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Abstract

We consider functionally uncertain systems which can be written in an output feedback form, where the nonlinearities are
functions of the output only. The uncertainty is described by a weighted L2 norm about a nominal system, and an approximate
adaptive design is given which ensures output practical stability. The main result requires knowledge of the weighted L2 uncertainty
level. An upper bound on the LQ performance of the output transient and the control input is derived, where the cost penalises
the output transient and the control e7ort on the time interval where the output lies outside the prescribed neighbourhood of zero
to which we achieve convergence. ? 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Adaptive output feedback designs for systems admit-
ting a output feedback form and parametric uncertainty
have been available from Marino and Tomei (1993a),
see also e.g. Teel (1993) and Krsti,c and Kokotovi,c
(1996). The purpose of this paper is to generalise these
adaptive designs to a case of non-parametric uncertainty.
Importantly, we also bound an LQ-type cost functional
which penalises both the output transient and the control
e7ort. The approach taken is closely related to the neural
network literature, where a neural network is used as an
adaptive model to approximate a functional uncertainty,
and the scheme is made robust to the ‘disturbance’
which arises from a residual approximation error, see
e.g. Sanner and Slotine (1992). Essentially therefore, we
have to give a robust adaptive output feedback design.
Recently, a number of robust adaptive designs have
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been proposed for output feedback systems, see e.g.
Ikhouane and Krsti,c (1998), Marino and Tomei (1997)
and Jiang (1998) and the references therein. In contrast
to these approaches in this paper we utilise a dead-zone
modi2cation to the nominal adaptive law; this is ide-
ally suited to our problem since a uniform bound on
the ‘disturbance’ (approximation error) terms can be
obtained, and hence we can achieve stronger asymptotic
behaviour in the presence of disturbances (i.e. practical
asymptotic stabilisation, in contrast to simply uniform
ultimate boundedness).2 Thereafter, the trade-o7s be-
tween various di7erent robust modi2cations have been
elucidated previously, e.g. Narendra and Annaswamy
(1990).
In this paper, the only requirement on the adaptive

model is that it is linearly parameterised, so we can
apply the results in the paper to any of the rich vari-
ety of approximation schemas (polynomials, radial basis
functions, splines, single-layer neural-nets, Fourier series,

2 Although the dead-zone design proposed here does not have
an ideal asymptotic behaviour when the disturbance is not present
(contrast to Marino and Tomei (1997)), in the situation considered
here the disturbance is generically present, and so this idealised
property is not of interest.
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wavelets, etc). We will, however, take careful consider-
ation of the restrictions that a canonical approximation
theory places on the approximation properties of a model,
for example, we can expect uniform approximation only
over compacta with a 2nite dimensional model; global
approximation requires in2nite dimensional models. In
particular, it will turn out that the (weighted) l2 norm of
the adaptive model’s ‘ideal’ parameters is related to the
transient behaviour of the output signal; additionally it
will typically appear that as the model’s domain or res-
olution is required to increase, so does this norm. The
model’s domain will be required to cover the output’s
range, and hence this coupling must be handled carefully.
This is a major motivation for the introduction of the
functional uncertainty models considered in this paper.
In contrast to e.g. Jiang (1998), the uncertainty is de-
scribed not by pointwise bounds, but by spatial L2 bounds:
this would appear to be the natural description of uncer-
tainty when using approximate adaptive designs, as in the
strict feedback and matched cases considered in French,
Szepesvari, and Rogers (2000) and French and Rogers
(1998).
Our results di7er from other results using approximate

models as we give completely constructive results where
no parameters are left to be tuned as is typical in many
neural network papers; it is necessary to give careful at-
tention to the structure of the approximation errors, di-
mension of the approximating model and the transient
behaviour of the system. The result di7er from related
work in approximate adaptive control where a robust term
is added to the control law to control the system in the
large (such as in Sanner & Slotine, 1992): in our results
the system is controlled purely by the adaptive means,
the only robust terms in the control law are small and
are used solely to control small disturbances. It is, how-
ever, straightforward to introduce extra damping terms,
as in Yao and Tomizuka (1997), and describe the uncer-
tainty by mixed L2=L∞ uncertainty models as in French
(1998), to achieve global results under similar assump-
tions.
The main contribution of this paper is to give a con-

structive bound on LQ costs for these adaptive designs.
This result coupled with French (1998), French et al.
(2000) and French and Rogers (1998) presents the 2rst
constructive bounds on a-priori determined performance
costs in the adaptive control literature. It contrasts to the
inverse optimal designs of Li and Krsti,c (1997), where
optimal controllers are derived w.r.t. to a (meaningful)
but not a-priori determined cost functional. The results
of Li and Krsti,c (1997) are thus hard to interpret from a
performance perspective, in particular it is hard to com-
pare di7erent adaptive models using these methods; how-
ever, it should of course be realised that the motivation
for inverse optimal results is not integral performance di-
rectly, rather, those results were motivated by robustness
considerations.

1.1. Notation and approximation theoretic background

W denotes a parameter space, X, Z denote the state
space and error system state space, respectively, O de-
notes the output space; all are taken to be Euclidean
spaces. � denotes the approximation domain, it is a sub-
set of O=R. L2(�) denotes the standard Lebesgue space
over �, and the weighted inner product space L2(�;w)
has the inner product: 〈f; g〉L2(�;w) =

∫
� f(x)g(x)w(x) dx,

where w is a measurable function. C(�) is the normed
space of continuous functions on �, with the uniform
norm. Ck(Rn;Rm) is the space of k times di7eren-
tiable functions mapping Rn to Rm. The unit matrix
will be denoted by I . If the eigenvalues of a matrix
R are �1; : : : ; �n, then K�(R); �(R) are de2ned to be
max16i6n |�i|, min16i6n |�i|; respectively. Norms for var-
ious spaces F will be denoted as ‖ · ‖F, for convenience
‖·‖ will mean ‖·‖2 over the appropriate space, and if R is
a positive-de2nite matrix, ‖x‖R will denote the weighted
norm

√|xTRx| of vector x. @� denotes the topological
boundary of � ⊂ X, �◦ the interior and K� denotes the
closure. �c denotes the complement of �. m(�) denotes
the Lebesgue measure of�. ei denotes the ith basis vector
(0; : : : ; 0; 1; 0; : : : ; 0)T. For a function V :X → R, L(V; r)
denotes the level set {x∈X: V (x)6 r}. Pi :Rn → Ri

denotes the projection: Pi(x1; : : : ; xn)= (x1; : : : ; xi). A
system is denoted by �, a controller by �, a system,
controller interconnection is denoted by (�;�), it is said
to be well posed on [0; T ], if over the time interval [0; T ]
all outputs and internal signals exist, and are bounded.
Solutions to discontinuous di7erential equations are in-
terpreted in the sense of Fillipov (1998).
We will be concerned throughout this paper by linear

approximants of the form � T� :� → R �∈W=Rp,
�⊂O=R. W will be called the weight or parame-
ter space and � is the approximation domain. As we
are interested in multi-output approximation, we in-
troduce the following notation. We de2ne a model
� as �=(�1; �2; : : : ; �n)T, where �i :� → Wi,
�i =(’i1; ’i2; : : : ; ’imi)

T where Wi =Rmi and where
for convenience we assume that ’ij ∈Cn+3(O;R).
Note that for clarity, we are using a hierarchy of
notation �;�;’ to denote the model, model compo-
nent, and basis function, respectively. Approximation
theory typically considers families of such approxi-
mants, which we formalize as follows: Let K(�) ⊂
F(�) ⊂ C(�). A K(�) dense linear model resolu-
tion schema is a sequence of the form: {�m}m∈N where
supf∈K(�) inf �fi∈Wm ‖fi − � T

fi
�m

i ‖F(�) → 0 as m → ∞
for 16 i6 n. The size of a model is the dimension of the
weight space, m=

∑n
i=1 |Wi|=

∑n
i=1 mi ¡∞. Typical

examples of linear resolution schemas would be polyno-
mials of increasing degree (Rivlin, 1969); mesh-based
approximants such as splines on decreasing mesh sizes
(Rivlin, 1969); or wavelets (Daubechies, 1992). Note
that if F(�)=C(�) then the required density property
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can be achieved only over compact domains, unless
K(�) is required to be excessively regular. A key prob-
lem is to determine bounds on the size of the model to
achieve a speci2ed approximation error #. In order to do
this we need to introduce further assumptions concern-
ing the smoothness of the function to be approximated.
The main ‘meta-theorem’ of approximation theory can
be stated as follows (where typical smoothness classes
for compact domains would be Lipschitz constraints, or
bounds in Sobolev spaces, and a well-known example of
a realisation of this meta-theorem is Jackson’s Theorem
(Rivlin, 1969):

Theorem 1.1. Suppose a K(�)⊂F(�) dense linear
model resolution schema is given. Let #¿ 0 be given;
and suppose K(�) is a smoothness class of functions
f :� → R. Then ∀m¿M (K(�); #) (where M (K; #) is
given constructively) ∀f∈K(�); ∃�∈Wm such that
‖f − � T�m‖F(�) ¡#:

2. Problem domain

Necessary and suPcient geometric conditions are
known (Krsti,c, Kanellakopoulos, & Kokotovi,c, 1995)
for the existence of a global di7eomorphism (S :X → X)
which transforms an aPne system �′ into an output
feedback normal form �:

�′ : ṡ= k(s) + g(s)u; y= h(s);

�{f} : ẋi = xi+1 + fi(y); 16 i6 n− 1;

ẋn = u+ fn(y); y= x1;

(1)

whilst leaving y invariant. We will consider such sys-
tems and assume that the only signal which is available
for measurement is y∈O=R; in particular the state vec-
tors x=(x1; : : : ; xn)T ∈X=Rn and s∈Rn are assumed to
be unavailable for measurement. f denotes the uncer-
tain function f=(f1; : : : ; fn)T, and f0 = (f0

1 ; : : : ; f
0
n)

T

represents the (known) nominal system. We assume that
f;f0 ∈Cn+3(O;X); C(O;X), respectively. The control
task is to stabilise y to a small neighbourhood of 0,
[−√

2+;+
√
2+]=�0, whilst keeping all signals bounded.

It should also be observed that, for brevity, as in Teel
(1993), we are considering a simpler normal form than
Marino and Tomei (1993a) and Krsti,c and Kokotovi,c
(1996), as we are assuming that the system is of relative
degree ,= n. However, the designs given here can be
extended to the case ,¡n when the minimum phase
assumptions of Marino and Tomei (1993a) and Krsti,c
and Kokotovi,c (1996) hold. The basic uncertainty set we
consider is: -=-(L2(�;w); f0; .)= {f∈Cn+3(O;X) |
f − f0 ∈K; ‖fi − f0

i ‖L2(�;w)6 .i; 16 i6 n}; where

� ⊂ O is typically compact. K denotes an approxima-
tion theoretic smoothness class, see above for details. It
is important to observe that the spatial L2 nature of the
uncertainty model is very di7erent to uncertainty mod-
els utilised to date in nonlinear control. Robust back-
stepping designs, e.g. Marino and Tomei (1993b), and
older, simpler designs e.g. Corless and Leitmann (1981)
utilise pointwise bounds on the nonlinearity. Similarly,
the adaptive design of Jiang (1998) also utilises a point-
wise bound (of unknown magnitude). To some extent
these L2 uncertainty models are well-tailored to identi2-
cation data: often models can be obtained with MSE or
l2=L2 error bounds. In contrast, it is hard to obtain good
pointwise error bounds from identi2cation data.
Even when the system is modelled physically, spatial

integral descriptions of uncertainty can be appropriate.
For example, consider the motion of a particle moving
on the surface of an a-priori unknown 1D hilly land-
scape given by the function l :R → R. Assuming l is
smooth, let s(t) denote the arc-length from the origin
at time t, which is the measured output (y= s). The
control is applied by a force tangential to the land-
scape, with the actuator dynamics modelled as a single
integrator. Applying Newton’s law, we thus have a
system of the form of Eq. (1) with n=3, f1 =f3 = 0
and f2(y)= − mg cos(tan−1(@l=@y|y)); since, there is a
smooth bijection between the arc-length position s(t) and
the horizontal position y(t), f2 is a function of the output
only. Now consider an uncertainty set which comprises
of a landscape of single ‘bumps’ at unknown locations,
e.g. -k = {f=(f1; f2; f3)T |f1 =f3 = 0; f2(y)= −
mg cos(tan−1(@l=@y|y)); l=exp(−k‖x − z‖2); z ∈R}:
The steepness of the ‘bumps’ is indexed by k¿ 0. It
can now be easily seen that as k →∞, ‖-k‖L2 → 0,
whilst ‖-k‖L∞ →mg. The L2 description is more appro-
priate as it can capture the essence the uncertainty is
small, but spatially uncertain, whereas the L∞ descrip-
tion cannot reRect the spatial uncertainty. The essence
of this example is that pointwise measures for this
type of uncertainty can lead to descriptions which are
needlessly conservative. Consequently, a control de-
sign based on the less conservative uncertainty model
can be reasonably expected to have superior perfor-
mance.
Performance will be measured in a worst-case LQ

manner, penalising both the output and the control: P=
P(c1; k; +)= supf∈- supsolns(�f;�)

∫
T2

c1y2(t) + ku2(t) dt;

where T2 = {t¿ 0 |y(t) �∈ �0 = [−√
2+;

√
2+]}:

3. Adaptive control design, stability and performance

The adaptive control methodology is based on that of
Marino and Tomei (1993a) and Krsti,c and Kokotovi,c
(1996) and robust backstepping (Freeman & Kokotovi,c,



686 M. French et al. / Automatica 38 (2002) 683–693

1996; Krsti,c et al., 1995). We write the system in the
form

ẋi = xi+1 + f0
i (y) + �Ti �i(y) + df

i (y); 16 i6 n− 1;

ẋn = u+ f0
n(y) + �Tn�n(y) + df

n (y); y= x1;

df
i (y)=fi(y)− f0

i (y)− �Ti �i(y):

(2)

When f is clear from the context, we often write di for
df

i . As in French and Rogers (1998) it should be noted
that even in the absence of disturbance terms, this system
di7ers from the standard parametric normal form (Krsti,c
et al., 1995; Marino & Tomei, 1993a) (although it is not
more general) because the vectors �1; : : : ; �n are distinct.
df de2nes the vector df =(df

1 ; : : : ; d
f
n )T.

However, to de2ne 2lters for the system, it is conve-
nient to write the system in a similar form to Krsti,c and
Kokotovi,c (1996). We reparameterise the system as fol-
lows. De2ne �′=(�′1; �

′
2; : : : ; �

′
m)

T = (�T1 | �T2 | · · · |�Tn )T ∈
W=Rm; �′

1 = (�T
1 | 0| · · · |0)T; �′

2 = (0 |�T
2 | · · · | 0)T; : : : ;

�′
n =(0 | · · · | 0|�T

n )
T: �′

j =(�′
1j; �

′
2j; : : : ; �

′
nj)

T: Note that
by de2nition, �′

j :O → X only has one non-zero entry.
Then we can rewrite the system in the alternative form:
ẋ=Ax + enu+f0(y) +

∑m
j=1 �

′
j�

′
j(y) + df(y), where A

is the matrix:

A=




0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
0 0 0 : : : 0




:

We now follow the de2nition of the 2lters for state es-
timation in Krsti,c and Kokotovi,c (1996): A gain vector
4=(41; : : : ; 4n)T ∈Rn is chosen such that A0 =A − e14T

is Hurwitz (such 4 is said to be admissible). The nomi-
nal (!), model (6) and control (7) 2lters are de2ned as
follows:

!̇=A0!+ 4y + f0(y); !(0)=0; !∈X; (3)

6̇j =A06j +�′
j(y); 6j(0)=0; 6j ∈X; 16 j6m; (4)

7̇=A07+ enu; 7(0)=0; 7∈X: (5)

For convenience, 6 denotes the vector 6=(61; : : : ; 6m)T.
The state estimation error #∈X is de2ned to be:

#= x −

!+

m∑
j=1

�′j6j + 7


 : (6)

An error system is recursively de2ned as the vector
z=(z1; : : : ; zn)T ∈Z=Rn: z1 =y; zi = 7i − 8i−1; 26
i6 n where 8i = 8i(y; 71; : : : ; 7i; !; 6; �̃k ; �̂

′
k ; 16 k6 i)

with �̃k ∈W1, �̂
′
k =(�̂

′
1k ; : : : ; �̂

′
mk)

T ∈W denoting the pa-
rameter estimates of �1 ∈W1 and �′=(�′1; : : : ; �

′
m)

T ∈W
at step k; 16 k6 n; respectively.

The functions 8i; 16 i6 n are de2ned: 81 = − !2 −∑m
j=1 �̂

′
j16j;2 − �̃

T
1�1(y)−f0

1 (y)− c1z1 − (nl2=3 + 92)z1;
and for 26 i6 n,

8i =
@8i−1

@y


!2 +

m∑
j=1

�̂
′
ji6j;2 + 72 + �̃

T
i �1(y) + f0

1 (y)




+
@8i−1

@!
(A0!+ 4y + f0(y))

+
m∑

j=1

@8i−1

@6j
(A06j +�′

j(y))

+
i−1∑
k=1

(
@8i−1

@�̂
′
k

:̂k +
@8i−1

@�̃k

:̃k

)

+
i−1∑
j=1

@8i−1

@7j
(7j+1 − 4j71)

−
(

nl2

3
+ 92

)(
@8i−1

@y

)2
zi − cizi − zi−1 + 4i71; (7)

where

:̃1 = 8z1G̃�1(y); :̃1 ∈W1;

:̃k =− 8zk
@8k−1

@y
G̃�1(y); :̃k ∈W1; 26 k6 n;

:̂1 = 8z1Ĝ(61;2; : : : ; 6m;2)T; :̂1 ∈W; (8)

:̂k = −8zk
@8k−1

@y
Ĝ(61;2; : : : ; 6m;2)T; :̂k ∈W;

26 k6 n

and where Ĝ, G̃ are de2ned from an adaptive struc-
ture G=(G1; : : : ; Gn) as G̃=G1; Ĝ=diag(G1; : : : ; Gn);
where Gi; 16 i6 n are positive-de2nite matrices. 8¿ 0
is the adaptive gain, 9¿ 0 is the robust gain and l¿ 0
is the state estimation robust gain. Note that by the dif-
ferentiability assumptions on f0; �, it follows that for
16 i6 n, 8i is de2ned and at least C1, hence locally
Lipschitz.
The controller, �=�(G;Q; 8; �; 9; l; 4), (where

Q=diag(c1; : : : ; cn)) is de2ned by 2lters 3–5, and
Eqs. (9) below:

� : u= 8n(y; 7; !; 6j; 16 j6 n; �̃k ; �̂
′
k ; 16 k6 n);

˙̃�i =D(�̂0; z):̃i; �̃i(0)=0; �̃i ∈W1; 16 i6 n;

˙̂�
′
i =D(�̂0; z):̂i; �̂i(0)=0; �̂

′
i =(�̂

′
1i ; : : : ; �̂

′
mi)

T ∈W;

16 i6 n; (9)
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where D(�̂0; z) denotes the dead-zone function:
D(�̂0; z)=0 if z ∈ �̂0, D(�̂0; z)=1 if z �∈ �̂0, where
�̂0 = {z : zTz6 2+2}.

Before giving the main theorem, we give some
more notation. It will be convenient to partition �̂

′
i ∈W

as follows: �̂
′
i =(�̂1i ; �̂2i ; : : : ; �̂mi)T = (�̂

T
1i | �̂

T
2i|; · · · |�̂

T
ni)

T

where �̂ki ∈Wk for 16 i; k6 n. �̂ki is then the adap-
tive estimate at step k of the parameter �i. Note that
�1 plays a special role, it has two parameter esti-
mates constructed for it at each step k, namely �̃k , �̂1k .
The parameter estimate vectors, �̃i, �̂

′
i , 16 i6 n are

concatenated into the vectors >̃=(�̃1; : : : ; �̃n)T ∈Wn
1,

>̂
′
=(�̂

′
1; : : : ; �̂

′
n)

T ∈Wn. We de2ne a mapping T :X ×
R×X×Xm×Wn

1×Wn → Z×R×X×Xm×Wn
1×Wn

by T ((y; 72; : : : ; 7n); 71; !; 6; >̃; >̂
′
)= (z; 71; !; 6; >̃; >̂

′
):

Model error constants are de2ned: supf∈- ‖df
i ‖L2(�\�̂0;w)

6 qi, 16 i6 n, supf∈- supy∈�\�̂0
‖dfT

(y)P0+P0df(y)‖2
6 g, supf∈- ‖df(y)‖C(�)6 s; where P0 is the solution
to Lyapunov’s equation AT

0P0 + P0A0 = − I . Note that
when � is compact or w is integrable, the boundedness
of qi, 16 i6 n and g follows from the boundedness of
s. 3 Finally, we require the admissibility de2nition.

De�nition 3.1. A model �=(�1; : : : ; �n) is (Q;�;�0;
P0; 9; l) admissible if: s, g, qi for 16 i6 n are 2nite,
and 2�(Q)+2 ¿ns2=492 + g2=l2, 2�(Q)+2 ¿ns2=492 +
3 K�(P0)g2=4l2.

The main theorem is then as follows:

Theorem 3.2. Let � ⊂ X be a "xed closed set. Con-
sider the system �- given by Eq. (1) with functional
uncertainty -⊂-(L2(�\�0;w); f0; .) and initial con-
dition x0 ∈X. Consider the performance measure
P=P(c1; k; +) for positive diagonal Q; and k ¿ 0,
+¿ 0. Let G=(G1; : : : ; Gn) where Gi; 16 i6 n are
positive-de"nite adaptive structure matrices. Imple-
ment the controller �(G;Q; 8; �; 9; l; 4) where � is a
"nite dimensional model and 8¿ 0. Suppose the "lter
gain 4 is admissible; and 9¿ 0; l¿ 0. Suppose � is
(Q;�;�0; P0; 9; l) admissible; and let

W8 =
1
2
max{zT0 z0; 2+2}+

1
l2
max{xT0P0x0; 3 K�(P0)g2=4}

+
n
8

(.1 + q1)2

�(G1)�(R1)
+

n
28

n∑
i=2

(.i + qi)2

�(Gi)�(Ri)
;

where Ri = 〈�i; �j〉L2(�\�0;w) is the Gram matrix of
the model component �i and P0 is de"ned as above.

3 The reason for the variety of error constants is thus to minimise
conservatism in the performance bounds, and for notational simplicity.

Then for all adaption gains 8¿ 0 and state estimation
control gains l¿ 0 such that:

[−
√
2W8;

√
2W8] ⊂ �

◦
(10)

we have that (�-; �) is well posed and all outputs sat-
isfy y(t) → �0 as t → ∞. Furthermore, we have the
bound:

P(c1; k; +)

6
(
1+

p1

(2�(Q)+2−p1)
+

p2

(2�(Q)+2−p2)

)
(W8−+2)

+ k sup
+26V∗6W8

(
1

2�(Q)+2 − p1

∫ W8

V∗
ũ21(v) dv

+
1

2�(Q)+2 − p2

∫ V∗

+2
ũ22(v) dv

)
; (11)

where ũ 1 :R → R; ũ 2 :R → R, p1 ¿ 0, p2 ¿ 0 are
de"ned:

p1 =
ns2

492 +
g2

l2
; p2 =

ns2

492 +
3 K�(P0)g2

4l2
;

ũ 1(r)

= sup{|u(y; 7; 6; !; >̂
′
; >̃)| ∈R | (y; 7; 6; !; >̂

′
; >̃)∈Z;

+26V (z; #; >̂
′
; >̃)6 r};

ũ 2(r)

= sup

{
|u(y; 7; 6; !; >̂

′
; >̃)| ∈R | (y; 7; 6; !; >̂

′
; >̃)∈Z;

#TP0#6
3 K�(P0)g2

4l2
; +26V (z; 0; >̂

′
; >̃)6 r

}

where

Z =
{
(y; 7; 6; !; >̂

′
; >̃) | 6Tj P06j6 4 K�(P0)3

sup
y262W8

‖�′
j(y)‖;!TP0!6 4 K�(P0)3

sup
y262W8

‖4y + f0(y)‖; (y; 72; : : : ; 7n)= z;

71 =y −!1 −
m∑

j=1

�′j6j;1 − #1; +2

6 V (z; #; >̂
′
; >̃)6 r

}
: (12)

If f0(0)=0 and �(0)=0, then x0 = 0 implies z0 = 0
irrespective of the uncertainty level . (e.g. in the case of
stabilising to an equilibrium point given x0 = 0 and e.g. a
polynomial basis). This can shown recursively from the
de2nition of 8i (Eq. (7)) and the fact that the 2lters !; 6; 7
are initialised at 0. In this case, given �, then suitable
adaption and state-estimation control gains can be com-
puted for any uncertainty level . to ensure condition (10).
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It is interesting to observe that orthogonal models have
the property that the size of their basis can be increased
without altering the control=adaption gains to maintain
stability=uniform bound on the output cost. For many
other typical approximants, such as Gaussian RBF mod-
els of Sanner and Slotine (1992), or B-splines de2ned on
uniform lattices, we have that �(Ri) → 0 as the resolu-
tion of the model is increased: to ensure stability=uniform
bound on the output cost for such schemes it is necessary
to select the adaption gain proportional to 1=�(Ri). It re-
mains unclear how these scalings a7ect the control cost
(it can easily be observed that selecting 8 proportional to
1=�(Ri) yields a uniformly bounded tracking error when
the resolution is increased. In a case of matched uncer-
tainty, these scalings have been investigated for the full
LQ cost, e.g. it has also been shown (French, Szepesvari,
& Rogers, 1999) that special constructions of the basis,
adaption gains and adaption structure matrices G lead
to uniformly bounded (state and control) performance.
Similar results in the output feedback case remain the
subject for future work.

4. Summary and discussion

The main contributions of the paper are as follows:

1. A rigorous dead-zone modi2ed robust adaptive out-
put feedback practical stabilisation design is given. The
design achieves practical stability in the prescence of
bounded disturbances.
2. Uncertainty is characterised by a weighted L2 model

about a nominal system, and upper bounds on worst-case
control performance are obtained.

It should be noted that although a stable design is given
for a class of aPne systems, the uncertainty model is
data given in the coordinates of the normal form. The
extensions to tracking and to minimum phase systems
are expected to be routine. Similar to French and Rogers
(1998), the basic design is overparameterised. This is
a drawback from a implementation viewpoint; however,
it should be noted that there is no clear evidence as to
the relative advantages=disadvantages of di7erent param-
eterisations w.r.t. to non-singular transient performance.
It is expected that this overparamaterisation can be re-
moved by the interlacing design concept of Krsti,c et al.
(1995). One of the interesting features of these results is
the fact that the uncertainty is naturally expressed in L2

as opposed to pointwise bounds as in the robust results
of Marino and Tomei (1993b), or the adaptive results of
Jiang (1998). From a modelling=identi2cation perspec-
tive, these L2 models may well be more realistic. In con-
trast, it is hard to obtain good pointwise error bounds
from identi2cation data. Clearly, this is a topic for future
work.

Although, the bounds obtained are likely to be conser-
vative, we contend that these results have utility beyond
a 2rst attempt at a constructive a-priori determined cost
functional bound. The fundamental unanswered question
concerning these approximate designs concerns the scal-
ing of the performance when the resolution of the model
is increased. We have shown in this paper that the output
transient is uniformly bounded if the model basis is e.g.
orthogonal or, if the adaption gain is taken to be propor-
tional to the reciprocal of the minimum eigenvalue of the
Gram matrix. As yet, for the output feedback case, there
is no general construction of a model class whose (output
and) control performance is uniformly bounded indepen-
dently of the model resolution. However, by extending
a recent construction (French et al., 1999) utilising mul-
tiresolution models for the matched (state feedback) case,
and by using the bounds given in this paper, we expect
that a suitable adaptive model basis can be constructed.
This, however, also remains a topic for future work.

Appendix

Proposition A.1. Consider a di=erential equation of the
form

ẋ=f(x; y; z); x(0)= x0;

ẏ=

{
0 when x∈�0;

p(x; y; z) when x �∈ �0;
y(0)=y0;

ż= q(x; y; z); z(0)= z0;

(A.1)

where x∈X; y∈Y; z ∈Z; are "nite dimensional,
f;p; q are locally Lipschitz; and �0 is of the form
�0 = {x∈X | xTPx6 +2} for some positive de"nite P.
Let V :X×Y×Z → R+ be de"ned: V (x; y; z)= xTPx+
g2(y) + h2(z) where g∈C1(Y), h∈C1(Z). Let
’(t)= (x(t); y(t); z(t)) be the absolutely continuous so-
lution to Eq. (A:1) de"ned over its maximal interval
of existence [0; t∗): De"ne V (t)=V (x(t); y(t); z(t)) and
W (t)= h2(z(t)); and let:

C∗=




inf{06 t ¡ t∗: Ẇ (t)¿ 0} if ∃t ∈ [0; t∗)

s:t: Ẇ (t)¿ 0;

t∗ otherwise:

(A.2)

De"ne T1 ⊂ R+ as T1 = {t ∈ [0; C∗) | x(t) �∈ �0}. Suppose
(1) lim sup‖y‖→∞ |g(y)|=∞; (2) V̇ (t)6−a¡ 0 for all
t¿ 0 such that t ∈T1 and ’(t)∈L; where L is an open set
containing L(V; V0); (3) D−V (t)6 0 for all t¿ 0 such
that x(t)∈ @�0 and D−x(t)TPx(t)=0; (4) Let T ¿ 0;
then if x; y∈L∞[0; T ] are bounded then z ∈L∞[0; T ];
where z(·) is the solution of ż(t)= q(x(t); y(t); z(t)):
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Then t∗ ¿ 0 and: (1) If t∗ ¡∞ then C∗ ¡t∗; (2) ’
is bounded on [0; C∗); (3) V is decreasing on T1∩ [0; C∗);
(4) ’(t)∈L(V; V0) for all t ∈ [0; C∗) where V0 =
max(V (x0; y0; z0);maxx∈�0 V (x; y0; z0)). 4

Proof. Let ’(t) be an absolutely continuous local solu-
tion of (A.1) de2ned over its maximal interval of exis-
tence [0; t∗). By e.g. (Filippov, 1988, Theorem 2, p. 78)
either t∗=∞, or 0¡t∗ ¡∞ and lim supt→t∗− ‖’(t)‖
=∞.
Let us establish 1. Assume that t∗ ¡∞. We claim that

in order to prove C∗ ¡t∗, it is suPcient to prove that

V (’(t))6V0 ∀t ∈ [0; C∗): (A.3)

For, to derive a contradiction, assume that C∗= t∗ ¡∞.
Then, from limt→t∗− ‖’(t)‖=∞ it follows that also
limt→t∗−V (’(t))=∞. For if lim supt→t∗− ‖(x(t); y(t))‖
=∞ then by Condition 1. and since P is positive de2nite,
limt→t∗− V (’(t))=∞. If, on the other hand, (x(t); y(t))
remains bounded, then by Condition 4. z(t) stays bounded
and hence lim supt→t∗− ‖’(t)‖¡∞, which is a con-
tradiction. Therefore lim supt→t∗− ‖(x(t); y(t))‖¡∞
cannot hold and thus limt→t∗− V (’(t))=∞. So (A.3)
implies 1.
Now let us prove (A.3). If x0 ∈�0 then by letting

b=min{inf{t ∈ [0; C∗) : x(t)∈ @�0}; C∗} and by the def-
inition the dynamics (Eq. (A.1)), V (’(t))6V (’(b))
as long as t ∈ [0; b). So if we prove that for all
t ∈ [b; C∗) V (’(t))6V (’(b)) then we will have
V (’(t))6V (’(b))6maxx∈�0 V (x; y0; z0)6V0 for all
t ∈ [0; C∗). Hence, by the time invariance of Eq. (A.1),
we can assume without loss of generality x0 �∈
�0. So let us assume that x0 �∈ �0. Since ’; x; y; z
are absolutely continuous on [0; C∗), it follows that
V =V (t) is absolutely continuous on [0; C∗). Hence
(e.g. Rudin, 1987, Theorem 7:18), V is di7eren-
tiable a.e. and V̇ ∈L1[0; C∗). For a contradiction sup-
pose C∈ [0; C∗) is such that (i) ’(C)∈L\L(V; V0),
and (ii) ’(t)∈L ∀t ∈ [0; C), then:

V (C) = V (0) +
∫ C

0
V̇ (t) dt=V (0) +

∫
F1

V̇ (t) dt

+
∫

F2

V̇ (t) dt +
∫

F3

V̇ (t) dt; (A.4)

where F1 =T1 ∩ [0; C)= {t ∈ [0; C) | x(t)∈X\�0},
F2 = {t ∈ [0; C) | x(t)∈�◦

0} and F3 = {t ∈ [0; C) | x(t)∈
@�0}. F1, F2 are measurable (as �◦

0, X \�0 are open and
’ is continuous); F3 is measurable as it is the comple-
ment of F1 ∪F2 in [0; C∗). We are now going to estimate
all the three integrals in (A.4). Let us assume x(C) �∈ �◦

0.

4 Note that if V is radially unbounded then this result is much
simpler to state and prove, however, this does not suPce for the
application required.

Then:

(a) Since V̇ (t)6 − a6 0 ∀t ∈F1 by Condition 2 and
by (i) and (ii), it follows that

∫
F1

V̇ (t) dt6 0.
(b) Since x(C) �∈ �◦

0, we can write F2 =
⋃

a∈A Ga =⋃
n¿1

⋃
a∈An

Ga where Ga =(t−a ; t+a ) are maximal dis-
joint open intervals with x(t−a ); x(t+a )∈ @�0; An =
{a∈A |m(Ga)¿ 1=n}. As m(F2)¡∞, the cardinality of
each An is 2nite, hence by the dominated convergence
theorem (V̇ ∈L1[0; C∗)):

∫
F2

V̇ (t) dt= limn→∞
∫
⋃

a∈An
Ga

V̇ (t) dt= limn→∞
∑

a∈An
V (t+a ) − V (t−a )6 0; since by

de2nition of �0 we have x(t−a )TPx(t−a )= x(t+a )
TPx(t+a )=

+2, and ẏ(t)=0 and Ẇ (t)6 0 ∀t ∈Ga so V (t−a )
¿V (t+a ).

(c) We decompose F3 =F4 ∪ F5, where F4 = {t ∈
F3 |D−x(t)TPx(t)=0}, F5 =F3 \F4. (Note that D−x(t)T

Px(t) is de2ned only a.e. (as (d=dt)xTPx is de2ned a.e.)
but is measurable a.e. so F4 and F5 are measurable).
Write T1 =

⋃
b∈B Eb where Eb =(t−b ; t+b ) are maximal

disjointed connected subsets of R (this can be done since
x(t) is continuous). If t0 ∈F5 then there cannot exist
an #¿ 0 s.t. ∀t ∈ (t0 − #; t0] t ∈F3, since then (from the
de2nition of �0 and F3) D−xTPx=0 would hold at t0
which contradicts the de2nition of F5. So if t0 ∈F5 then
t0 �∈ F◦

3 , so t0 ∈ @F3⊂ KT 1. But t0 �∈ T1 so t0 must be an
endpoint of Eb for some b. Since the Eb’s are disjoint
open intervals B must be countable and so m(F5)=0.
Hence,

∫
F3

V̇ (t) dt=
∫
F4

V̇ (t) dt. But similarly to Case
1 above, we have V̇ (t)6 0 for all t ∈F4 by Conditions
3, so

∫
F4

V̇ (t) dt6 0, hence
∫
F3

V̇ (t) dt6 0. Now sup-
pose x(C)∈�◦

0. Let C′=sup{t ¡C | x(t)∈ @�0}. Then
x(C′) �∈ �◦

0 and thus V (C′)6V (0). Then by de2nition of
�0, V (C)6V (C′)6V (0) which 2nishes the proof that
V (C)6V (0) holds for all C in [0; C∗).

Thus, Cases (a)–(c) and Eq. (A.4), show that V (C)6
V (0) ∀C∈ [0; C∗), hence contradiction. This establishes 4
and hence 1. Similarly, we can establish that ∀t1; t2 ∈T1,
t1 ¡t2 implies V (’(t2))6V (’(t1)), thus establishing 3.
Boundedness of z follows easily, since consequence 4
implies x; y will be bounded and so by Condition 4. z is
bounded, hence establishing consequence 2, and hence
completing the proof.

Lemma A.2. Consider the di=erential equation
ẋ=f(x); where x=(x1; x2)∈Rn1 × Rn2 and f maps
bounded sets to bounded sets. Let x(t) be an absolutely
continuous solution. Suppose x1(t) is bounded and dif-
ferentiable on T1 = x−1

1 (�c
0); where �0 ⊆ Rn1 is compact.

Further; let V ∈C1(Rn1 ×Rn2) be a real-valued function
and suppose v(t)=V (x(t)) satis"es (1) 06V =V (x);
(2) v is non-increasing on T1; (3) v̇|T1 ¡− a¡ 0.
Then m(T1)6 (1=a)v(0) and limt→∞ d(x1(t); �0)=0.

Proof. Initially, assume that x1(0) �∈ �◦
0 and de-

2ne ˙̂v= v̇ if t ∈T1 and 0, otherwise with v̂(0)= v(0).
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Then by Condition 2. v|T1 6 v̂|T1 . Now consider
C∈T1. Then v(C)6 v̂(C)= v(0) +

∫ C
0
˙̂v(t) dt6 v(0) −∫

[0;C)∩T1
a dt= v(0)− am([0; C)∩T1) and thus am([0; C)∩

T1)6 v(0) − v(C)6 v(0), where the second inequality
follows since by Condition 1. Now letting C → supT1,
we obtain m(T1)6 v(0)=a as required.

Now write T1 =
⋃

n∈N An, where {An} is an ordered
set of open intervals, where N is a countable set, and
m(An) → 0 as n → supN (this decomposition exists as
T1 is open). If N is 2nite then limt→∞ d(x1(t); �0)=0,
so assume that N is countably in2nite. To derive a
contradiction assume that there exists an #¿ 0 s.t.
lim supt→∞ d(x1(t); �0)¿#. Then there exists an in-
creasing sequence of naturals nk s.t. for all k there ex-
ists t ∈Ank =(lnk ; unk ) s.t. d(x1(t); �0)¿ #. De2ne t∗nk

=
inf{t ∈Ank |d(x1(t); �0)= #=2}, t′nk

= inf{t ∈Ank |d(x1(t);
�0)= #}. By the mean-value theorem there exists a time
t̂nk ∈ (t∗nk

; t′nk
) s.t. ‖ẋ1(t̂nk )‖=[‖x1(t∗nk

) − x1(t′nk
)‖]=(t∗nk

−
t′nk
)¿ #=2m(Ank ) and therefore limk→∞ ‖ẋ1(t̂nk )‖=∞.

However, W = {x1(t̂nk )}k is a bounded set (as w∈W
lies within # of the compact set �), f maps bounded
sets to bounded sets and so {ẋ1(t̂nk )}k =f(W ) is also
bounded which is a contradiction. Therefore, we must
have lim supt→∞ d(x1(t); �0)=0.

Now, let us assume that x1(0)∈�0. Let t∗= inf{t :
x1(t)∈ @�0}. Then x1(t∗) �∈ �◦

0. Consider y(t)= x(t+t∗),
t ¿ 0. Then, by the above argument lim supt→∞ d(y1(t);
�0)=0 and thus also lim supt→∞ d(x1(t); �0)=0. Since
d(x1(t); �0)¿ 0, the result follows.

Proposition A.3. Suppose T is a C1 mapping T :X ×
W→Z × W and let x :R+ →X; y :R+ →Y be con-
tinuous signals. De"ne z :R+ →Z by z(t)=PnT (x(t);
y(t)); and let V :Z × W→R be de"ned by:
V (z; y)= 1

2z
Tz + 1

2g
2(y) where g∈C1(Y;R). Suppose

(1) V̇ (z(t); y(t))6 − a¡ 0 ∀t ∈T1; and (2) V is de-
creasing on T1; where T1 = {t¿ 0 | z(t) �∈ �′

0} and
�′

0 = {z ∈Z | zTz6 2+2}. If u :X×W → R and ũ :R→
R satisfy: u2(x(t); y(t))6 ũ 2(V (T (x(t); y(t)))) ∀t ∈T1;
then;

∫
T1

u2(x(t); y(t)) dt6 (1=a)
∫ V (z(0);y(0))
+2 ũ 2(v) dv:

Proof. As Pn, T , x, y are continuous, z is continuous,
hence T1 = z−1(Z\�′

0) is measurable since Z\�′
0 is

open. Consider the change of variables v(t)=V (z(t);
y(t))=Vt , then:

∫
T1

u2(x(t); y(t)) dt6
∫
T1

ũ 2(V (T (x(t),

y(t)))) dt 6
∫
v(T1)

ũ 2(v)|dt=dv| dv6 (1=a)
∫ V0

+2 ũ 2(v) dv
where the change of variables is justi2ed since over T1,
v is decreasing; v(T1) is measurable by the measurability
of V and T1; and the 2nal inequality follows from the
inclusion: v(T1)⊂ [+2; V (z(0); y(0))].

Lemma A.4. Consider the following system: ẋ=Ax +
d(t) x∈Rn; x(0)= x0; where A is a Hurwitz matrix and
let P be the solution to the Lyapunov equation ATP +

PA=− I . If solutions are de"ned on [0; C] then:

(1) ∀t ∈ [0; C] xT0Px0 6 4 K�(P)3sups∈[0; C] ‖d(s) ‖2 ⇒
xT(t)Px(t)6 4 K�(P)3sups∈[0; C] ‖d(s)‖2:

(2) If supt¿0 ‖d(t)TP+P d(t)‖26 g and if L0 is de"ned
by: L0 = {x∈X | xTPx6 K�(P)g2}, then x(t) → L0

as t → ∞. Further; if C= inf{t¿ 0 | xT(t)Px(t)6
K�(P)g2} then V (t)= x(t)TPx(t) is monotonically de-
creasing on [0; C].

Proof. The proof is easily obtained by considering the
Lyapunov function V (x)= xTPx.

Proof of Theorem 3.2. Some standard algebraic manip-
ulations give the system in the error system coordinates
when z ∈Z \ �̂0 : ż1 =− c1z1 + z2 +

∑m
j=1 (�

′
j − �̂j1)6j;2 +

(�1 − �̃1)T�1(y) + (d1(y) − 92z1) + (#2 − nl2=3z1): By
letting zn+1 =0 for 26 i6 n we have

żi = zi+1 − cizi − zi−1 − @8i−1

@y

m∑
j=1

(�′j − �̂ji)6j;2

− @8i−1

@y
(�1 − �̃i)T�1(y)

+
@8i−1

@y

(
−#2 − nl2

3
@8i−1

@y
zi

)

+
@8i−1

@y

(
−d1(y)− 92 @8i−1

@y
zi

)
: (A.5)

It is also straightforward to compute the dynamics of the
state estimation error, # :

#̇=A0# + d(y): (A.6)

We can now use Proposition A.1 to show the existence
and boundedness of solutions in the maximal inter-
val [0; b] satisfying ∀t ∈ [0; b] Ẇ (t)6 0 (for an exact
de2nition see Proposition A.1). For this we identify
x of the proposition with z, y with the adaptive esti-
mator parameter, and z with the rest of the state vari-
ables. Then h is identi2ed with 1=l2(#TP0#), and then
Condition 1 is satis2ed. Since V (z; #; >̂; >̃)= 1

2z
Tz +

1=l2#TP0# + (1=28)
∑n

i=1 ((�1 − �̃i)TG̃
−1
(�1 − �̃i) +

(�′ − �̂
′
i)

TĜ
−1
(�′ − �̂

′
i)); we can compute the follow-

ing inequality ∀y(t)∈�\�0 and thus which also holds
∀’(t)∈L= {(z; #; >̂; >̃) | z1(t)∈�◦} such that t ∈T1

(note that L(V; V0)⊂L):

V̇ (z; #; >̂; >̃)6− (2�(Q)+2 − p1); (A.7)

where the inequalities follow from several applications of
Young’s inequality ab − 1

4b
26 a2. Therefore Condition

2 holds. Consider 1
2z

Tz= +2, D− 1
2z

Tz=0. Then similarly
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to inequality (A.7) we obtain

0 =D− 1
2z

Tz=− zTQz + z1(�1 − �̃1)T�1

+
m∑

j=1

z1(�′j − �̂
′
j1)6j;2 + z1(d1 − 92z1)

+ z1

(
#2 − nl2

3
z1

)
+

n∑
i=2

(
−zi

@8i−1

@y
(�1 − �̃i)T�1

− zi
@8i−1

@y

m∑
j=1

(�′j − �̂
′
ji)6j;2

+ zi
@8i−1

@y

(
−#2 − nl2

3
zi
@8i−1

@y

)

+ zi
@8i−1

@y

(
−d1 − 92zi

@8i−1

@y

))
(A.8)

so, by de2nition of the solution at the discontinuity, for
some �= �(t)∈ [0; 1], we have

D−V = −�
(
1
l2
(−#T# + dTP0# + #TP0d)

−zTQz + z1(d1 − 92z1) + z1

(
#2 − nl2

3
z1

)

+
n∑

i=2

(
zi
@8i−1

@y

(
−#2 − nl2

3
zi
@8i−1

@y

)

+ zi
@8i−1

@y

(
−d1 − 92zi

@8i−1

@y

)))

6−�(2�(Q)+2 − p1) (A.9)

so V̇ 6 0. This establishes Condition 3. Finally, we show
that Condition 4, which requires that if z and (>̂; >̃) are
bounded then the signals (!, 6, 7 and x) also remain
bounded. Explicit bounds on !, 6, and the boundedness
of 7 and x are shown as follows: Since y= z1, it follows
that y(t) is bounded by some bound B (in fact, B can be
chosen to be equal to

√
2V0 since V (t) decreases outside

of the dead zone, and y is constant inside the dead zone
and therefore (1=2)y2(t)6V (t)6V (0) for all t ¿ 0).
By the de2nition of the 2lter 3, and Lemma A.4 we have:

!TP0!6 4 K�(P0)3 supt¿0 ‖4y(t) + f0(y(t))‖
6 sup|y|6B ‖4y + f0(y)‖: (A.10)

Similarly from the de2nition of the 2lter 4 we have

6̇j =A06j +�′
j(y); (A.11)

so by Lemma A.4 we have for each 16 j6m:
6Tj P06j6 4 K�(P0)3 sup|y|6B ‖�′

j(y)‖: We now show 7 is
bounded. Since x1 =y, Eq. (6) implies:

#1 =y −

!1 +

m∑
j=1

�′j6j;1 + 71


 ; (A.12)

from which the boundedness of 71 follows from the
boundedness of �′; 61; !1; y; #1. If 71; : : : ; 7i are bounded,

then 8i is bounded, and hence by the boundedness
and de2nition of z it follows that 7i+1 is bounded.
Hence, 7 is bounded. Boundedness of u follows from
the boundedness of 8n. Boundedness of x follows from
Eq. (6). This establishes Condition 4. We now apply
Proposition A.1 to show that solutions exist whilst Ẇ 6 0,
’(t)∈L(V; V0), and inequality 5 holds ∀t ∈ [0; b) ∩ T1.

Now, let C= inf{t¿ 0 |W (t)6 K�(P)g2}. We claim
that b¿ C. Indeed, by Lemma A.4 and Eq. (A.6),
Ẇ (t)6 0 for all t ∈ [0; C]. We now consider the system
on [C;∞). We use Proposition A.1 once again, but now
to deduce that the solutions can be continued to in2nity.
Write U (z; #; >̂; >̃)=V (z; 0; >̂; >̃), and identify U with
V of Proposition A.1 (now h ≡ 0). Conditions 1 and
4 follow as previously. By Lemma A.4, we know that
#(t)TP0#(t)6 K�(P)g2 for all t ∈ [C;∞). Hence, similarly
to the derivation of inequality (5) we have ∀y(t)∈�\�0,

U̇ (z; #; >̂; >̃) = V̇ (z; 0; >̂; >̃)

6−zTQz + ns2=492 + 3#22=4l
2

6−zTQz + ns2=492 + 3 K�(P0)g2=4l2

6−(2�(Q)+2 − p2): (A.13)

since y(t)∈� \�0 implies ’(t)∈L (note that (U;UC) ⊂
L(U;VC) ⊂ L(V; VC) ⊂ L(V; V0) ⊂ L. This establishes
Condition 2.
To show Condition 3 of Proposition A.1 holds, con-

sider 1
2z

Tz=0, D− 1
2z

Tz= +2. Then similarly to 5, using
Eq. (A.8), and by de2nition of the solution at the discon-
tinuity, for some �= �(t)∈ [0; 1], we have

D−V = −�
(
−zTQz + z1(d1 − 92z1) + z1

(
#2 − nl2

3
z1

)

+
n∑

i=2

(
zi
@8i−1

@y

(
−#2 − nl2

3
zi
@8i−1

@y

)

+ zi
@8i−1

@y

(
−d1 − 92zi

@8i−1

@y

)))

6−�(2�(Q)+2 − p2) (A.14)

so V̇ 6 0 as required. This 2nishes the proof of the
existence of bounded solutions on [0;∞), the bound-
edness of ’(t) by L(V; V0) and similarly to the pre-
vious case, equations A.10, A.11, A.12 also hold on
the interval [C;∞). We further have explicit bounds
on V̇ and U̇ on T1 ∩ [0; C), T1 ∩ [C;∞), respectively
(inequalities A.7, A.13). Lemma A.2 yields the conver-
gence of z to �̂0, hence the convergence of y to �0.
Now we bound the state performance. Firstly, we have:∫
T1

z(t)TQz(t) dt=
∫
T1∩[0;C] −V̇ dt +

∫
T1∩[0;C] D1(t) dt+
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∫
T1∩[C;∞) −U̇ dt +

∫
T1∩[C;∞) D2(t) dt; where

D1(t) =
n∑

i=2

(
zi
@8i−1

@y

(
−#2 − nl2

3
zi
@8i−1

@y

)

+ zi
@8i−1

@y

(
−d1 − 92zi

@8i−1

@y

))

+ z1(d1 − 92z1) + z1

(
#2 − nl2

3
z1

)

+
1
l2
(−#T# + dTP0# + #TP0d);

D2(t) =D1(t)− 1
l2
(−#T# + dTP0# + #TP0d); (A.15)

The 2rst term is bounded by a MCT argument:
We write T1 ∩ [0; C)=

⋃
c∈C Ec where Ec =(t−c ; t+c )

are maximal disjointed connected subsets of R+ (this
can be done since z(t) is continuous), and de2ne
Cn = {c∈C |m(Ec)¿ 1=n}. Since:

∫
⋃

c∈Cn
Ec
−V̇ (t) dt=∑

c∈Cn
V (t−c ) − V (t+c )6V0 − VC, by taking the limit as

n → ∞, and applying the monotone covergence theorem
we can bound the 2rst term:

∫
T1∩[0;C] −V̇ dt=V (0)−V (C):

Similarly, the third term is bounded:
∫
T1∩[C;∞) −U̇ dt6

U (C) − +2: Since V̇ 6 − 2�(Q)+2 + p1 ∀t ∈T1 ∩ [0; C],
and since V is decreasing on T1, we have

m(T1 ∩ [0; C])6
supt∈[0; C] V (t)− inf t∈[0; C] V (t)

inf t∈T1 |V̇ (t)|

6
V (0)− V (C)
2�(Q)+2 − p1

¡∞:

Bounds on
∫ C
0 D1(t) dt are then given by∫

T1∩[0;C]
|D1(t)| dt6 C‖D1(·)‖L∞ 6

p1(V (0)− V (C))
(2�(Q)+2 − p1)

;

∫
T1∩[0;C]

|D2(t)| dt6 p2(U (C)− +2)
(2�(Q)+2 − p2)

since ‖D1(·)‖L∞ ¡p1, ‖D2(·)‖L∞ ¡p2 similarly to in-
equality 5. Hence the above inequalities and the inequal-
ities V (C)¿ +2, V (0)¿U (C) show that∫

T1

z(t)TQz(t) dt

6
(
1 +

p1

(2�(Q)+2 − p1)
+

p2

(2�(Q)+2 − p2)

)

(V (0)− +2):

The control performance e7ort is bounded as follows.
Consider t ∈ [0; C] ∩ T1 and de2ne r=V (z(t); #(t); >̂

′
(t);

>̃(t)). Then (y(t); 7(t); 6(t); !(t); >̂
′
(t); >̃(t)) lies in the

set Z de2ned by Eq. (12). Now taking (y; 72; : : : ; 7n),
(#; >̂

′
; >̃) to have the role of x and y in Proposition A.3 we

have the inequality: u2(t)6 ũ21(V (z; #(t); >̂
′
(t); >̃(t)));

and hence by Proposition A.3,∫
T1∩[0;C]

u2(t) dt6
1

2�(Q)+2 − p1

∫ V (0)

V (C)
ũ21(v) dv;

since V̇ 6−(2�(Q)+2−p1) for all t ∈T1∩[0; C]. Similarly
consider t∈[C;∞]∩T1 and de2ne r=U (z(t); >̂

′
(t); >̃(t)),

then (y(t); 7(t); 6(t); !(t); >̂
′
(t); >̃(t)) lies in the set:{

(y(t); 7(t); 6(t); !(t); >̂
′
(t); >̃(t))∈Z | #TP0#

6
3 K�(P0)g2

4l2

}
:

Now taking (y; 72; : : : ; 7n), (>̂
′
; >̃) to have the role of x

and y in Proposition A.1 and taking W =0 we have the
inequality: u2(t)6 ũ21(V (z; #(t); >̂

′
(t); >̃(t))); and hence

by Proposition A.3∫
T1∩[C;∞)

u2(t) dt6
1

2�(Q)+2 − p2

∫ V (C)

+2
ũ22(v) dv:

We can then establish∫
T1

u2(t) dt6 sup
+26V∗6V0

(
1

2�(Q)+2 − p1

∫ V0

V∗
ũ21(v) dv

+
1

2�(Q)+2 − p2

∫ V∗

+2
ũ22(v) dv

)
:

The result now follows once we have shown that
V06W8. But since #T(0)P0#(0)= xT0P0x0, it follows that

V0 =
1
2
zT0 z0 +

1
l2

xT0P0x0 +
1
28

n∑
i=1

(.1 + q1)2

�(G1)�(R1)

+
n
28

n∑
i=1

(.i + qi)2

�(G1)�(Ri)
=W8

since e.g. (�1 − �̃i(0))TG−1
1 (�1 − �̃i(0))= �T1G

−1
1 �16

1=�(G1)�(R1)�T1R1�1 and

�T1R1�1

= 〈�T1�1; �T1�1〉L2(�\�0;w)

= ‖f − f0 − (f − f0 − �T1�1)‖2L2(�\�0;w)

6 (‖f − f0‖L2(�\�0;w) + ‖f − f0 − �T1�1‖L2(�\�0;w))
2

= (.1 + q1)2: (A.16)

Thus, the result follows.
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