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Abstract

By means of two examples we show that non-singular costs can been reduced for adaptive controllers by overparameterising
the estimators. The examples are for scalar and second order systems respectively. In the second example the tuning function
design and the overparameterised adaptive backstepping design are compared. In both cases a system is constructed for which
the overparameterised design is superior w.r.t. a non-singular measure of transient performance.
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1. Introduction

Overparameterisation in adaptive controllers has of-
ten been considered to be a undesirable design feature.
Generally overparameterisation leads to controllers of
higher dynamic order with more complex dynamics
and hence there is often a concern about a possi-
ble loss of robustness. There are a few results which
partially support this intuitive claim, for example [7]
presents concrete results showing parameter conver-
gence for systems with fewer parameters, hence GAS
of the closed loop and robustness to bounded distur-
bances. Often, informal reasonings for the need to re-
duce over-parameterisation are given as follows: as
the dimensionality of the parameter space increases,
parameter convergence is harder to achieve, which in
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turn can lead to robustness problems. Alternatively,
it can be reasoned that because the parameter space
is larger, the transient is larger. However, these argu-
ments do not necessarily hold up to close scrutiny. For
example, in the latter case, it is well known within the
machine learning community that the size of parame-
ters can be more critical for learning performance than
the number of parameters, see e.g. [1]. Although the
problem considered in [1] is not directly analogous,
it exposes the weakness of the intuitive argument,
by suggesting the ‘size’ of a learning problem may be
dictated by measures of ‘size’ which are not as
elementary as parameter counts.

On the other hand, overparameterisation can give
the controller beneficial extra degrees of freedom
in the design, see e.g. [5]. We exploit these extra
degrees of freedom in the constructions which fol-
low, which show that the orthodoxy that one should
not over-parameterise, is not, in general, valid.”> In

2 Related results in the context of function approximator based
designs can be found in [4].
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particular, we give two examples of systems and con-
trollers whereby a sensible closed loop cost is lower
for the overparameterised design. In this paper, we
will consider the non-singular cost functionals

P =llg"x]|oe + rllullz~,
P =|lg"x|[Z + rlull =, (1)

where x is the system state, u is the control and ¢, r
are weighting parameters. We observe that it is critical
to introduce a penalty on control effort in order to
have a well-posed problem—the classes of systems
considered in this paper are minimum phase and admit
high gain solutions, which by trajectory initialisation
[8] can yield arbitrarily small output responses at the
price of high control effort. Furthermore, we need to be
able to develop both upper and lower bounds for these
costs. There are general results available for bounding
the output transients of adaptive controllers, see e.g.
[8], but in general the problem of bounding the control
effort is much harder, however see e.g. [3,2].

The first example is a scalar system, and it is shown
that the transient performance of a standard adaptive
controller is improved when the estimator is over-
parameterised. The essence of the example is that if
an estimator has been driven to an overly high value
(in this case by a large state initial condition), then
it is desirable to ‘forget’ the ‘large’ value and restart
adapting from a low value. Overparameterisation
allows us to do this.

We then consider systems in strict feedback form,
with adaptive backstepping controllers [6]. It is well
known that such controllers are overparameterised (if
n is the order of the system and p is the number of pa-
rameters then there are n(n + 1) p/2 estimators). The
tuning function design [7] eliminates the overparame-
terisation completely. The second contribution of this
paper is to construct a situation in which the over-
parameterisation of the adaptive backstepping design
leads to a superior transient response to that of the
tuning function design.

In particular, we construct a second-order system
for which the following holds. Suppose we optimize
the controllers for regulation to a point y, = b. Then
the closed loop yield the same cost for either con-
troller when applied with y, = b, whilst the adap-
tive backstepping controller has superior performance

when y, = a. We interpret this result in a simple
probabilistic setting. We are not in any way claiming
that the adaptive backstepping design is superior to
the tuning function design in general, as we fully ex-
pect that examples showing the contrary relationship
between performance can also be established.

Ideally one would like to have results which fully
characterise when to over-parameterise or not, or,
more specifically, when to use the adaptive back-
stepping design and when to use the tuning function
design. However, this remains an challenging open
area of research. It is likely to be extremely difficult
to achieve such characterisations, such an analysis
would have to contend with the complexities of the
backstepping transformations, the non-optimality of
the controllers and the non-singularity of the cost,
all of which lead to complex dynamics and to an
extremely complex problem. An indication of the
complexity of this problem may be obtained by con-
sidering the proof of Theorem 2 below. Whilst the
system nonlinearities were chosen to simplify the
problem as much as possible, the argument remains
delicate.

Whilst the examples in this paper are extremely
specialized, the paper makes a practical contribution:
when designing adaptive controllers, do not dismiss
over-parameterised designs; they may have superior
performance!

2. A motivating scalar example

Consider the system
2(x0,0): X =0f(x)+u, x(0)=xo, (2)

where 0 € R is an unknown parameter, x,u are real
scalar valued signals, and f:R — R is a function
which is of the form

J(x) = ¢1(x) + d2(x) = d1(x) + xyp(x), 3)
where ¢, ¥ have the properties

1. ¢, is continuous with support in (—oo,1), and

$1(0) # 0.
2. Y is continuous and non-negative with support in
(3,00), and Y(x) =1 Vx = 4.

We are interested in stabilising the system, i.e.
achieving x(¢) — 0 as t — oo, whilst keeping all
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signals bounded. Consider the following two con-
trollers:

E'a):u= —0f(x) — X,

0=oxf(x), 0(0)=0, (4)

o, 0) i u=—0,¢1(x) — Orpa(x) — x,

0y = axepy (x),  0,(0) =0,

0y = ayxpa(x),  (02(0) = 0. (5)

Both controllers achieve stability Vxp, 6 € R. The
proof is standard and can be achieved by consider-
ing the quadratic Lyapunov functions V, = %xz +
(1/20)(0 — 0Y, Vo = 3x* + (1/20)(0 — 61)* +
(1/20)(0 — 0, )2, respectively.

We measure transient performance by the cost

P(X(0.x0). E(e)) = [lx|72 + [lul| (6)
and it is convenient to define Py, = HxHiZ[O g+
||u||L°°[0,t]7 PU:P(Z(Q,XQ), EU(OC,O()), Pu:P(Z(Q,Xo),
E(2)).

The result for this section is as follows:

Theorem 1. For all x > 0, 0 € R,

lim P*— P° = o. (7)

X0—00

The theorem therefore states that the difference
between the basic design and its overparameterised
variant becomes arbitrarily large as the size of the
initial condition increases. In particular, the overpa-
rameterised design has superior performance.

Proof. Consider X(0,xy) with either Z° or Z*. Sup-
pose xo > 4. Then by the fact that x(¢) — 0 ast — oo,
and the definition of ¢, ¢, it follows that there is a
unique time ¢* at which x(¢*)=2, since when x(¢)=2,
then X = —x < 0. Now observing that on [0, *] 5%, 5°
are identical, it follows that

P"10,0+1 = P°|[0,e71- (®)

Now consider (2(0,x¢), Z°(a,)). Note that 0, is an
increasing function, as its derivative is non-negative.
We now claim that 6,(*) — oo as xg — oo.

Suppose the contrary, i.e. that there exists M > 0,
such that for some divergent sequence of points
{x0i}i=1, 2(t*) < M. Let t** =inf{t > 0 : x(¢)=4},
and note that 0 < 92(t**) < éz(t*) < M. Now

£

/ x*dt
0

*

_/Z—Vw_mewm”)
0

1 1
>-xg — 84— (02 +(0+M)*) —
2 20(2

as i — o0. 9)
Now, since ¥ = —x2, we have

05(t*) = 02(1™)

*

[ t*
:/ ézdt:/ ox2(1)dt — oo
0 0

as i — oo. (10)

This is a contradiction, hence éz(t*) — 00 as xg —
oo. The same argument for (X(6,xq), Z%(«)) shows
é(t*) — 00 as xy — 0.

It can easily be seen for the overparameterised con-
troller 5°, that ||u|| o+ oc) 1s independent of xo (this
can be shown formally by considering ="(0,2) be-
low), whilst

| zoego.ie) = | — Oa2(2"* )pa(4) — 4|

> 40,(r"*)+4 — 0o as xyg — oc.

(1)

It thus follows that for large xo, the supremum for u is
attained on [0, #*], and in particular it then follows for
large xo, that ||u||,~ for E* is greater than or equal to

— 2 2 2 :
that for 5°. Since [x||7. = [lx[|z2p0 g + [I¥[|7271+ 00y 1t
then follows that for sufficiently large xo,

o0 oo
P“—P”Z/ xf,dt—/ x2dt
t* t*

+ llwullzoo sy — [0 llLoe(w, )

oo oo
>/)ﬁm—/ x2 dt. (12)
t* t*

o
x2dt is bounded independently of xo. The result

We now claim that [ x2d¢ — oo as xog — 0o, whilst
o0

t*
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then follows. To show f o x(z, dt is independent from
xo it suffices to observe that the controller on [¢*, o0)
is simply £"(0,a) for Z° (and E"(0(¢*),«) for E*),
where Z7(-,-) is defined
& (o, 0): u = —fip1(x) — x,
A= oy (x) A = puo. (13)

Clearly £"(0,a) is independent of xy, hence so is
P°|(1+,00). It remains to show that [.°x2d¢ — oo as
Xxo — oo. By taking pp = 0(t*) — 00 as xg — 00, it
suffices to show that Z" (g, o) causes ftoc x%dt to di-
verge as yy — oo. Since ¢1(0) #£ 0 and [, 0 is scalar,
it follows that i — 0 as t — oo [7]. Now

/tmxzdt:/t‘” —Vdt=V({*)— V(c0)

1
=24 — (0 — m)* — o0
20
as [y — 00, (14)

as required, thus completing the proof. [

3. Modification of the adaptive backstepping
design

Consider a system in parametric strict feedback
form, denoted by X(0, ¢y, ..., ¢u, Xo)

X1 =x + ¢1(x1)0,

x(0) = xo,
Xp_1 =X, + ¢,T,_1(x1,...,xn_])0,
Xp =+ Gl (x15...,x0)0,
y=xi, (15)

where x; : R, — R, 8 € R” for some m is an unknown
parameter and ¢;: R — R™. Our goal is to com-
pare two designs that regulate the output signal y to
some constant y; (i.e. lim;— o, y(¢)= y;) using a con-
troller = with input xy,...,x, and output u: R, — R.
The first design we consider is a modification of the
overparameterised adaptive backstepping controller

introduced in [6], and e.g. in [8, Theorem 3.5]. It is
straightforward to observe that there is no need to have
one adaptation gain matrix I'. We can introduce dif-
ferent matrices for the different estimates of 6 to have
more design freedom. This way we can get the follow-
ing slightly modified adaptive backstepping controller
for which the claims of [8, Theorem 3.5] are still true.
We also add terms to be able to use the controller for
tracking a reference signal y:(¢). We denote this con-
troller by Zag(l'1,...s 'y, ¥r)

u= an(xla"'axnaola'">0n’y£0),"'5y£n71)) + ysn)a

i—1

éi:Fi ¢i_z%¢j Zi>

o 0,(0) =0,
j=t

(i—1)

Zi=Xi— W

- a[*l(xla"'axiflzels' . '90i71a yl('O)a"'aylgi_Z))s

i
aO‘z—l A
o = —Cizi —zi—1 — | ¢ ¢J i
0x;
=t
i—1
Ooti—1 ooty )
+ oy, it TEORL
j=1 J Oyr

001 I ooy

+T(), I; <¢j - ajck ¢k> Z.i] . (16)
where ¢; > 0,0;: R, — R™ and I'; = I'T > 0. The
second controller we consider is the following version
of the tuning function controller of [8], which we de-
note by Z1r(I, y ). The original design is summarized
in Table 4.1 of [8]. To be able to compare the two
designs we set the nonlinear damping term x = 0:

u = “n(xla"'nx)h@)y]EO))”')y]En_l)) + ygn))

n i—1

é:FZ ¢i—2&g;i1¢j zi,

i=1 j=1

0(0) =0,

Zi =X — yﬁi_l) - ai*l(xla"'axiflzg’ yl('O)a""yl('i_z))a
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T

i—1 5

odi—1 A
DX 8 N
¢ 6xj ¢']

! O Ot )
+ +1 + i r]
; o T gy
oo, L
i—1 j—1
—1r o E
" a0 <¢j k=1 Ox ¢k> Zj]

i—1 i—1

0oy 001
+ —Tr i — i zk, 17
; (¢ ; el ) KA

where ¢; > 0, 0: R, — R™and I'=IT > 0. The cost
function we use to measure the performance of the
system, controller pair (2, Z) is

P(E.E) = ||ylie + Ailxalli + dlluli= (18)

for some constants 4, 1, > 0. We fix the ¢;’s through-
out the paper. Before stating the main result, we recall
a definition. A controller is said to be e-suboptimal
if P(2,52(I';)) < infr-oP(2,Z(I")) + &, where I' =
I' in the tuning function case, and I' = (I'y,...,I,)
in the adaptive backstepping case. We will prove the
following theorem:

Theorem 2. Suppose that the design objective is to
regulate the output signal to a constant y, € [a, b] for
some interval [a,b]. Then there exists a system X
of degree two, an interval [a, b] and constants Ay, 3,
such that the following hold. There is ¢* > 0 such that
forall0 < e < &*,if Eag(I'1, 2, b) is an e-suboptimal
adaptive backstepping controller for y,=b, then with
I'=T,, Ere(I,b) is an e-suboptimal tuning function
controller for y. = b. Moreover

P(2,Exg(I', I'2,b)) = P(2, E1r(1, b)), (19)
but
P(2,Exg(I'1, I'2,a)) < P(X, E1e(1, a)). (20)

Remark. The theorem can be interpreted in the fol-
lowing manner. Suppose we do not know y, a priori,
but we expect y, = b with high probability. We would
therefore optimize for y, = b. If this expectation is in-
correct and in fact y, = a with high probability, then
we would be in precisely the situation of the theorem.

By applying continuity arguments, we should there-
fore expect that we were in a situation where the con-
troller will be asked to control to y, = a with high
probability, but with a small probability of y, = b,
then the adaptive backstepping controller would give
the lower expected cost. This type of scenario can be
envisaged in robotics whereby a robot may be opti-
mized for large movements, and occasionally asked to
complete small movements.

4. Example

First we look at the design for n =2 and y(¢) = 0.
We will consider the following system (¢, ¢, 0, %)

X1 =x2 + 01(x1),
Xo =u+ 0¢y(x1,x2), x(0)=xo,

y =X, 21)
where x,x; : Ry — R, 0€R, and ¢;: R — R.

The tuning function recursion using ¢; = 1 and
¢y = 3 results the following closed loop system

(2(1, 92,0, %0), Ere(I,0)):
X1 =x3 + 0¢y,
X2 =u+0¢s, x(0)=xXq,
0= (s + b1+ &0 s +x1 + 1)

+Tgix;,  0(0)=0,

y =X,

u=—4x; —4x; — 4¢lé — (j)'léxz

~ $10¢10 — §20 — 1 T pixy

— 1T (o + 1 + 10612 +x1 + ¢10), (22)
where I' > 0 is the design constant. The modified

adaptive backstepping recursion using ¢; = 1 and
¢y = 3 results the following closed loop system:
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(2(¢1, 92,0,%x0), Eap(I'1,12,0)):

X1 =x+ 0¢1,
Xy =u+ 0¢y, x(0)=Xy,
0, =Ti¢x1,  6,(0)=0,

0y = T'a(pa + d1 + ¢L011)(x2 +x1 + ¢10)),
02(0) =0,
Yy =X,

u= —4)62 — 4X1 — 3¢1é1 — d)léz — (i)/lél)q
~ 101610, — $p20y — p1 T, (23)

where I'y, I'; > 0 are the design constants.

Let b(x):R — R be any twice differentiable
“bump” function satisfying the following conditions:
b(x) =0 for x< — 1 and x> 1, b(0) =1 and
0<bh(x)<1for -3 <x<i Lets(x):R — Rbe
any twice differentiable “step” function satisfying the
following conditions: s(x) =0 for x < — %, s(x)=1
for x > % and 0 < s(x) < 1 for —% <x < % We will
consider systems 2(¢1, ¢, 0, X¢) defined by

¢1(x1) = —Hb(x) — 3 (24)
for some H > 0,
da(x1,x2) = (—Ks(xz — x1 + 3)

+ Mx1b(xz — 3))s(x; — 10) (25)
for some K, M > 0, with initial conditions
Xo = (20,100). (26)

One can easily see that supp(¢;) = [1,2], and that
the support of ¢, has two disjoint regions. We
will refer to these regions, so let Z; = [1,2] x R,
and #, and %3 be the two regions of the sup-
port of ¢,. #, is [9.5,00] x [1,2], where on the
line x, = 3 for x; > 105 ¢o(x1,2) = Mx|. % is
{(x1,%2): x2 = x1 = 9.5}, where for x; > 10.5 and
X, —x1 = 1, ¢2(x1,x,) = —K. Note that Xy € %5, and
that the supports of ¢; and ¢, are disjoint (i.e, that
$1(x1) # 0 implies ¢2(x1,x2) =0, and Pa(x1,x2) # 0
implies ¢;(x;) = 0). The following lemma state the
similarities of the x-trajectories of the solutions. The
state trajectories are illustrated in Figs. 1 and 2.

T Rl Ra

Fig. 1. x-trajectory of the solution of the tuning function design.

) Rl R3

Ra

J/

&1

.

Fig. 2. x-trajectory of the solution of the adaptive backstepping
design.

Lemma 3. (i) For both designs for any design con-
stants the X-trajectories start in R3, leave it through
the x; = x, line, enter R, through the x, = 2 line,
leave it through the x, = 1 line, enter R, with
x1=2,—4 < x; < — 2, leave it with x; = 1 and then
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converge to the origin, not returning to any of these
three regions.

(i) If I' = I'y, then 0, =0, 0 =0, and the
X-trajectories are the same for the two designs until
they reach R, .

(iii) If 0 < 1 and T is small enough, then |0 — 0
< 8/M when the trajectory of the tuning function
design enters R, .

(iv) If 0 < 1 and Iy is small enough, then 0,=0 and
0 — 0, < 8/M when the trajectory of the adaptive
backstepping design enters R .

Proof. Look at the two systems outside ;. The tun-
ing function design is

X1 =X,

Xy =u+ 0¢y, x(0)=Xy,

0=T(o+x)s  0(0)=0,

Yy =X,

u=—4x, — 4x; — 0, (27)

and the adaptive backstepping design is
X1 =x2,

Xo=u+0¢, x(0)=xq,

0=0, 0,(0)=0,

0, =a(x, +x1)¢2,  0:(0)=0,
Yy =X,
u= —4X2 — 4X1 — (]52@2, (28)

(ii) is an immediate consequence of these forms.

(i) Consider (27). The x-trajectories start in
A3 because Xg€ %3 and they leave %3, because
lim,—, 0 y(¢) = 0 along the solution (and since y = x;
and %3 does not intersect the line x; = 0). In
P3,%1 =x, > 0. Also, 0 < 0 and 0(0) =0, so 0 < 0.
Since ¢, < 0and 6 > 0, this implies that # < 0 and as
a consequence X, < 0 in #3. So the x-trajectory has
decreasing x;-coordinate and increasing x;-coordinate
in A3, so it leaves this region through the x; = x;
line with x; > x;(0) = 20. For x, >0, x; > 0, so
until x, > 0 (i.e. until the x-trajectory reaches the
x; = 0 line) the x;-coordinate of the Xx-trajectory is

increasing. Since along the solution lim,_, . x;(¢) =0,
this can only happen if the x-trajectory crosses %-
as stated in (i) (since the left border of %, is at
x1 = 9.5 <20), then reaches the x, = 0 axis with
x1 > x1(0) = 20. Let T be the time, when x,(7) = 0.
Look now at the system

X1 = Xxa, xl(T) =X > 20,

)52 = —4)C2 — 4X1, xz(T) = 0, (29)

which describes the behaviour of the x-trajectory
of (27) for x, <0, x; = 2 (i.e. after it has crossed
the x, = 0 axis and before it reaches #,). The so-
lution of this is x;(t + T) = Xe (2t + 1) and
xo(t + T) = —4Xte™?, from which we get that
¥o(t + T) = 4Xe (2t — 1). This implies that the
x,-coordinate of the trajectory is decreasing for ¢ < %
and increasing for ¢ > % At t = %, x (T + %) =
2X/e > 2, so the trajectory enters %, at t* + T with
> % Using this, and that x,(¢* + T) = —4¢* x,(t* +
TY/(1 + 2t*) = —4 + 4/(1 4+ 2t*), we get that
—4 <x(t* + T) < — 2, when the x-trajectory en-
ters #,. By (ii), the behaviour of the x-trajectory of
the adaptive backstepping design is the same until
it reaches ;. Again, using that along the solution
lim,_, oo x1(#) =0, the x-trajectories leave Z, (through
the x; = 1 line). From the form of the solution of the
systems outside the supports of ¢; and ¢, it is easy
to conclude that they do not return to these supports,
and that they converge to the origin.

(iii) and (iv) are equivalent by (ii), so we prove (iii).
(él =0, because 91 =0 outside #.) Since 0=0 between
R, and R, we only have to show that |0 — é\ < 8/M
when the x-trajectory leaves #,. Let T be the last time,
when x,(7T) = % (this T exists, since the x-trajectory
enters #, with x, =2 and leaves it with x, =1). Since
this is the last time, X, (7") < 0. We already saw, that x;
is increasing for x; > 0, so x1(7") > x;(0)=20. Hence
by the definition of ¢, ¢2(x1(T),x2(T)) = Mx (T).
Then

0= %2(T) = —4x(T) — 4x2(T) — (0(T) — 0)¢p2

> —8x)(T) — Mxy(T)O(T) - 0), (30)
from which
0—0(T) < 8/M (31)

and since 0 is increasing in %, the same inequality
holds at the time, when the x-trajectory leaves %,. We
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also need to show, that é(T) — 0 <8/M if I is small
enough. Since 0=r (o + xl)qﬁz,é increases in %,.
If it does not reach 0, we are done by (31). After it
reached 0, %, < —4x; —4x, < —4x,. But |0 < 2I'Mx?
(since in %5, 0 < x5 < x1), 50 |02 < TM x| /2.
We now give an upper bound on ||x;||z=. Look at the
Lyapunov function

A 1 A
V= %x% + 501 +x2 + $10)’ + ﬁ(f) -0y, (32)

which has derivative V = —x3 —3(x; +x2+ ¢ 0 )2 < 0.
This shows that ||x{|[z~ < 1/2V(0) < v/+/T for some
constant v. (since we assumed that 6§ < 1). Hence
0/%,] < vW/TMJ2. Let t, be the time when 0(z,) = 0,
and let #, be the time when the x-trajectory leaves %.
Since X, < 0 on [, £,], we can conclude, that there is
t* € [t1, 1] such that

0(t) — 0(tr)
x2(t2) — x2(t1)

o)
xp(t*)

wWTM
<=5

(33)

which implies that |0(z,) — 0(;)] < vw/TM)2 (since
o (t2)—x2(ty)| < 1).If T < 16%/(v*M*), then |0(t,)—
0] = |0(t) — 0(1,)| < 8/M follows, which is what we
wanted to prove. [

The following lemma states the difference between
the x-trajectories of the solutions. Under certain cir-
cumstances and when 0 and H (the height of ¢,),
is varied, in £, the adaptive backstepping trajectory
remains uniformly bounded, on the other hand the
tuning function design trajectory follows the curve

Xy = —9(,1)1()(?] )

Lemma 4. (i) (Tuning function design) There are
E, I'o,My >0, such that if ' <T'y and M = M,
then for all 0,H >0 and for all t such that
1 <xi(1) <202+ 10)(0)| <E.

(ii) (Adaptive backstepping design) There are
D, I'y,My > 0, such that if ', ', < I'y and M = M,
then for all 0,H >0 and for all t such that
1 <x1(2) <2,|x()| <D.

Proof. (i) Let T be the first time, when the tun-
ing function system reaches %;. By Lemma 3,
—4 < x(T)< — 2 and clearly x;(T) = 2. Con-
sider first the following modified system with initial

condition as above:

X1=x+ 010, xi(T)=2,
Xy = —4x; — 4x; — 410 — $10(x> + ¢10),
—-4< (=X < -2 (34)

Equivalently, with wy = x1,w, =x, + 0¢; we have

W] = W3, wl(T):2,
Wz = —4W2 — 4W1,
—4<w(T)=W < —2. (35)

The (wy, w;)-solution of this system depends contin-
uously on W, and since the possible /¥ values form a
compact set, there are £ > 0 and ¢y such that w{(T +
to) < 1 (i.e. the w-trajectory, which approaches the
origin since

S

is Hurwitz, leaves %, for any possible W within
fo time), and for all T <t <ty + T, |x2 + 0¢1| =
lwa(1)| < E. If T" and |0(T) — 0| are small enough,
then the right hand side of the tuning function sys-
tem and (34) are close to each other in an L*° sense,
so applying Theorem 37 of Appendix C4 of [9] on
[T,T + ] (on the continuous dependence of the so-
lution of a differential equation on the right-hand side
of the equation) gives that the solutions of the two
systems are arbitrarily close on [7,7T + ty]. By (iii)
of Lemma 3, we know that with small enough I" and
large enough M, |(T)) — 6| is arbitrarily small. Hence
we can conclude that for small enough I' and large
enough M, |x; + 0¢,| < E in #;, which is what we
wanted to prove.

(ii) Let now T be the time, when the adaptive back-
stepping system reaches #;. Using Theorem 37 of
[9] again, we only have to show that for some D > 0
and#y > 0, x1(%) < land |x;(¢)] < DforallT <t <
T + t, are satisfied for the solution of the system
X1=x+¢10, x(T)=2,
)52 = —4)(72 - 4x1 — ¢10,

A< (T)=X < —2. (36)
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Using the Lyapunov function V' =x7/2 4 (x; +x2)%/2,
which has derivative ¥ =—x? —3(x; 4+-x; )> we can con-
clude that x; — 0, hence the x-trajectory of this sys-
tem indeed leaves %, for any X . It also gives #p > 0, a
bound on the time needed to cross %,. We show that
(x2+¢10)(t) < O forall t = T. Indeed, this is true for
t = T. Suppose for a contradiction that ¢* is the first
time such that (x; + ¢;0)(¢*) = 0. Then x,(*) =0,
hence the velocity vector of the x-trajectory of the
solution at time ¢* is vertical. Since the x-trajectory
starts (at time 7') below the graph of x, = — ¢, 6, when
it reaches it the first time, the velocity vector can-
not point down. Hence x,(#*) = 0. On the other hand
Xo(t*) = =3x2(¢*) — dx1(¢*) — (x2 + p10)(*) < 0.
This contradiction show that x, + ¢;0 < 0. Now we
compute dx;/dx; as follows:

dXQ o 74)62 — 4x1 — ¢10

dx; x2 + ¢10

3¢10—4X1
X2+ ¢10

=44 > —4 (37)

and claim x,(¢) < 2 forall > T with 1 < x(¢) < 2.
Indeed, if not, then for some t* > T with 1 < x;(¢*)
< 2, xp(t*) > 2. Then for some 7 < t** < t*

dx, XQ(T) — xZ(l‘*) -2-2

& TR mae) S Tmma <t

which is a contradiction. On the other hand x,(¢) >
—4, since the x-trajectory starts (at time 7") above this
line, hence if ¢* is the first time when x,(¢t*) = —4,
then X,(#*) < 0. But X,(¢#*) = —4xp(r*) — 4x1(t*) —
¢10=16—4x,(t*)—¢10 > 8, which is a contradiction.
Putting this together we get —4 <x; < — 2 in %,
hence D = 4 completes the proof. [

Lemma 5. For the I'y, My, E,D of Lemma 4, for any
M, 22 >0, G > D and for small enough ¢ there are
K,0,H such that 0H — E > G and if E1s(I',10) is an
e-suboptimal tuning function controller designed to
regulate the output to y, = 10, then I' < I'.

Proof. We show first that since sup{x;: (x;,x2) € %}
=2 < 10, if the controller is designed to regulate the
output to y, = 10, then the x-trajectory of the solution
does not enter #,. This follows easily from similar
arguments we used to prove Lemma 3, noting that the

only significant difference the y, term makes is that
after the x-trajectory enters the x, < 0, x; > 0 quater-
plane at time 7, it satisfies the differential equation
system

)51 = X2, xl(T):X>20,

X = —4x; —4(x; — 10), x(T)=0, (38)
which has solution x;(1+7)=Xe~%(2t+1)+10 > 10
and x(¢t + T) = —4Xte=%. We set ¢, = 0. The con-
sequence of the previous argument is that this change
would not effect the solution, and hence the cost.

For a fixed constant y and K let I'x = 1/K?,0x =
1/K, Mx=M,, Hx ="K, and use the notation yK :x{(,
xK, 0% and uX for the x-trajectory and control u of
the closed loop system (2, Ztp(I'k, 10)). If y is large
enough, then g Hy — E =y — E > G > D. First we
show that there is a constant , such that if K is large
enough, then

P(Z, E1p(Tk,10)) = || 35| + A1 ]2l

+ Do ||k || e < o 39)
The Lyapunov function
V=10 —10+ $(x; — 10 + x,)
1 .
—(0-0) 40
+ 57 ( ) (40)

has derivative V =—(x; —10)> = 3(x; — 10+x,)> < 0
along the solution, hence for every ¢ > 0, [xK(¢)— 10

</2V(0), |(ei(#) — 10 + xp(¢)] < +/2V(0) and
(0 — 0(¢))* <2I'V(0) = 2V(0)/K2. Since V(0) is
constant, this means that there is a constant «;, such
that for every ¢ >0, [xK(0)] <oy, [05(2)] < /K.
Since x5(¢) <x5(0), and for xX¥ <0 we know
the explicit form of the solution: |xX(z + T)| =
4Xte=% < 4ayte” 2, there is a constant oy, such that
|xX(#)| < ap. By the choice of ¢, there is a constant
a3 such that ¢ < Mk[xX| < 3K, Since ¢ = 0,
uk(t) = (—4xK —4(xK —10) - $,0)(1), hence |uX| is
indeed bounded by a constant, so there is a constant
o satisfying (39).

To complete the proof, we now show that there is
a K such that for any I' > I'y, if u is the control of
the system with O0x = 1/K, Mg = My and Hx = YK,
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then Az |u|zoc(2,) > o This shows that for this setup
the choice I" > I'y does not give e-suboptimal tuning
function controller for any small enough &, which is
what we wanted to show. Let ¢ be the time when
the x-trajectory of the solution leaves the region
ggg = {(xl,)C2)I Xy — 1 =X = 105}, where ¢2 =—-K.
Suppose that there is a #y > 0 such that for all K* > 0
there is K > K* such that tx > 5. In %%, x1,x, > 10

and ¢, = —K, hence 0= I'(x; + x1)¢p, < —20IHK.
Therefore é(tK) < — 206K, hence |u(tx)l =
4xK 4+ 4(xK — 10) 4 ¢20 > 20600 K2 > o/l if K is
large enough. If on other hand limg_,,#x = 0, then
limKHoo|x1(tK) —x1(0)| =0, since |)C1| = ‘XQ| < x(0)
on 5. Since x;(tx) = x2(tx) — 1, this means, that
1im[(_,oo|XQ(IK)—X2(O)|ZXQ(O)—)Q(O)—1 > 0, hence
limg — 00 (SUP,e, 1] |X2])=00. But on %%, X, =u+0k ¢,
and |0k ¢,| =1, this means that limg_, o (sup|u|) = oo,
which completes the proof. [

Proof of Theorem 2. Let [a,b] = [0,10]. The claim
that if Zag(l'1,1,10) is an e-suboptimal adaptive
backstepping controller, then for I' = 'y, Z1(I, 10)
is an ¢-suboptimal tuning function controller (and that
they have the same costs) follows from (ii) of Lemma
3, and the fact that in this case the x-trajectories do not
reach #,. According to Lemma 5, for any 11,4, > 0
there is a system X, such that for small enough ¢ if
Erp(Il,10) is an e-suboptimal tuning function con-
troller, then I' < I'y. In this case we can apply Lemma
4 for the designs (2, Z1p(1,0)) and (2, Zpp(I, I,0))
to get a significant difference between [x1F|| .~ and
[|[x5B| L . The solutions for the two designs agree un-
til they reach 2, let T be the time, when they arrive
there. Then

X2 oo o, + A 1622 | oo 0,77 4 A2 [|uB| Lov .77
=[xt oo,y + A1 13" Ilzoego, 7y

+ Jo|u™ | oo 0. 77- (41)

Moreover, ||x1F || =(#,) > 0H —E > G is much bigger
than these if y of the construction of Lemma 5 is large
enough, since G > D can be chosen arbitrarily. This
means, that for large enough 7y it is enough to establish
that the adaptive backstepping cost is less than the

tuning function cost in #;.

PP llzoe @) = 161 zoe ) = 2, (42)
35| Loy > OH —E > G > D

> [ [l - (43)
We show now that there is a constant yu, such that
2" ooy > mllu™® oo n)- (44)

This is enough, since then by appropriately choosing
A1 and A, will result

Al Ny > 2135 (oo )

+ Ao|[u®| oo 1) (45)

which is enough to conclude that the tuning function
cost is bigger. To prove (44) look at the control of
the adaptive backstepping system in %,. According to
Lemma 4, there is £* > 0 such that ||, — ]| < ¢* and
10,]| < &* in 2. Then

"B < 4xp®| + AxPB] + 3] 10:] + |10
10158 + |§101$105] + |1 Ty i
< 4D + 8+ 3He* + H(0 + &%) + |§]|De*
+ | P H(O + &*)e* + 2H T
< (W HO, (46)

for some ¢ >0 if H and 0 are large enough and
I'y is small enough. This completes the proof, since
13" Mooy > HO/2. O

5. Summary

By means of two examples, we have shown that
overparameterisation can be beneficial in adaptive
control. This fully motivates a more general study into
the whole question of when and when not to overpa-
rameterise, although as noted in the Introduction, this
is likely to be a challenging task.
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