described in sections 4–6 and

compared them with the theory of Osipov et al (equation (1)).
In order to explore the parameter space of this three-particle
system, we considered the behaviour of �i jk for three different
ratios of side (r = a2/a1) as the included angle of the triangle
(θ3) was allowed to vary. The results of this investigation are
shown in figure 3 and are normalized for the case where the
side a1 of the triangle had unit length.

As expected, all four models exhibit behaviour that is
consistent with postulate 2.7 and lemma 2.8. The specific
chirality index is zero when the triangle is isosceles (i.e. when
a3 = a2 or a3 = a1) or when the three points are co-linear
(θ3 = 0◦, 180◦, 360◦). It should be noted, however, that, when
r = 0.5, the condition a3 = a2 occurs simultaneously with the
three points being co-linear and so there is a point of inflection
at θ3 = 0◦. When r < 0.5, only the equality a3 = a1 can be
satisfied and so there is only a single crossing of the abscissa
axis in this case.

Despite the striking similarities of the four models
illustrated in figure 3, they do also appear to exhibit some
profound differences. The most obvious one is the sense of
chirality in figure 3(a), which is opposite to that seen for the
other three models. This, though, is merely an artefact of
the way the initial sign convention for chirality in each model
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Figure 4. Plots of the chirality index (K ) for the single gammadion illustrated in figure 5(a) as a function of bending angle β for four
different chirality models: (a) the Osipov model (equation (1)); (b) the perpendicular bisection method (equation (10)); (c) the perpendicular
intercept method (equation (13)); (d) the angular bisection method (equation (17)). In each case the numerical calculation is performed for
three different pixel sizes: (i) 0.1L (full curve); (ii) 0.05L (◦); (iii) 0.025L(+). The values for K are normalized for the case L = 1.

is arbitrarily chosen and is therefore of no real consequence.
More significant is the fact that the magnitude of the chirality
in figure 3(a) decreases as r increases. A similar behaviour
is seen in figure 3(c), but in figures 3(b) and (d) the opposite
effect is observed. This is a direct consequence of the fact that
the models illustrated in figures 3(b) and (d) (the perpendicular
bisection model and the angular bisection model, respectively)
both satisfy lemma 2.9, while the other two models do not. In
figures 3(a) and (c), �i jk diverges as a2 (and hence r ) tends to
zero: in figures 3(b) and (d) it converges towards zero. This
behaviour has profound implications for the integrability of
each of the various models, as will be illustrated in figure 4.
However, the divergent behaviour in figures 3(a) and (c)
also implies that these two models will violate postulate 2.3,
because the chirality index will not generally be continuous or
single-valued as r → 0.

In order to examine the integrability of the various
models studied in figure 3, we used each model to calculate
the chiral index, K (see figure 4), of a gammadion-shaped
element of similar design to those we have investigated
experimentally [2, 3]. In each case the chirality index
was calculated as a function of the bending angle (β) of
the gammadion arms (see figure 5(a) for an illustration of
the gammadion geometry). The numerical integration was

L

L

(a) (b) (c)

β

Figure 5. (a) A schematic diagram of the gammadion design used to
compare the different chirality measures in figure 4. L is the arm
length and β is the bending angle. (b) A schematic illustration of a
gammadion with large bending angles. (c) An illustration of how
the gammadion with large bending angles in (b) may appear to be
similar to one constructed from four very thin, slightly offset,
isosceles triangles. The result is that the direction of the chirality for
large bending angles will be reversed compared to that observed for
smaller bending angles.

performed by pixelating the structure and summing over all
permutations of pixels in accordance with postulate 2.1. In
order to evaluate the numerical accuracy of this technique
we repeated this operation for three different pixel sizes
corresponding to 10, 20 and 40 pixels per length L of the arm.
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In the case of the angular bisection method, increasing
the number of pixels had little or no effect on the calculated
chirality index (see figure 4(d)). The same was true for the
perpendicular bisection method (figure 4(b)). Both of these
chirality models appear, therefore, to be convergent and fully
integrable. In the case of the Osipov model (figure 4(a)),
however, we see that the calculated chirality index diverges
significantly as the number of pixels increases and the distance
between them decreases. The perpendicular bisection method
(figure 4(c)) showed a similar type of behaviour, but the degree
of divergence was not as great. This is consistent with the
behaviour of �i jk in equation (14) as the length of one side of
the triangle tends to zero. The pole in�i jk leads to a logarithmic
divergence in K as r → 0. In the case of the Osipov model,
�i jk contains a multiple pole of order r−4, and hence the degree
of divergence in K is much greater.

One of the unexpected results of the integration of the
gammadion structure was the observation that the maximum
chirality occurs for a bending angle β ∼ 55◦, irrespective
of the model used. This peak in chirality occurs at an angle
that is significantly less than the 90◦ one might intuitively
expect. It should be noted, though, that this is consistent
with our experimental observations [2, 3], which have already
shown that gammadions with bending angles of 45◦ exhibit
a much greater change on the polarization state of diffracted
light than gammadions with bending angles of 90◦ or 135◦.
Whether this is evidence of a real correlation between the
chirality index and the optical activity of the structure, or
whether it is just coincidence, is still being investigated. More
surprising, though, is the change in the sense of chirality of
the gammadions as the bending angle approaches 180◦. This
behaviour is predicted by all three of our chirality models
(figures 4(b)–(d)). We have attempted to explain this in
figure 5(b) by showing how, in these circumstances, the two
segments of each arm can appear to merge together and
approximate to a very long, thin, isosceles triangle (figure 5(c)).
The offset of these triangles then determines the new sense
of chirality which, while relatively small in magnitude, is
nevertheless in the opposite sense to the chirality index
measured at smaller bending angles. Whether such effects
are strong enough to be seen experimentally remains to be
determined.

It is clear from the results shown in figures 3 and 4 that both
the perpendicular bisection model and the angular bisection
model satisfy the full list of criteria set out in section 2. Both
models are fully integrable and scalable and both give similar
predictions for the behaviour of the chirality index in a variety
of simple structures. The only significant differences between
the two models are the magnitude of the chirality and the
angle at which the chirality index reaches a maximum. For
the perpendicular bisection model, this appears to occur when
θ3 is almost a right angle and is preceded by an extremely rapid
change in the chirality index as �i jk changes sign, while for the
angular bisection model the peak chirality occurs at θ3 ∼ 130◦ .

There is one regime, however, where the behaviour of
the two models is completely different. If we consider the
behaviour of both models for the case of infinite triangles we
find that they give some interesting results. Figure 6 shows
the behaviour of the chirality index (Ki jk) of the triangle in
figure 1 using the angular bisection model as side a2 and angle

-0 .1
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Figure 6. The specific chirality index (�i jk), defined by the angular
bisection method, for the triangle in figure 1 as a function of the
ratio of sides (r = a1/a2), when the included angle (θ3) is kept
constant. The values for �i jk are normalized for the case a2 = 1 and
θ3 = 60◦.

θ3 are kept constant but side a1 is varied in length over the
range 0 < a1 < ∞. Surprisingly, as a1 → ∞ we find that the
chirality index remains finite. In fact, we find that the specific
chirality index has the limiting form

|�i jk| < 1
4 a2

2 sin(2θ3) (19)

where a2 is the shortest side of the triangle and θ3 is the angle
between the shortest side and the longest side. We can therefore
conclude that, for triangles defined by three finite point masses,
one at each vertex, only those for which all three sides of the
triangle are infinite in length can have a chirality index which is
itself infinite. This is in contrast to the perpendicular bisection
model (section 4) where the dimensionless chirality index,
�i jk , has the limiting form of ±1 (depending on whether θ3 is
obtuse or acute) as a1 →∞ and therefore the specific chirality
index, �i jk → ∞. These results are depicted graphically in
figure 7, which shows how the three models formulated herein
differ in the limit of convergent points. So, which model is
correct?

Consider the following scenario. Suppose you are an
observer standing on the point mass m3 of the triangle in
figure 1. As the side a1 increases in length the point m2

gradually disappears into the distance. Now ask yourself
‘what is my perception of the magnitude of the chirality of this
triangle?’ One possible answer is that it is defined uniquely
by the length of side a2 and the angle θ3 (or θ2). The side a1 is
now so long that you cannot see its furthest end and it is now
virtually parallel to side a3. If side a1 increases in length even
more your perception of the chirality will remain unchanged
even though the triangle is now even larger in area. To you, the
observer, the side a1 only defines a direction against which the
rotation of side a2 is measured. The sense and magnitude of the
chirality appear only to depend on the size and orientation of
the side a2. The length of a1 is irrelevant. It is therefore logical
to conclude that the chirality index in this instance should be
governed only by a2 and θ3 (as stated in equation (19)) and,
because a2 is finite, then the chirality index should also remain
finite even as a1 tends to infinity (as shown in figure 6).
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Figure 7. A plot of the dimensionless chirality index (�i jk) for the
triangle in figure 1 as a function of the ratio of sides r(= a2/a1) for
three different chirality models: (i) perpendicular bisection method
(dotted curve); (ii) perpendicular intercept method (broken curve);
(iii) angular bisection method (full curve). In all cases the included
angle θ3 = 120◦. For clarity, the data illustrating �i jk for the angular
bisection method (full curve) are scaled by a factor of 100.

Now look at the same scenario, but from a different
perspective. Suppose you observe the triangle from above. As
the side a1 increases in length you will need to move further
and further away from the triangle in order to maintain the
whole of the triangle in your field of view. As you do so side
a1 will thus appear unchanged in size, but side a2 will become
smaller and smaller and its size will gradually tend to zero.
Eventually point m1 will merge with point m3 and they will
appear coincident. As an observer, what you are examining is
the behaviour of the dimensionless chirality index (�i jk) in the
limit of convergent points. The above analysis suggests that the
dimensionless chirality index (�i jk) should tend to zero in this
case, just as the chirality index (Ki jk) does (see lemma 2.9).
This, then, is our final condition for two-dimensional chirality.

Postulate 7.1. If any two points of a triangle are coincident
in space then the dimensionless chirality index must be zero.
This implies that �i jk → 0 as |ri j | → 0, where |ri j | is the
length of any side of the triangle.

Of the three models outlined above, only the angular
bisection model satisfies postulate 7.1 (see figure 7). In the
limit of converging points �i jk diverges for the perpendicular
intercept model, thus leading to a discontinuity in �i jk as
the points finally merge, in violation of postulate 2.3. In the
case of the perpendicular bisection model, �i jk converges to
a finite but non-zero limit. Thus there is a discontinuity in
�i jk but not in �i jk . This inevitably leads to �i jk → ∞ as
a1 → ∞ in this case. Only the angular bisection model fully
satisfies postulate 7.1 with both �i jk and �i jk being finite and
continuous in the converging point limit, even when the area
of the triangle is infinite (as illustrated in figure 6).

It should be pointed out that, while we have tried to argue
the case for postulate 7.1, we have not proved it conclusively.
The final answer may ultimately lie in the behaviour and
predictions of each model for infinite systems, particularly
fractal and periodic systems. In such systems the ultimate test
will be whether it is possible to define a finite chirality measure
in an infinite system, such as a finite chirality measure per unit
cell for an infinite periodic structure.

8. Summary

In attempting to derive a measure of two-dimensional chirality
our aim has been to construct a theory that is scalable,
integrable and simple to implement for any 2D density
distribution. To this extent the theory we have proposed in
section 6 satisfies all these considerations. We started by
defining a framework of rules that our theory should comply
with (see section 2) and then constructing a model for that
theory based on the principles of symmetry and area (section 3).
Our ten tenets of two-dimensional chirality then allowed us
to propose and test three different models for a 2D chirality
measure. Each model was constructed by combining basic
principles of group theory and symmetry (using techniques
similar to those used by other workers [9]) with the concept
of the overlap integral [10] and applying them to the simplest
possible element of any two-dimensional system, the triangle.
The only difference between our three models was the initial
symmetry operation used in each case to generate the overlap
between the original triangle and its enantiomer. We then
compared our three models by testing them against our ‘ten
commandments’ of chirality to see which, if any, satisfied
all of the criteria. As was illustrated in the previous two
sections, the angular bisection model was found to be the most
successful although, depending on the validity or otherwise of
postulate 7.1, the perpendicular bisection model may yet prove
a suitable candidate.

It is clear that the theory (or theories) expounded herein
represents a significant advance in this area, not least because
it appears to concur with recent experimental results [2, 3]. It
also has the added advantage that it appears to unite aspects of
other theoretical approaches, such as group theory [9], overlap
integrals [10] and the summation rules for large systems [11],
into a single unified framework. This unification may suggest
an underlying universality.

Central to our search for a universal chirality measure has
been the development of a list of rules or tenets that underpin
the form of chirality in two-dimensional systems. Implicit in
these rules is the nature of the scaling behaviour of our system
and its dimensions (see postulate 2.5). Because we assumed
an initial scaling for each triangle that was proportional to its
area (see lemma 2.4 and postulate 2.5), and because of the
incorporation of the concept of mass (lemma 2.2), the chirality
index in our model has dimensions of (mass)3 × (area) and
hence scales as α8, where α is the magnification factor. This
has implications for measuring the chirality index of infinite
periodic systems and other infinitely tiled systems (such as
Penrose tiling). In such systems the elemental chirality will
scale with the number of tiles but the structural chirality may
scale much faster, depending on the asymptotic behaviour of
the chirality index of infinite triangles. Potentially there is
a conflict here that poses the question of how one defines
a finite chirality measure in such infinite systems and how
one distinguishes between local and non-local chirality. The
validity or otherwise of postulate 7.1 could play a vital role
here in resolving these issues. Clearly, the issue of chirality in
infinite systems is one that deserves greater attention and is an
issue that we hope to address further in the future.
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