
Available online at www.sciencedirect.com

Systems & Control Letters 48 (2003) 15–25

www.elsevier.com/locate/sysconle

Overparameterised adaptive controllers can reduce
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Abstract

By means of two examples we show that non-singular costs can been reduced for adaptive controllers by overparameterising
the estimators. The examples are for scalar and second order systems respectively. In the second example the tuning function
design and the overparameterised adaptive backstepping design are compared. In both cases a system is constructed for which
the overparameterised design is superior w.r.t. a non-singular measure of transient performance.
c© 2002 Published by Elsevier Science B.V.
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1. Introduction

Overparameterisation in adaptive controllers has of-
ten been considered to be a undesirable design feature.
Generally overparameterisation leads to controllers of
higher dynamic order with more complex dynamics
and hence there is often a concern about a possi-
ble loss of robustness. There are a few results which
partially support this intuitive claim, for example [7]
presents concrete results showing parameter conver-
gence for systems with fewer parameters, hence GAS
of the closed loop and robustness to bounded distur-
bances. Often, informal reasonings for the need to re-
duce over-parameterisation are given as follows: as
the dimensionality of the parameter space increases,
parameter convergence is harder to achieve, which in
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turn can lead to robustness problems. Alternatively,
it can be reasoned that because the parameter space
is larger, the transient is larger. However, these argu-
ments do not necessarily hold up to close scrutiny. For
example, in the latter case, it is well known within the
machine learning community that the size of parame-
ters can be more critical for learning performance than
the number of parameters, see e.g. [1]. Although the
problem considered in [1] is not directly analogous,
it exposes the weakness of the intuitive argument,
by suggesting the ‘size’ of a learning problem may be
dictated by measures of ‘size’ which are not as
elementary as parameter counts.
On the other hand, overparameterisation can give

the controller beneGcial extra degrees of freedom
in the design, see e.g. [5]. We exploit these extra
degrees of freedom in the constructions which fol-
low, which show that the orthodoxy that one should
not over-parameterise, is not, in general, valid. 2 In

2 Related results in the context of function approximator based
designs can be found in [4].

0167-6911/03/$ - see front matter c© 2002 Published by Elsevier Science B.V.
PII: S0167 -6911(02)00244 -X

mailto:beleznay@cs.elte.hu
mailto:mcf@ecs.soton.ac.uk


16 F. Beleznay, M. French / Systems & Control Letters 48 (2003) 15–25

particular, we give two examples of systems and con-
trollers whereby a sensible closed loop cost is lower
for the overparameterised design. In this paper, we
will consider the non-singular cost functionals

P = ‖qTx‖L∞ + r‖u‖L∞ ;

P = ‖qTx‖2L2 + r‖u‖L∞ ; (1)

where x is the system state, u is the control and q; r
are weighting parameters. We observe that it is critical
to introduce a penalty on control eLort in order to
have a well-posed problem—the classes of systems
considered in this paper are minimum phase and admit
high gain solutions, which by trajectory initialisation
[8] can yield arbitrarily small output responses at the
price of high control eLort. Furthermore, we need to be
able to develop both upper and lower bounds for these
costs. There are general results available for bounding
the output transients of adaptive controllers, see e.g.
[8], but in general the problem of bounding the control
eLort is much harder, however see e.g. [3,2].
The Grst example is a scalar system, and it is shown

that the transient performance of a standard adaptive
controller is improved when the estimator is over-
parameterised. The essence of the example is that if
an estimator has been driven to an overly high value
(in this case by a large state initial condition), then
it is desirable to ‘forget’ the ‘large’ value and restart
adapting from a low value. Overparameterisation
allows us to do this.
We then consider systems in strict feedback form,

with adaptive backstepping controllers [6]. It is well
known that such controllers are overparameterised (if
n is the order of the system and p is the number of pa-
rameters then there are n(n+ 1)p=2 estimators). The
tuning function design [7] eliminates the overparame-
terisation completely. The second contribution of this
paper is to construct a situation in which the over-
parameterisation of the adaptive backstepping design
leads to a superior transient response to that of the
tuning function design.
In particular, we construct a second-order system

for which the following holds. Suppose we optimize
the controllers for regulation to a point yr = b. Then
the closed loop yield the same cost for either con-
troller when applied with yr = b, whilst the adap-
tive backstepping controller has superior performance

when yr = a. We interpret this result in a simple
probabilistic setting. We are not in any way claiming
that the adaptive backstepping design is superior to
the tuning function design in general, as we fully ex-
pect that examples showing the contrary relationship
between performance can also be established.
Ideally one would like to have results which fully

characterise when to over-parameterise or not, or,
more speciGcally, when to use the adaptive back-
stepping design and when to use the tuning function
design. However, this remains an challenging open
area of research. It is likely to be extremely diOcult
to achieve such characterisations, such an analysis
would have to contend with the complexities of the
backstepping transformations, the non-optimality of
the controllers and the non-singularity of the cost,
all of which lead to complex dynamics and to an
extremely complex problem. An indication of the
complexity of this problem may be obtained by con-
sidering the proof of Theorem 2 below. Whilst the
system nonlinearities were chosen to simplify the
problem as much as possible, the argument remains
delicate.
Whilst the examples in this paper are extremely

specialized, the paper makes a practical contribution:
when designing adaptive controllers, do not dismiss
over-parameterised designs; they may have superior
performance!

2. A motivating scalar example

Consider the system

�(x0; �): ẋ = �f(x) + u; x(0) = x0; (2)

where �∈R is an unknown parameter, x; u are real
scalar valued signals, and f :R → R is a function
which is of the form

f(x) = �1(x) + �2(x) = �1(x) + x (x); (3)

where �1,  have the properties

1. �1 is continuous with support in (−∞; 1), and
�1(0) �= 0.

2.  is continuous and non-negative with support in
(3;∞), and  (x) = 1 ∀x¿ 4.

We are interested in stabilising the system, i.e.
achieving x(t) → 0 as t → ∞, whilst keeping all
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signals bounded. Consider the following two con-
trollers:

�u(�) : u=−�̂f(x)− x;

˙̂�= �xf(x); �̂(0) = 0; (4)

�o(�1; �2) : u=−�̂1�1(x)− �̂2�2(x)− x;

˙̂�1 = �1x�1(x); �̂1(0) = 0;

˙̂�2 = �2x�2(x); �̂2(0) = 0: (5)

Both controllers achieve stability ∀x0; �∈R. The
proof is standard and can be achieved by consider-
ing the quadratic Lyapunov functions Vu = 1

2x
2 +

(1=2�)(� − �̂)2; Vo = 1
2x

2 + (1=2�1)(� − �̂1)2 +
(1=2�2)(�− �̂2)2, respectively.
We measure transient performance by the cost

P(�(�; x0); �(�)) = ‖x‖2L2 + ‖u‖L∞ (6)

and it is convenient to deGne P|[0; t] = ‖x‖2L2[0; t] +
‖u‖L∞[0; t]; Po=P(�(�; x0); �o(�; �)); Pu=P(�(�; x0);
�u(�)).
The result for this section is as follows:

Theorem 1. For all �¿ 0; �∈R,
lim

x0→∞Pu − Po =∞: (7)

The theorem therefore states that the diLerence
between the basic design and its overparameterised
variant becomes arbitrarily large as the size of the
initial condition increases. In particular, the overpa-
rameterised design has superior performance.

Proof. Consider �(�; x0) with either �o or �u. Sup-
pose x0 ¿ 4. Then by the fact that x(t) → 0 as t → ∞,
and the deGnition of �1; �2 it follows that there is a
unique time t∗ at which x(t∗)=2, since when x(t)=2,
then ẋ=−x¡ 0. Now observing that on [0; t∗] �u; �o

are identical, it follows that

Pu|[0; t∗] = Po|[0; t∗]: (8)

Now consider (�(�; x0); �o(�; �)). Note that �̂2 is an
increasing function, as its derivative is non-negative.
We now claim that �̂2(t∗) → ∞ as x0 → ∞.

Suppose the contrary, i.e. that there exists M ¿ 0,
such that for some divergent sequence of points
{x0i}i¿1; �̂2(t∗)6M . Let t∗∗=inf{t¿ 0 : x(t)=4},
and note that 06 �̂2(t∗∗)6 �̂2(t∗)6M . Now∫ t∗∗

0
x2 dt

=
∫ t∗∗

0
−V̇ dt = V (0)− V (t∗∗)

¿
1
2
x20i − 8 +

1
2�2

(� 2 + (�+M)2) → ∞

as i → ∞: (9)

Now, since V̇ =−x2, we have

�̂2(t∗)¿ �̂2(t∗∗)

=
∫ t∗∗

0

˙̂�2 dt =
∫ t∗∗

0
�2x2(t) dt → ∞

as i → ∞: (10)

This is a contradiction, hence �̂2(t∗) → ∞ as x0 →
∞. The same argument for (�(�; x0); �u(�)) shows
�̂(t∗) → ∞ as x0 → ∞.
It can easily be seen for the overparameterised con-

troller �o, that ‖u‖L∞[t∗ ;∞) is independent of x0 (this
can be shown formally by considering �r(0; �) be-
low), whilst

‖u‖L∞[0; t∗]¿ | − �̂2(t∗∗)�2(4)− 4|
¿ 4�̂2(t∗∗) + 4 → ∞ as x0 → ∞:

(11)

It thus follows that for large x0, the supremum for u is
attained on [0; t∗], and in particular it then follows for
large x0, that ‖u‖L∞ for �u is greater than or equal to
that for �o. Since ‖x‖2L2 = ‖x‖2L2[0; t∗] + ‖x‖2L2[t∗ ;∞), it
then follows that for suOciently large x0,

Pu − Po¿
∫ ∞

t∗
x2u dt −

∫ ∞

t∗
x2o dt

+ ‖uu‖L∞(R+) − ‖uo‖L∞(R+)

¿
∫ ∞

t∗
x2u dt −

∫ ∞

t∗
x2o dt: (12)

We now claim that
∫∞
t∗ x2u dt → ∞ as x0 → ∞, whilst∫∞

t∗ x2o dt is bounded independently of x0. The result
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then follows. To show
∫∞
t∗ x2o dt is independent from

x0 it suOces to observe that the controller on [t∗;∞)
is simply �r(0; �) for �o (and �r(�̂(t∗); �) for �u),
where �r(·; ·) is deGned

�r(�0; �): u=−�̂�1(x)− x;

˙̂� = �x�1(x) �̂(t∗) = �0: (13)

Clearly �r(0; �) is independent of x0, hence so is
Po|[t∗ ;∞). It remains to show that

∫∞
t∗ x2u dt → ∞ as

x0 → ∞. By taking �0 = �̂(t∗) → ∞ as x0 → ∞, it
suOces to show that �r(�0; �) causes

∫∞
t∗ x2 dt to di-

verge as �0 → ∞. Since �1(0) �= 0 and �̂; � is scalar,
it follows that �̂ → � as t → ∞ [7]. Now∫ ∞

t∗
x2 dt =

∫ ∞

t∗
−V̇ dt = V (t∗)− V (∞)

= 2 +
1
2�

(�− �0)2 → ∞

as �0 → ∞; (14)

as required, thus completing the proof.

3. Modi�cation of the adaptive backstepping
design

Consider a system in parametric strict feedback
form, denoted by �(�; �1; : : : ; �n; x0)

ẋ1 = x2 + �T
1 (x1)�;

... x(0) = x0;

ẋn−1 = xn + �T
n−1(x1; : : : ; xn−1)�;

ẋn = u+ �T
n (x1; : : : ; xn)�;

y= x1; (15)

where xi :R+ → R, �∈Rm for some m is an unknown
parameter and �i :Ri → Rm. Our goal is to com-
pare two designs that regulate the output signal y to
some constant yr (i.e. limt→∞ y(t)=yr) using a con-
troller � with input x1; : : : ; xn and output u :R+ → R.
The Grst design we consider is a modiGcation of the
overparameterised adaptive backstepping controller

introduced in [6], and e.g. in [8, Theorem 3.5]. It is
straightforward to observe that there is no need to have
one adaptation gain matrix �. We can introduce dif-
ferent matrices for the diLerent estimates of � to have
more design freedom. This way we can get the follow-
ing slightly modiGed adaptive backstepping controller
for which the claims of [8, Theorem 3.5] are still true.
We also add terms to be able to use the controller for
tracking a reference signal yr(t). We denote this con-
troller by �AB(�1; : : : ; �n; yr)

u= �n(x1; : : : ; xn; �̂1; : : : ; �̂n; y(0)
r ; : : : ; y(n−1)

r ) + y(n)
r ;

˙̂�i = �i


�i −

i−1∑
j=1

@�i−1

@xj
�j


 zi; �̂i(0) = 0;

zi = xi − y(i−1)
r

− �i−1(x1; : : : ; xi−1; �̂1; : : : ; �̂i−1; y(0)
r ; : : : ; y(i−2)

r );

�i =−cizi − zi−1 −

�i −

i−1∑
j=1

@�i−1

@xj
�j




T

�̂i

+
i−1∑
j=1

[
@�i−1

@xj
xj+1 +

@�i−1

@y( j−1)
r

y( j)
r

+
@�i−1

@�̂j
�j

(
�j −

j−1∑
k=1

@�j−1

@xk
�k

)
zj

]
; (16)

where ci ¿ 0; �̂i :R+ → Rm and �i = �T
i ¿ 0. The

second controller we consider is the following version
of the tuning function controller of [8], which we de-
note by �TF(�; yr). The original design is summarized
in Table 4.1 of [8]. To be able to compare the two
designs we set the nonlinear damping term % = 0:

u= �n(x1; : : : ; xn; �̂; y(0)
r ; : : : ; y(n−1)

r ) + y(n)
r ;

˙̂�= �
n∑

i=1


�i −

i−1∑
j=1

@�i−1

@xj
�j


 zi; �̂(0) = 0;

zi = xi − y(i−1)
r − �i−1(x1; : : : ; xi−1; �̂; y(0)

r ; : : : ; y(i−2)
r );
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�i =−cizi − zi−1 −

�i −

i−1∑
j=1

@�i−1

@xj
�j




T

�̂

+
i∑

j=1

[
@�i−1

@xj
xj+1 +

@�i−1

@y( j−1)
r

y( j)
r

+
@�i−1

@�̂
�

(
�j −

j−1∑
k=1

@�j−1

@xk
�k

)
zj

]

+
i−1∑
k=2

@�k−1

@�̂
�


�i −

i−1∑
j=1

@�i−1

@xj
�j


 zk ; (17)

where ci ¿ 0; �̂ :R+ → Rm and �=�T ¿ 0. The cost
function we use to measure the performance of the
system, controller pair (�; �) is

P(�; �) = ‖y‖L∞ + &1‖x2‖L∞ + &2‖u‖L∞ (18)

for some constants &1; &2 ¿ 0. We Gx the ci’s through-
out the paper. Before stating the main result, we recall
a deGnition. A controller is said to be '-suboptimal
if P(�; �( '))6 inf ¿0P(�; �( )) + ', where  =
� in the tuning function case, and  = (�1; : : : ; �n)
in the adaptive backstepping case. We will prove the
following theorem:

Theorem 2. Suppose that the design objective is to
regulate the output signal to a constant yr ∈ [a; b] for
some interval [a; b]. Then there exists a system �
of degree two, an interval [a; b] and constants &1; &2,
such that the following hold. There is '∗ ¿ 0 such that
for all 0¡'¡'∗, if�AB(�1; �2; b) is an '-suboptimal
adaptive backstepping controller for yr =b, then with
�=�2, �TF(�; b) is an '-suboptimal tuning function
controller for yr = b. Moreover

P(�; �AB(�1; �2; b)) = P(�; �TF(�; b)); (19)

but

P(�; �AB(�1; �2; a))¡P(�; �TF(�; a)): (20)

Remark. The theorem can be interpreted in the fol-
lowing manner. Suppose we do not know yr a priori,
but we expect yr =b with high probability. We would
therefore optimize for yr = b. If this expectation is in-
correct and in fact yr = a with high probability, then
we would be in precisely the situation of the theorem.

By applying continuity arguments, we should there-
fore expect that we were in a situation where the con-
troller will be asked to control to yr = a with high
probability, but with a small probability of yr = b,
then the adaptive backstepping controller would give
the lower expected cost. This type of scenario can be
envisaged in robotics whereby a robot may be opti-
mized for large movements, and occasionally asked to
complete small movements.

4. Example

First we look at the design for n= 2 and yr(t) = 0.
We will consider the following system�(�1; �2; �; x0)

ẋ1 = x2 + ��1(x1);

ẋ2 = u+ ��2(x1; x2); x(0) = x0;

y = x1; (21)

where x1; x2 : R+ → R, �∈R+ and �i :Ri → R.
The tuning function recursion using c1 = 1 and
c2 = 3 results the following closed loop system
(�(�1; �2; �; x0); �TF(�; 0)):

ẋ1 = x2 + ��1;

ẋ2 = u+ ��2; x(0) = x0;

˙̂�= �(�2 + �1 + �′
1�̂�1)(x2 + x1 + �1�̂)

+��1x1; �̂(0) = 0;

y = x1;

u=−4x2 − 4x1 − 4�1�̂− �′
1�̂x2

−�′
1�̂�1�̂− �2�̂− �1��1x1

−�1�(�2 + �1 + �′
1�̂�1)(x2 + x1 + �1�̂); (22)

where �¿ 0 is the design constant. The modiGed
adaptive backstepping recursion using c1 = 1 and
c2 = 3 results the following closed loop system:
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(�(�1; �2; �; x0); �AB(�1; �2; 0)):

ẋ1 = x2 + ��1;

ẋ2 = u+ ��2; x(0) = x0;

˙̂�1 = �1�1x1; �̂1(0) = 0;

˙̂�2 = �2(�2 + �1 + �′
1�̂1�1)(x2 + x1 + �1�̂1);

�̂2(0) = 0;

y = x1;

u=−4x2 − 4x1 − 3�1�̂1 − �1�̂2 − �′
1�̂1x2

−�′
1�̂1�1�̂2 − �2�̂2 − �1�1�1x1; (23)

where �1; �2 ¿ 0 are the design constants.
Let b(x) :R → R be any twice diLerentiable

“bump” function satisfying the following conditions:
b(x) = 0 for x6 − 1

2 and x¿ 1
2 , b(0) = 1 and

06 b(x)6 1 for − 1
2 6 x6 1

2 . Let s(x) :R → R be
any twice diLerentiable “step” function satisfying the
following conditions: s(x) = 0 for x6− 1

2 ; s(x) = 1
for x¿ 1

2 and 06 s(x)6 1 for − 1
2 6 x6 1

2 . We will
consider systems �(�1; �2; �; x0) deGned by

�1(x1) =−Hb(x1 − 3
2 ) (24)

for some H ¿ 0,

�2(x1; x2) = (−Ks(x2 − x1 + 1
2)

+Mx1b(x2 − 3
2 ))s(x1 − 10) (25)

for some K;M ¿ 0, with initial conditions

x0 = (20; 100): (26)

One can easily see that supp(�1) = [1; 2], and that
the support of �2 has two disjoint regions. We
will refer to these regions, so let R1 = [1; 2] × R,
and R2 and R3 be the two regions of the sup-
port of �2. R2 is [9:5;∞] × [1; 2], where on the
line x2 = 3

2 for x1¿ 10:5 �2(x1; 32 ) = Mx1. R3 is
{(x1; x2): x2¿ x1¿ 9:5}, where for x1¿ 10:5 and
x2 − x1¿ 1; �2(x1; x2) =−K . Note that x0 ∈R3, and
that the supports of �1 and �2 are disjoint (i.e, that
�1(x1) �= 0 implies �2(x1; x2) = 0, and �2(x1; x2) �= 0
implies �1(x1) = 0). The following lemma state the
similarities of the x-trajectories of the solutions. The
state trajectories are illustrated in Figs. 1 and 2.

Fig. 1. x-trajectory of the solution of the tuning function design.

Fig. 2. x-trajectory of the solution of the adaptive backstepping
design.

Lemma 3. (i) For both designs for any design con-
stants the x-trajectories start in R3, leave it through
the x1 = x2 line, enter R2 through the x2 = 2 line,
leave it through the x2 = 1 line, enter R1 with
x1 = 2;−46 x26− 2, leave it with x1 = 1 and then
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converge to the origin, not returning to any of these
three regions.
(ii) If � = �2, then �̂1 = 0, �̂ = �̂2 and the

x-trajectories are the same for the two designs until
they reach R1.
(iii) If �¡ 1 and � is small enough, then |� − �̂|

¡ 8=M when the trajectory of the tuning function
design enters R1.

(iv) If �¡ 1 and�2 is small enough, then �̂1=0 and
|� − �̂2|¡ 8=M when the trajectory of the adaptive
backstepping design enters R1.

Proof. Look at the two systems outside R1. The tun-
ing function design is

ẋ1 = x2;

ẋ2 = u+ ��2; x(0) = x0;

˙̂�= �(x2 + x1)�2; �̂(0) = 0;

y = x1;

u=−4x2 − 4x1 − �2�̂; (27)

and the adaptive backstepping design is

ẋ1 = x2;

ẋ2 = u+ ��2; x(0) = x0;

˙̂�1 = 0; �̂1(0) = 0;

˙̂�2 = �2(x2 + x1)�2; �̂2(0) = 0;

y = x1;

u=−4x2 − 4x1 − �2�̂2; (28)

(ii) is an immediate consequence of these forms.
(i) Consider (27). The x-trajectories start in

R3 because x0 ∈R3 and they leave R3, because
limt→∞y(t) = 0 along the solution (and since y = x1
and R3 does not intersect the line x1 = 0). In

R3; ẋ1 = x2 ¿ 0. Also, ˙̂�6 0 and �̂(0) = 0; so �̂6 0.
Since �26 0 and �¿ 0, this implies that u6 0 and as
a consequence ẋ26 0 in R3. So the x-trajectory has
decreasing x2-coordinate and increasing x1-coordinate
in R3, so it leaves this region through the x1 = x2
line with x1 ¿x1(0) = 20. For x2 ¿ 0; ẋ1 ¿ 0, so
until x2 ¿ 0 (i.e. until the x-trajectory reaches the
x2 = 0 line) the x1-coordinate of the x-trajectory is

increasing. Since along the solution limt→∞ x1(t)=0,
this can only happen if the x-trajectory crosses R2

as stated in (i) (since the left border of R2 is at
x1 = 9:5¡ 20), then reaches the x2 = 0 axis with
x1 ¿x1(0) = 20. Let T be the time, when x2(T ) = 0.
Look now at the system

ẋ1 = x2; x1(T ) = X ¿ 20;

ẋ2 =−4x2 − 4x1; x2(T ) = 0; (29)

which describes the behaviour of the x-trajectory
of (27) for x26 0; x1¿ 2 (i.e. after it has crossed
the x2 = 0 axis and before it reaches R1). The so-
lution of this is x1(t + T ) = X e−2t(2t + 1) and
x2(t + T ) = −4Xte−2t , from which we get that
ẋ2(t + T ) = 4X e−2t(2t − 1). This implies that the
x2-coordinate of the trajectory is decreasing for t ¡ 1

2
and increasing for t ¿ 1

2 . At t = 1
2 ; x1(T + 1

2) =
2X=e¿ 2, so the trajectory enters R1 at t∗ + T with
t∗ ¿ 1

2 . Using this, and that x2(t∗+T )=−4t∗x1(t∗+
T )=(1 + 2t∗) = −4 + 4=(1 + 2t∗), we get that
−46 x2(t∗ + T )6 − 2, when the x-trajectory en-
ters R1. By (ii), the behaviour of the x-trajectory of
the adaptive backstepping design is the same until
it reaches R1. Again, using that along the solution
limt→∞x1(t)=0, the x-trajectories leave R1 (through
the x1 = 1 line). From the form of the solution of the
systems outside the supports of �1 and �2 it is easy
to conclude that they do not return to these supports,
and that they converge to the origin.
(iii) and (iv) are equivalent by (ii), so we prove (iii).

(�̂1=0, because ˙̂�1=0 outsideR1.) Since
˙̂�=0 between

R2 and R1, we only have to show that |�− �̂|¡ 8=M
when the x-trajectory leavesR2. Let T be the last time,
when x2(T ) = 3

2 (this T exists, since the x-trajectory
enters R2 with x2 =2 and leaves it with x2 =1). Since
this is the last time, ẋ2(T )6 0.We already saw, that x1
is increasing for x2 ¿ 0, so x1(T )¿x1(0)=20. Hence
by the deGnition of �2; �2(x1(T ); x2(T )) = Mx1(T ).
Then

0¿ ẋ2(T ) =−4x1(T )− 4x2(T )− (�̂(T )− �)�2

¿−8x1(T )−Mx1(T )(�̂(T )− �); (30)

from which

�− �̂(T )6 8=M (31)

and since �̂ is increasing in R2, the same inequality
holds at the time, when the x-trajectory leavesR2. We
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also need to show, that �̂(T )− �6 8=M if � is small

enough. Since ˙̂� = �(x2 + x1)�2; �̂ increases in R2.
If it does not reach �, we are done by (31). After it

reached �, ẋ26−4x1−4x2 ¡−4x1. But | ˙̂�|¡ 2�Mx21
(since inR2, 0¡x2 ¡x1), so | ˙̂�=ẋ2|¡�M‖x1‖L∞ =2.
We now give an upper bound on ‖x1‖L∞ . Look at the
Lyapunov function

V = 1
2x

2
1 +

1
2 (x1 + x2 + �1�̂)2 +

1
2�

(�− �̂)2; (32)

which has derivative V̇=−x21−3(x1+x2+�1�̂)2 ¡ 0.
This shows that ‖x1‖L∞ ¡

√
2V (0)¡-=

√
� for some

constant -. (since we assumed that �¡ 1). Hence

| ˙̂�=ẋ2|¡-
√
�M=2. Let t1 be the time when �̂(t1) = �,

and let t2 be the time when the x-trajectory leavesR2.
Since ẋ2 ¡ 0 on [t1; t2], we can conclude, that there is
t∗ ∈ [t1; t2] such that∣∣∣∣∣ �̂(t2)− �̂(t1)
x2(t2)− x2(t1)

∣∣∣∣∣=
∣∣∣∣∣
˙̂�(t∗)
ẋ2(t∗)

∣∣∣∣∣¡ -
√
�M
2

; (33)

which implies that |�̂(t2) − �̂(t1)|¡-
√
�M=2 (since

|x2(t2)−x2(t1)|¡ 1). If�¡ 162=(-2M 4), then |�̂(t2)−
�|= |�̂(t2)− �̂(t1)|¡ 8=M follows, which is what we
wanted to prove.

The following lemma states the diLerence between
the x-trajectories of the solutions. Under certain cir-
cumstances and when � and H (the height of �1),
is varied, in R1 the adaptive backstepping trajectory
remains uniformly bounded, on the other hand the
tuning function design trajectory follows the curve
x2 =−��1(x1).

Lemma 4. (i) (Tuning function design) There are
E; �0; M0 ¿ 0, such that if �¡�0 and M = M0,
then for all �; H ¿ 0 and for all t such that
16 x1(t)6 2; |(x2 + �1�)(t)|¡E.
(ii) (Adaptive backstepping design) There are

D;�0; M0 ¿ 0, such that if �1; �2 ¡�0 and M =M0,
then for all �; H ¿ 0 and for all t such that
16 x1(t)6 2; |x2(t)|¡D.

Proof. (i) Let T be the Grst time, when the tun-
ing function system reaches R1. By Lemma 3,
−46 x2(T )6 − 2 and clearly x1(T ) = 2. Con-
sider Grst the following modiGed system with initial

condition as above:

ẋ1 = x2 + �1�; x1(T ) = 2;

ẋ2 =−4x2 − 4x1 − 4�1�− �′
1�(x2 + �1�);

−46 x2(T ) = X 6− 2: (34)

Equivalently, with w1 = x1; w2 = x2 + ��1 we have

ẇ1 = w2; w1(T ) = 2;

ẇ2 =−4w2 − 4w1;

−46w2(T ) =W 6− 2: (35)

The (w1; w2)-solution of this system depends contin-
uously on W , and since the possible W values form a
compact set, there are E¿ 0 and t0 such that w1(T +
t0)¡ 1 (i.e. the w-trajectory, which approaches the
origin since[

0 1

−4 −4

]

is Hurwitz, leaves R1 for any possible W within
t0 time), and for all T6 t6 t0 + T; |x2 + ��1| =
|w2(t)|¡E. If � and |�̂(T ) − �| are small enough,
then the right hand side of the tuning function sys-
tem and (34) are close to each other in an L∞ sense,
so applying Theorem 37 of Appendix C4 of [9] on
[T; T + t0] (on the continuous dependence of the so-
lution of a diLerential equation on the right-hand side
of the equation) gives that the solutions of the two
systems are arbitrarily close on [T; T + t0]. By (iii)
of Lemma 3, we know that with small enough � and
large enough M; |�̂(T )− �| is arbitrarily small. Hence
we can conclude that for small enough � and large
enough M; |x2 + ��1|6E in R1, which is what we
wanted to prove.
(ii) Let now T be the time, when the adaptive back-

stepping system reaches R1. Using Theorem 37 of
[9] again, we only have to show that for some D¿ 0
and t0 ¿ 0; x1(t0)¡ 1 and |x2(t)|¡D for all T6 t6
T + t0 are satisGed for the solution of the system

ẋ1 = x2 + �1�; x1(T ) = 2;

ẋ2 =−4x2 − 4x1 − �1�;

−46 x2(T ) = X 6− 2: (36)
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Using the Lyapunov function V =x21=2+(x1 +x2)2=2,
which has derivative V̇=−x21−3(x1+x2)2 we can con-
clude that x1 → 0, hence the x-trajectory of this sys-
tem indeed leavesR1 for any X . It also gives t0 ¿ 0, a
bound on the time needed to cross R1. We show that
(x2+�1�)(t)¡ 0 for all t¿T . Indeed, this is true for
t = T . Suppose for a contradiction that t∗ is the Grst
time such that (x2 + �1�)(t∗) = 0. Then ẋ1(t∗) = 0,
hence the velocity vector of the x-trajectory of the
solution at time t∗ is vertical. Since the x-trajectory
starts (at time T ) below the graph of x2=−�1�, when
it reaches it the Grst time, the velocity vector can-
not point down. Hence ẋ2(t∗)¿ 0. On the other hand
ẋ2(t∗) = −3x2(t∗) − 4x1(t∗) − (x2 + �1�)(t∗)¡ 0.
This contradiction show that x2 + �1�¡ 0. Now we
compute dx2=dx1 as follows:

dx2
dx1

=
−4x2 − 4x1 − �1�

x2 + �1�

=−4 +
3�1�− 4x1
x2 + �1�

¿− 4 (37)

and claim x2(t)6 2 for all t ¿T with 16 x1(t)6 2.
Indeed, if not, then for some t∗ ¿T with 16 x1(t∗)
6 2, x2(t∗)¿ 2. Then for some T ¡ t∗∗ ¡t∗

dx2
dx1

(t∗∗) =
x2(T )− x2(t∗)
x1(T )− x1(t∗)

¡
−2− 2

2− x1(t∗)
¡− 4;

which is a contradiction. On the other hand x2(t)¿
−4, since the x-trajectory starts (at time T ) above this
line, hence if t∗ is the Grst time when x2(t∗) = −4,
then ẋ2(t∗)6 0. But ẋ2(t∗) = −4x2(t∗) − 4x1(t∗) −
�1�=16−4x1(t∗)−�1�¿ 8, which is a contradiction.
Putting this together we get −4¡x2 ¡ − 2 in R2,
hence D = 4 completes the proof.

Lemma 5. For the �0; M0; E; D of Lemma 4, for any
&1; &2 ¿ 0, G¿D and for small enough ' there are
K; �; H such that �H −E¿G and if �TF(�; 10) is an
'-suboptimal tuning function controller designed to
regulate the output to yr = 10, then �¡�0.

Proof. We show Grst that since sup{x1: (x1; x2)∈R1}
= 2¡ 10, if the controller is designed to regulate the
output to yr = 10, then the x-trajectory of the solution
does not enter R1. This follows easily from similar
arguments we used to prove Lemma 3, noting that the

only signiGcant diLerence the yr term makes is that
after the x-trajectory enters the x26 0; x1¿ 0 quater-
plane at time T , it satisGes the diLerential equation
system

ẋ1 = x2; x1(T ) = X ¿ 20;

ẋ2 =−4x2 − 4(x1 − 10); x2(T ) = 0; (38)

which has solution x1(t+T )=X e−2t(2t+1)+10¿ 10
and x2(t + T ) =−4Xte−2t . We set �1 ≡ 0. The con-
sequence of the previous argument is that this change
would not eLect the solution, and hence the cost.
For a Gxed constant 3 and K let �K = 1=K2; �K =

1=K; MK=M0; HK=3K , and use the notation yK=xK1 ,
xK2 ; �̂

K and uK for the x-trajectory and control u of
the closed loop system (�; �TF(�K; 10)). If 3 is large
enough, then �KHK − E = 3 − E¿G¿D. First we
show that there is a constant �, such that if K is large
enough, then

P(�; �TF(�K; 10)) = ‖yK‖L∞ + &1‖x2‖L∞

+ &2‖uK‖L∞ ¡�: (39)

The Lyapunov function

V = 1
2(x1 − 10)2 + 1

2 (x1 − 10 + x2)2

+
1
2�

(�− �̂)2 (40)

has derivative V̇ =−(x1−10)2−3(x1−10+x2)2 ¡ 0
along the solution, hence for every t¿ 0; |xK1 (t)−10|
6
√
2V (0); |(x1(t) − 10 + x2(t)|6

√
2V (0) and

(� − �̂(t))26 2�V (0) = 2V (0)=K2. Since V (0) is
constant, this means that there is a constant �1, such
that for every t¿ 0; |xK1 (t)|¡�1; |�̂ K (t)|¡�1=K .
Since xK2 (t)6 xK2 (0), and for xK2 ¡ 0 we know
the explicit form of the solution: |xK2 (t + T )| =
4Xte−2t ¡ 4�1te−2t , there is a constant �2, such that
|xK2 (t)|¡�2. By the choice of �2 there is a constant
�3 such that |�2|6MK |xK1 |¡�3K . Since �1 ≡ 0,
uK (t) = (−4xK2 − 4(xK1 − 10)−�2�̂)(t), hence |uK | is
indeed bounded by a constant, so there is a constant
� satisfying (39).
To complete the proof, we now show that there is

a K such that for any �¿�0, if u is the control of
the system with �K = 1=K; MK = M0 and HK = 3K ,
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then &2‖u‖L∞(R3) ¿�. This shows that for this setup
the choice �¿�0 does not give '-suboptimal tuning
function controller for any small enough ', which is
what we wanted to show. Let tK be the time when
the x-trajectory of the solution leaves the region
R′

3 = {(x1; x2): x2 − 1¿ x1¿ 10:5}, where �2 =−K .
Suppose that there is a t0 ¿ 0 such that for all K∗ ¿ 0
there is K ¿K∗ such that tK ¿ t0. In R′

3; x1; x2 ¿ 10

and �2 ≡ −K , hence ˙̂� = �(x2 + x1)�2 ¡− 20�0K .
Therefore �̂(tK)¡ − 20t0�0K , hence |u(tK)| =
4xK2 + 4(xK1 − 10) + �2�̂¿ 20t0�0K2 ¿�=&2 if K is
large enough. If on other hand limK→∞tK = 0, then
limK→∞|x1(tK)− x1(0)|=0, since |ẋ1|= |x2|6 x2(0)
on R′

3. Since x1(tK) = x2(tK) − 1, this means, that
limK→∞|x2(tK)−x2(0)|=x2(0)−x1(0)−1¿ 0, hence
limK→∞(supt∈[0; tK ]|ẋ2|)=∞. But onR′

3; ẋ2=u+�K�2,
and |�K�2|=1, this means that limK→∞(sup|u|)=∞,
which completes the proof.

Proof of Theorem 2. Let [a; b] = [0; 10]. The claim
that if �AB(�1; �2; 10) is an '-suboptimal adaptive
backstepping controller, then for � = �2; �TF(�; 10)
is an '-suboptimal tuning function controller (and that
they have the same costs) follows from (ii) of Lemma
3, and the fact that in this case the x-trajectories do not
reach R1. According to Lemma 5, for any &1; &2 ¿ 0
there is a system �, such that for small enough ' if
�TF(�; 10) is an '-suboptimal tuning function con-
troller, then �¡�0. In this case we can apply Lemma
4 for the designs (�; �TF(�; 0)) and (�; �AB(�; �; 0))
to get a signiGcant diLerence between ‖xTF2 ‖L∞ and
‖xAB2 ‖L∞ . The solutions for the two designs agree un-
til they reach R1, let T be the time, when they arrive
there. Then

‖xAB1 ‖L∞[0;T ] + &1‖xAB2 ‖L∞[0;T ] + &2‖uAB‖L∞[0;T ]

= ‖xTF1 ‖L∞[0;T ] + &1‖xTF2 ‖L∞[0;T ]

+ &2‖uTF‖L∞[0;T ]: (41)

Moreover, ‖xTF2 ‖L∞(R1) ¿�H−E¿G is much bigger
than these if 3 of the construction of Lemma 5 is large
enough, since G¿D can be chosen arbitrarily. This
means, that for large enough 3 it is enough to establish
that the adaptive backstepping cost is less than the

tuning function cost in R1.

‖xAB1 ‖L∞(R1) = ‖xTF1 ‖L∞(R1) = 2; (42)

‖xTF2 ‖L∞(R1) ¿�H − E¿G¿D

¿ ‖xAB2 ‖L∞(R1): (43)

We show now that there is a constant �, such that

‖xTF2 ‖L∞(R1) ¿�‖uAB‖L∞(R1): (44)

This is enough, since then by appropriately choosing
&1 and &2 will result

&1‖xTF2 ‖L∞(R1) ¿&1‖xAB2 ‖L∞(R1)

+ &2‖uAB‖L∞(R1); (45)

which is enough to conclude that the tuning function
cost is bigger. To prove (44) look at the control of
the adaptive backstepping system inR1. According to
Lemma 4, there is '∗ ¿ 0 such that ‖�̂2−�‖¡'∗ and
‖�̂1‖¡'∗ in R1. Then

|uAB|6 4|xAB2 |+ 4|xAB1 |+ 3|�1�̂1|+ |�1�̂2|
+|�′

1�̂1x
AB
2 |+ |�′

1�̂1�1�̂2|+ |�1�1�1xAB1 |
6 4D + 8 + 3H'∗ + H (�+ '∗) + |�′

1|D'∗

+ |�′
1|H (�+ '∗)'∗ + 2H 2�1

6 �′H�; (46)

for some �′ ¿ 0 if H and � are large enough and
�1 is small enough. This completes the proof, since
‖xTF2 ‖L∞(R1) ¿H�=2.

5. Summary

By means of two examples, we have shown that
overparameterisation can be beneGcial in adaptive
control. This fully motivates a more general study into
the whole question of when and when not to overpa-
rameterise, although as noted in the Introduction, this
is likely to be a challenging task.
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