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Towards a performance theory of robust adaptive control

Ahmad Sanei and Mark Frenchn,y

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

SUMMARY

We consider standard robust adaptive control designs based on the dead-zone and projection
modifications, and compare their performance w.r.t. a worst case transient cost functional penalizing
the L1 norm of the output, control and control derivative. If a bound on the L1 norm of the disturbance
is known, it is shown that the dead-zone controller outperforms the projection controller if the a priori
information on the uncertainty level is sufficiently conservative. The second result shows that the projection
controller is superior to the dead-zone controller when the a priori information on the disturbance level is
sufficiently conservative. For conceptual clarity the results are presented on a non-linear scalar system with
a single uncertain parameter and generalizations are briefly discussed. Copyright # 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

It is well known that adaptive controllers are susceptible to phenomena such as parameter drift
even when small input disturbances are present. To overcome such problems, a number of
standard techniques are widely utilized, such as the dead-zones modification, the s-modification
or the projection modification [1–6].

Each of these techniques have advantages and drawbacks. For example, as is well known,
dead-zone modifications generally require a priori knowledge of the disturbance level, and only
achieve convergence of the output to some pre-specified neighbourhood of the origin (whilst
keeping all signals bounded). In particular, if the disturbances vanish, then dead-zone
controllers do not typically achieve convergence of the output to zero: the convergence remains
to the pre-specified neighbourhood of the origin. On the other hand, it is also well known that
projection modifications generally achieve boundedness of all signals, and furthermore have the
desirable property that if no disturbances are present, then the output converges to zero–
however, an arbitrarily small L1 disturbance can completely destroy any convergence of the
output. An extensive discussion of s-modification can be found in Reference [7].
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This illustrates that in the case of asymptotic performance, there are some well-known
advantages and disadvantages of the various robust-adaptive schemes. However, there are many
situations in which we cannot definitively state whether, e.g. a projection or dead-zone
controller is superior even when only considering asymptotic performance. Furthermore, the
known results, as with most results in adaptive control, are confined to non-singular
performances, i.e. without any consideration of the control signal.

The goal of this paper is to compare dead-zone and projection based adaptive controllers with
respect to a transient performance measure P. Furthermore, the transient performance measure
will be non-singular (i.e. penalize both the state ðxÞ and the input ðuÞ of the plant); specifically we
will consider cost functionals which penalize the state ðjjxð�ÞjjL1Þ; control ðjjuð�ÞjjL1Þ and control
rate ðjj ’uuð�ÞjjL1 :Þ. In the case of a scalar non-linear plant, we will identify circumstances in which a
dead-zone based adaptive controller is superior to the projection based adaptive controller with
respect to P; and vice versa. A scalar system has been chosen on which to develop the results to
illustrate the trade-offs between the designs in the simplest manner: however note that there is a
certain level of technical difficulty even with such simple plants.

In Section 5, we outline extensions to more general classes of systems, in particular to non-
linear integrator chains, and to minimum phase linear systems of relative degree one with
positive high-frequency gain. The proofs of these more complex results are substantively more
involved and can be found in References [8, 9].

This is a new direction in adaptive control theory–to date there are few results in adaptive
control which consider transient performance costs which penalize control effort. The inherent
trade-offs which lie in the choice between designs are central to any quantitative control theory,
and it should be observed that such trade-offs can only be studied in a non-singular performance
framework.

We conclude by indicating the directions for future work.

2. STATEMENT OF THE PROBLEM AND MAIN RESULT

2.1. System and basic control design

Consider the following class of SISO non-linear system:

Sðx0; y; dð�ÞÞ: ’xxðtÞ ¼ yfðxðtÞÞ þ uðtÞ þ dðtÞ; xð0Þ ¼ x0 ð1Þ

where xð�Þuð�Þ; y 2 R are the state vector, the control input, and unknown constant parameter,
respectively. dð�Þ belongs to a class of bounded disturbances D�L1½0;1Þ and fð�Þ is a known
smooth real valued function which is assumed to satisfy some or all of the following conditions
at various points in the paper:

ðaÞ x ¼ 0 , fðxÞ ¼ 0

ðbÞ
@fðxÞ
@x

����
x¼0

> 0

ðcÞ infx2R
fðxÞ
x

����
����5b > 0

ð2Þ
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These conditions specify that the system with no inputs ðu ¼ d ¼ 0Þ has an unstable equilibrium
at the origin, and that the non-linearity has at least linear growth.

It can be easily shown (see e.g. Reference [5]) that disturbance free ðD ¼ f0gÞ systems of form
(1) are stabilized by the following simple adaptive controller:

X : uðtÞ ¼ �axðtÞ � #yyðtÞfðxðtÞÞ

’#yy#yyðtÞ ¼ axðtÞfðxðtÞÞ; #yyð0Þ ¼ 0
ð3Þ

where #yyð�Þ is an adaptive estimator of y; a > 0 is the adaptation gain, and a > 0 is the control
gain.

2.2. Robust modifications to the control design

It is well known that even a small L1 disturbance can cause the parameter estimate
#yyð�Þ to diverge, see e.g. References [1, 5]. Such a phenomenon is typically called ‘parameter drift’.
To overcome this problem, two distinct approaches have been proposed: (i) using an
appropriately rich reference input to achieve persistent excitation of the identifier and
hence convergence of the parameter estimator, and (ii) modification of the adaptation
law. In this section, we briefly explain the two common methods for modifying the adaptive
law which form the basis of this paper: the dead-zone and the parameter projection
modifications.

2.2.1. Dead-zone modification. The idea of dead-zone [6] is to modify the parameter
estimator so that the adaptive mechanism is ‘switched off’ when system trajectory xð�Þ
lies inside a region O0 where the disturbance has a destabilising effect on the dynamics.
A priori knowledge of the size of the disturbance is typically used to define the size of the
dead-zone. Let dmax be the a priori known upper bound of the disturbance level, i.e.
dmax5jjdð�ÞjjL1 for all dð�Þ 2 D: For scalar systems (1), the dead-zone region O0ðdmaxÞ can be
simply defined by O0ðdmaxÞ ¼ ½�Z0; Z0�; where Z0 ¼ RðdmaxÞ and R :Rþ ! Rþ: The modified
adaptive law is taken to be

XDðdmaxÞ: uðtÞ ¼ �axðtÞ � #yyðtÞfðxðtÞÞ

’#yy#yy ¼ aDO0ðdmaxÞðxÞxðtÞfðxðtÞÞ #yyð0Þ ¼ 0; Z0 ¼
dmax

a

ð4Þ

where DFðxÞ :¼ 0 if x 2 F and DFðxÞ :¼ 1; elsewhere. We denote the respective closed loop system
by ðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ: The following theorem establishes the properties of such controllers:

Theorem 2.1

Consider the closed loop system ðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ defined by (1), (4), where dð�Þ is
bounded. Assume that dmax is such that jjdð�ÞjjL14dmax: Then for any x0 2 R; the following
properties hold:

D1. There exist a unique solution ðxð�Þ; #yyð�ÞÞ :Rþ ! R2:
D2. xð�Þ; uð�Þ; #yyð�Þ are uniformly bounded as a continuous function of x0; jyj; dmax:
D3. xðtÞ ! O0 as t!1:
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Proof

Due to the discontinuity in the right-hand side of the differential equations defining the dead-
zone controller (4), the solution of the closed loop is considered in Filippov’s sense [10].z

The proof of D1, D3 is standard and can be found e.g. in Reference [11], see also References
[3, 5, 6]. An outline proof of D2 (which is directly required later in this paper) is as follows: Let
*yyðtÞ :¼ y� #yyðtÞ; and define the Lyapunov function

V ðxðtÞ; *yyðtÞÞ ¼
1

2
xðtÞ2 þ

1

2a
*yyðtÞ2 ð5Þ

A routine calculation shows ’VVðxðtÞ; *yyðtÞÞ ¼ �axðtÞ2 þ xðtÞdðtÞ for all x =2 O0ðdmaxÞ: Considering the
different situations of x0 inside, outside, or on the boundary of the dead-zone O0ðdmaxÞ;
eventually yield V ðxðtÞ; *yyðtÞÞ4V0ðx0; jyj; dmaxÞ for all t50; where

V0ðx0; jyj; dmaxÞ :¼
1

2
maxðx20; Z

2
0Þ þ

1

2a
y2 ð6Þ

From this and (4), (5) one can easily bound xð�Þ; #yyð�Þ uniformly as continuous functions of
V0 :¼ V0ðx0; jyj; dmaxÞ:

xðtÞ4
ffiffiffiffiffiffiffi
2V0

p
; j#yyðtÞj4

ffiffiffiffiffiffiffiffiffiffi
2aV0

p
ð7Þ

Finally, the uniform boundedness of uð�Þ in terms of a continuous function of V0ðx0; jyj; dmaxÞ
follows from (3) and the continuity of fð�Þ: &

2.2.2. Projection modification. The projection modification [4] is an alternative method to
eliminate parameter drift by keeping the parameter estimates within some a priori defined
bounds PðymaxÞ where ymax is the a priori knowledge of the parametric uncertainty level, and is
defined as the strict upper bound of jyj: Consider the unmodified adaptive law

’#yy#yyðtÞ ¼ gðxðtÞ; #yyðtÞÞ;
#yyð0Þ ¼ 0: By this method we project g :¼ gðxðtÞ; #yyðtÞÞ on the hyperplane tangent to boundary
@PðymaxÞ at #yyðtÞ when #yyðtÞ is on the boundary @PðymaxÞ and g pointing outward. The general
definition of the projection can be found in Reference [12]. For scalar systems where y 2 R; a
simplified version of parameter projection can be obtained by defining PðymaxÞ :¼ ½�ymax; ymax�;
and

ProjPðymaxÞðg;
#yyÞ ¼

g; j#yyj5ymax or #yyg40

0; j#yyj ¼ ymax and #yyg > 0

8<
: ð8Þ

The modified adaptive law is taken to be

’#yy#yyðtÞ ¼ ProjPðymaxÞðg;
#yyÞ; #yyð0Þ ¼ 0 ð9Þ

Consequently, the projection controller XP ðymaxÞ for systems (1) is defined as follows:

XP ðymaxÞ: uðtÞ ¼ �axðtÞ � #yyðtÞfðxðtÞÞ

’#yy#yyðtÞ ¼ ProjPðymaxÞðaxðtÞfðxðtÞÞÞ;
#yyð0Þ ¼ 0

ð10Þ

zSuch a dead-zone has been chosen for simplicity, however, in practical situations, principled approaches to avoiding
chattering are available, see for example the hysteresis dead-zone approach of Reference [8]–where analogous results to
those presented in this paper for the standard dead-zone can be found.
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The robustness of the respective closed loop system ðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ is given by the
following theorem:

Theorem 2.2

Consider the closed loop ðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ defined by (1), (10). Assume ymax is such that
jyj4ymax: Then, for any x0 2 R:

P1. The solution ðxð�Þ; #yyð�ÞÞ :Rþ ! R2 exists.
P2. xð�Þ; uð�Þ; #yyð�Þ are uniformly bounded as a continuous function of x0; jjd jj; ymax:

Proof

Since the right-hand side of the closed loop ðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ is locally Lipschitz, an
absolutely continuous global solution ðxð�Þ; #yyð�ÞÞ exists once the boundedness of solution has
been shown. Let *yyðtÞ ¼ y� #yyðtÞ; and define the same Lyapunov function as (5). By a well-known
property of the projection operator �*yyðtÞ ProjðxðtÞfðxÞÞ4� *yyðtÞxðtÞfðxÞ (see e.g. Reference [12]),
a routine calculation shows

’VVðxðtÞ; *yyðtÞÞ4� k
�
V ðxðtÞ; *yyðtÞÞ � V nðymax; jjd jjÞ

�
ð11Þ

where

V nðymax; jjd jjÞ :¼
1

2
y2max þ

jjd jj2

2ka
ð12Þ

and 05k5a=2: It follows that ’VVðxðtÞ; *yyðtÞÞ40 for all V5V n: Therefore,

V ðxðtÞ; *yyðtÞÞ4V 00 ðx0; jjd jj; ymaxÞ :¼ maxfV ðx0; 0Þ; V nðymax; jjd jjÞg 8t50 ð13Þ

The uniform boundedness of xð�Þ; uð�Þ as a continuous function of V 00 ðx0; jjd jj; ymaxÞ follows from
(10), (13) and continuity of fð�Þ: &

2.3. Statement of the main results

The ultimate goal in control theory is to design control laws which achieve good performance for
any member of a specified class of systems. Consider a system S which belongs to the set of all
admissible systemsSn: The performance of a controller X is given by a cost functional J of some
measurable signals (state/output/input). The goal of this paper is to establish a comparison
between dead-zone and projection methods. We are interested in a worst case scenario, i.e. a
performance P which is defined over the power set of Sn and is formulated as a supremum of
all cost functionals. Furthermore, the performance measure will be non-singular, i.e. penalize
both the state ðxÞ and the input ðuÞ of the plant; specifically, we will consider cost functionals of
the form

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XÞ ¼ sup
x02X0ðgÞ

sup
y2DðdÞ

sup
d2DðeÞ

ðjjxð�ÞjjL1 þ jjuð�ÞjjL1 þ jj ’uuð�ÞjjL1Þ ð14Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:403–421

PERFORMANCE THEORY OF ADAPTIVE CONTROL 407



where

DðeÞ :¼ fdð�Þ 2L1 j jjdð�ÞjjL14eg

DðdÞ :¼ fy 2 R j jyj4dg

X0ðgÞ :¼ fx0 2 R j jjx0jj4gg

ð15Þ

for some e; d50 and g > 0:
The following theorems are the main results of the paper:

Theorem I

Suppose fð�Þ satisfies conditions 2-a–2-c. Consider the system Sðx0; y; dð�ÞÞ and the controllers
XDðdmaxÞ and XP ðymaxÞ defined by (1), (4) and (10), respectively. Consider the transient
performance cost functional (14). Then for all dmax5e; there exists ynmax5d such that for all
ymax5ynmax;

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ > PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ ð16Þ

This theorem can be interpreted as stating that if the a priori knowledge of the parametric
uncertainty level ymax is sufficiently conservative ðymax5ynmaxÞ; then the dead-zone based design
will outperform the projection based design.

Theorem II

Suppose fð�Þ satisfies conditions 2-c. Consider the system Sðx0; y; dð�ÞÞ and the controllers
XDðdmaxÞ and XP ðymaxÞ defined by (1), (4) and (10), respectively. Consider the transient
performance cost functional (14). Then there exists d > 0 such that for all ymax5d; there exists
dn
max5e so that for all dmax5dn

max;

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ > PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ ð17Þ

This theorem can be interpreted as stating that above a certain uncertainty level d; if the
a priori knowledge dmax of the disturbance level is sufficiently conservative ðdmax5dn

maxÞ; then the
projection design will outperform the dead-zone design.

In fact, as it has been shown in Figure 1, we will prove the stronger results that the ratio
between the two costs can be made arbitrarily large (Figure 1). That is, for Theorem I:

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ
PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ

! 1 as ymax !1 8dmax5e ð18Þ

 �max �∗
max 

Projection

Dead-zone

P

dmaxd∗
max

Dead-zone

Projection

P

Figure 1. Statement of the main results: Theorem I (left), Theorem II (right).
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Alternatively, for Theorem II, we have

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ
PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ

! 1 as dmax !1 8ymax5d ð19Þ

Note that if appropriate sign changes are made to the controller, equivalent results also hold if
the sign is changed in condition 2-b, i.e. if @fðxÞ=@xjx¼050:

3. PROOF OF THEOREM I

Firstly, we show that P ¼ 1 for the unmodified design (3) (Proposition 3.3). From this
we can show that the projection modification design, XP ðymaxÞ (10) has the property that
P!1 as ymax !1 (Proposition 3.4). Finally, we show that P51 for the dead-zone design,
XDðdmaxÞ (4) and that P is independent of ymax (Propositions 3.5). This suffices to establish
Theorem I.

Proposition 3.1

Suppose fð�Þ satisfies conditions 2-a–2-c. Consider the closed loop system ðSðx0; y; dð�ÞÞ;XÞ
defined by (1), (3), where dðtÞ ¼ e; for some e=0: Then

xðtÞ ! 0 as t!1 , #yyðtÞ ! 1 as t!1 ð20Þ

Proof

!Þ Suppose for contradiction #yyðtÞ�!= 1 as t!1: Then #yyðtÞ ! #yyn51; since #yyðtÞ is
monotonically increasing by (2). Therefore by continuity of (1), ðxðtÞ; #yyðtÞÞ ¼ ð0; #yynÞ is an
equilibrium point of the closed loop ðSðx0; y; dð�ÞÞ;XÞ:Hence ð0; #yynÞ must be a solution of the
following equations:

�axðtÞ þ ðy� #yyðtÞÞfðxðtÞÞ þ e ¼ 0

axðtÞfðxðtÞÞ ¼ 0
ð21Þ

Clearly, given e=0 and assumption 2-a, (21) has no solution, hence contradiction.
Therefore, #yyðtÞ ! 1 as t!1:
 ) Defining the Lyapunov function V ðxðtÞÞ ¼ xðtÞ2=2; we have that

’VVðxðtÞÞ ¼ �axðtÞ2 þ exðtÞ þ jðtÞ ð22Þ

where in the interest of brevity we have denoted

jðtÞ :¼ jðx;f; #yyÞ ¼ ðy� #yyðtÞÞxðtÞfðxðtÞÞ ð23Þ

It follows that V ðxðtÞÞ is decreasing if

axðtÞ2=2� jðtÞ5e2=2a ð24Þ
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Now, we claim the convergence of xð�Þ: if xðtÞ�!= 0 as t!1 then either 1. lim inf t!1
jxðtÞj > 0 or 2. lim inf t!1 jxðtÞj ¼ 0:

1. Suppose lim inf t!1 jxðtÞj > 0: Then there exists e0 > 0 s.t. jxðtÞj > e0 for
all t: Observing that conditions 2-a and 2-b imply that xfðxÞ > 0 for all x=0; it
follows by (23) and 2-c that jðtÞ ! �1 as #yyðtÞ ! 1: Hence by (22),
’VVðxðtÞÞ ! �1 as t!1; i.e. V ðxðtÞÞ ! �1: This contradicts the positive
definiteness of V ð�Þ:

2. If lim inf t!1 jxðtÞj ¼ 0; then there exists e0 > 0 and a positive divergent sequence
ftkgk51 such that ’VVðxðtkÞÞ > 0 and jxðtkÞj > e0: Since by (23), jðtkÞ ! �1 as k !1;
it follows that (24) holds at time tk ; hence contradiction.

Therefore, xðtÞ ! 0 as t!1: &

Proposition 3.2

Suppose fð�Þ satisfies conditions 2-a–2-c. Consider the closed loop system ðSðx0; y; dð�ÞÞ;XÞ
defined by (1), (3), where dðtÞ ¼ e; for some e=0: If xðtÞ is bounded and uniformly continuous,
then

xðtÞ ! 0; #yyðtÞ ! 1 as t!1 ð25Þ

Proof

Suppose for contradiction xðtÞ�!= 0 as t!1: Then there exists a M > 0 and a positive divergent
sequence ftkgk51 for which xðtkÞ5M : Since, by assumption, xðtÞ is uniformly continuous, then,
for e ¼ M=2 we have

9o > 0 s:t: 8t 2 ½0;o�; 8t > 0 jxðtÞ � xðt þ tÞj5
M
2

ð26Þ

Therefore, jxðtkÞ � xðtk þ tÞj5M=2 and since xðtkÞ5M ; we have that xðtk þ tÞ > M=2; i.e.
xðtÞ5M=2 for all t 2 ½tk ; tk þ o�: Now by (2), the boundedness of xð�Þ; and the continuity of
fð�Þ; we have that fðxðtÞÞ5b > 0 for some b; i.e.

9N > 0 s:t: axðtÞfðxðtÞÞ5N 8t 2 ½tk ; tk þ d� ð27Þ

It follows that

Z tkþd

tk

axðtÞfðxðtÞÞ dt5Nd ð28Þ

With no loss of generality, we may assume tkþ1 � tk5o: It follows that

#yyðtk þ oÞ ¼
Z tkþo

0

’#yy#yyðtÞ dt ¼
Z tkþo

0

axðtÞfðxðtÞÞ dt5kNd ð29Þ

so #yyðtk þ oÞ ! 1 as k !1; hence #yyðtÞ ! 1 as t!1: It follows by Proposition 3.1 that
xðtÞ ! 0 as t!1; hence contradiction. From this and Proposition 3.1, the claim of the
proposition follows. &

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:403–421

A. SANEI AND M. FRENCH410



Proposition 3.3

Suppose fð�Þ satisfies conditions 2-a–2-c. Consider the closed loop ðSðx0; y; dð�ÞÞ;XÞ defined by
Equations (1) and (3) and the transient performance cost functional (14). Then

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XÞ ¼ 1 ð30Þ

Proof

Let x0 2 X0ðgÞ; y 2 DðdÞ; and choose dðtÞ ¼ e=0: Denote lim supt!1 by lim: Suppose for
contradiction PðSðx0; y; dð�ÞÞ;XÞ51: Consider ’xxðtÞ: There are two cases: either

1. lim j ’xxðtÞj ¼ 1 or 2. lim j ’xxðtÞj51:
(1) Suppose lim j ’xxðtÞj ¼ 1; i.e. lim j � axðtÞ þ ðy� #yyðtÞÞfðxðtÞÞ þ ej ¼ 1: Therefore, either

(a) lim jxðtÞj ¼ 1; which implies that jjxð�ÞjjL1 ¼ 1; hence contradiction, or
(b) lim jxðtÞj51; therefore lim juðtÞj ¼ 1; i.e. jjuð�ÞjjL1 ¼ 1; hence contradiction.

(2) Suppose lim j ’xxðtÞj51 i.e. xðtÞ is uniformly continuous. Again there are two
possibilities: either a) lim jxðtÞj ¼ 1; or b) lim jxðtÞj51:
(a) Suppose lim jxðtÞj ¼ 1; which implies that jjxð�ÞjjL1 ¼ 1; hence contradiction.
(b) Suppose lim jxðtÞj51; i.e. xðtÞ is bounded. Therefore, by Proposition 3.2

xðtÞ ! 0; #yyðtÞ ! 1 as t!1 ð31Þ

Considering lim ’uuðtÞ; by applying (31), we observe that

lim ’uuðtÞ ¼ lim ð�axðtÞ þ ðy� #yyðtÞÞfðxðtÞÞ þ eÞ �aþ #yyðtÞ
@fðxÞ
@x

� ��

þ xðtÞfðxðtÞÞ2
�

¼ lim �ð#yyðtÞfðxðtÞÞ � eÞ aþ #yyðtÞ
@fðxÞ
@x

� �� �
ð32Þ

Now there are two possibilities: either (i) #yyðtÞfðxðtÞÞ�!= e (including the possibility
that limt!1

#yyðtÞfðxðtÞÞ does not exist), or (ii) limt!1
#yyðtÞfðxðtÞÞ ¼ e:

(i) Suppose limt!1
#yyðtÞfðxðtÞÞ does not exist or #yyðtÞfðxðtÞÞ�!= e as t!1: Since

aþ #yyðtÞ
@fðxÞ
@x
!1 as xðtÞ ! 0; #yyðtÞ ! 1 ð33Þ

it follows by (2-b) that jj ’uuð�ÞjjL1 ¼ 1; hence contradiction.
(ii) Suppose limt!1

#yyðtÞfðxðtÞÞ ¼ e: By (31) we have that

8#yyn > 0 9T > 0 s:t: #yyðtÞ > #yyn 8t > T : ð34Þ

Now we choose d2ð�Þ as follows

d2ðtÞ ¼
e; t4T ;

�e; t > T

(
ð35Þ

Note that d2ðtÞ ¼ dðtÞ for all t4T : With this choice, by smoothness of fð�Þ;
continuity of xð�Þ and causality, we have that

lim
t!Tþ

xðtÞ ¼ xðT Þ; lim
t!Tþ

#yyðtÞ ¼ #yyðT Þ ð36Þ
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where limt!Tþ denote limt!T ; t>T : It follows that

lim
t!Tþ

’uuðtÞ
� �

� ’uuðT Þ ¼ 2e aþ #yyðtÞ
@fðxÞ
@x

� �
52#yyn

@fðxÞ
@x

e ð37Þ

By assumption 2-b, difference (37) can be made arbitrarily large by choosing a
suitable #yyn: Then either ’uuðT Þ is large or limt!Tþ ’uuðtÞ is large. Therefore, jj ’uuð�ÞjjL1
can be made arbitrarily large; hence contradiction.

The proof is completed since PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XÞ5PðSðx0; y; dð�ÞÞ;XÞ ¼ 1: &

Proposition 3.4

Suppose fð�Þ satisfies conditions 2-a–2-c. Consider the closed loop system ðSðx0; y; dð�ÞÞ;
XP ðymaxÞÞ defined by Equations (1) and (10). Then

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ ! 1 as ymax !1 ð38Þ

Proof

It is convenient to define

P½0;T �ðS;XÞ ¼ ðjjxð�ÞjjL1½0;T � þ jjuð�ÞjjL1½0;T � þ jj ’uuð�ÞjjL1½0;T �Þ ð39Þ

Now let M > 0: By Proposition 3.3, there exists x0 2 X0; dð�Þ 2 DðeÞ; y 2 DðdÞ so that

P½0;1ÞðSðx0; y; dð�ÞÞ;XÞ52M ð40Þ

It follows that there exists T > 0 s.t. P½0;T �ðSðx0; y; dð�ÞÞ;XÞ5M : Since ymax diverges, by choosing
ymax ¼ 2#yyðT Þ; we have that ymax > #yyðT Þ; i.e. the unmodified and the projection designs are
identical on ½0; T �: Therefore,

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ5P½0;T �ðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ5M ð41Þ

Since this holds for all M > 0; this completes the proof. &

Proposition 3.5

The closed loop ðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ defined by (1) and (4) has the property

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ51 8dmax > e ð42Þ

Proof

Let x0 2 X0ðgÞ; y 2 DðdÞ and d 2 DðeÞ: The uniform boundedness of signals xð�Þ; #yyð�Þ; uð�Þ as a
continuous function of V0ðx0; jyj; dmaxÞ follow from Theorem 2.1. Therefore by (1), ’xxð�Þ is
uniformly bounded in terms of a continuous function of V0ðx0; jyj; dmaxÞ: So

’uuðtÞ ¼ �a ’xxðtÞ � #yyðtÞ
@fðxÞ
@x

’xxðtÞ � aDO0
xðtÞfðxðtÞÞ2 ð43Þ

is uniformly bounded as a continuous function of V0ðx0; jyj; dmaxÞ: That is

PðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ4MðV0ðx0; jyj; dmaxÞÞ ð44Þ
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where Mð�Þ is continuous. The proof is completed by taking the supremum over system
arguments x0; y; d; hence

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ51 8dmax > e & ð45Þ

Proof of Theorem I

This is a simple consequence of Propositions 3.4 and 3.5. &

4. PROOF OF THEOREM II

In order to prove Theorem II, first we give the following propositions:

Proposition 4.1

Suppose fð�Þ satisfies condition 2-c. Consider the closed loop system ðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ
defined by (1), (4). Then 9d > 0 such that

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ ! 1 as dmax !1 ð46Þ

Proof

Note that by (4), jjO0jj ! 1 as dmax !1 (c.f. to the discussion in Section 4.1). Let x0 2 X0ðgÞ;
y 2 DðdÞ and d 2 DðeÞ: Suppose x0 2 O0 (i.e. g5Z0). We define t as follows:

t ¼
1 if xðtÞ 2 O0 8t50

infft50 j jxðtÞj ¼ Z0g otherwise

(
ð47Þ

Note that by dead-zone definition (4),
’#yy#yyðtÞ ¼ 0 for all t 2 ½0; tÞ; hence #yyðtÞ ¼ 0 for all t 2 ½0; tÞ

since #yyð0Þ ¼ 0: Therefore,

’xxðtÞ ¼ �axðtÞ þ yfðxðtÞÞ þ dðtÞ 8t 2 ½0; tÞ ð48Þ

Condition 2-c can be rewritten in the following form:

sup
x2R

x
fðxÞ

����
����4M51 ð49Þ

It follows that there exists d ¼ 2aM such that if y ¼ d; then 8xðtÞ > 0;

�axþ yfðxÞ ¼ �a
x

fðxÞ
þ y

� �
fðxÞ ¼ �a

jxj
jfðxÞj

þ y
� �

jfðxÞj5aM jfðxÞj > 0 ð50Þ

It follows that if dðtÞ ¼ e; then j ’xxðtÞj > e for all t 2 ½0; tÞ i.e. the trajectory xðtÞ hits the boundary
@O0 in finite time, hence t51: It follows that

jjxð�ÞjjL15jxðtÞj ¼ j@O0j ð51Þ

If x0 =2 O0 then we are outside the dead-zone, i.e. jjxð�ÞjjL15jx0j5j@O0j: The proof is completed
by taking dmax !1; i.e. jO0j ! 1: Hence,

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ5PðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ ¼ 1 & ð52Þ

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2004; 18:403–421

PERFORMANCE THEORY OF ADAPTIVE CONTROL 413



Proposition 4.2

Consider the closed loop system ðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ defined by (1), (10). Consider the
transient performance cost functional defined in (14). Then

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ51 8ymax5d ð53Þ

Proof

Let x0 2 X0ðgÞ; y 2 DðdÞ and d 2 DðeÞ: A direct application of property P2 of Theorem 2.2
guarantees the uniform boundedness of signals xð�Þ; #yyð�Þ; uð�Þ of the closed-loop system
ðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ as a continuous function of x0; jjd jj; ymax: Therefore by (1), ’xxð�Þ is
uniformly bounded in terms of a continuous function of x0; jjd jj; ymax: Hence

’uuðtÞ ¼ � aþ #yy
@fðxÞ
@x

� �
’xxðtÞ � afðxðtÞÞ ProjðxðtÞfðxðtÞÞÞ ð54Þ

is uniformly bounded in terms of a continuous function of x0; jjd jj; ymax: It follows that there
exists a continuous function Mðx0; jjd jj; ymaxÞ; such that

PðSðx0; y; dð�ÞÞ;XP ðymaxÞÞ4Mðx0; jjd jj; ymaxÞ51 ð55Þ

The claim of proposition follows by taking the supremum over system parameters x0; y; d as in
(15) on both sides of (55) and observing that, by uniform boundedness, the right-hand side
remains bounded for all ymax5d: &

Proof of Theorem II

This is a simple consequence of Propositions 4.1 and 4.2. &

The proof of above theorem is heavily based on the very natural assumption that the size of
the dead-zone is a divergent function of a priori information on the disturbance level. In
particular, Z0 :¼ RðdmaxÞ ¼ dmax=a implies that PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ ! 1 as dmax !
1: In the following section we show that the other choices of Z0 also yield the similar results.

4.1. Choices of dead-zone

In this section, we consider alternative choices for the dead-zone, and variations on the
definition of the controller. For brevity, only an outline of the relevant proofs are discussed, see
Reference [8] for a fuller discussion. Let O0 :¼ ½�Z0; Z0�; where Z0 :¼ RðdmaxÞ; and define P :¼
PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XÞ as in (14). There are three distinct possibilities for Z0 :¼ RðdmaxÞ

}

(i) Z0 :¼ RðdmaxÞ ! 1 as dmax !1: It is straightforward to observe that P ¼ 1 by
Proposition 4.1.

(ii) Z0 :¼ RðdmaxÞ ! 0 as dmax !1: By shrinking the dead-zone, we have a sequence
of modified controllers XDðdmaxÞ tending to unmodified controller X: It follows that as
dmax !1; the performance of the sequence of modified closed loops PðSðX0ðgÞ;DðdÞ;
DðeÞÞ;XDðdmaxÞÞ tends to the performance of that of unmodified closed loop

}Other cases such as oscillatory but bounded Rð�Þ can be handled suitably by considering monotonic subsequences.
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PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XÞ for which by Proposition 3.3, P ¼ 1; therefore,

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ ! 1 as dmax !1 ð56Þ

(iii) Z0 :¼ RðdmaxÞ4c as dmax !1: Recall the closed loop ðSðx0; y; dð�ÞÞ;XDðdmaxÞÞ defined by (1),
(4). We have shown in Theorem 2.1 that the choice of On

0 ¼ ½�Z
n
0 ; Z

n
0 �; where Z

n
0 :¼ RðdmaxÞ ¼

dmax=a; suggested by Lyapunov theory, suffices to establish D1–D3. However, it is well
known that the Lyapunov method only provides a sufficient condition for stability and in
fact there are systems for which xðtÞ ! O0 ¼ ½�c; c� where c5Zn0 :However, in the following,
we will illustrate that this is not true if the controllers generalized for tracking problems.
Consider system (1) and define eðtÞ :¼ xðtÞ � xref ðtÞ where xref ð�Þ is a reference signal. The
objective is for xð�Þ to approximately track the reference signal xref ð�Þ; i.e. eðtÞ ! O0 as
t!1: Let us define the following tracking controller:

uðtÞ ¼ �aeðtÞ � #yyðtÞfðxðtÞÞ þ ’xxref ðtÞ ð57Þ

’#yy#yyðtÞ ¼ DO0
ðeÞeðtÞfðxðtÞÞ #yyð0Þ ¼ 0 ð58Þ

Observe that given xref ¼ 0; the tracking controller is identical to the dead-zone controller
(4). In the presence of bounded disturbances, a routine calculation yields to

’eeðtÞ ¼ �aeðtÞ þ ðy� #yyðtÞÞfðxðtÞÞ þ dðtÞ ð59Þ

The choice of Z0 :¼ dmax=a is suggested by Lyapunov analysis and implies eðtÞ ! O0 as
t!1: However, inspired by the above explanation one may choose Z0 :¼ c: The following
example illustrates the closed loop response to such a choice.

Example 4.1

Consider the closed loop interconnection system defined by (1), (57), and (58), where

fðxðtÞÞ ¼ xðtÞ; a ¼ 1; y ¼ 2; dð�Þ ¼ 100; c ¼ 10; yref ¼ 10 sinðtÞ ð60Þ

The behaviour of the closed loop signals have been shown in Figure 2.

As illustrated in Figure 2, the tuning function #yyð�Þ drifts. Comparing this situation to that of
unmodified controller (3), one can easily build a similar setup as Proposition 3.3 to achieve
P ¼ 1: Therefore, this provides a motivation for the choice of dead-zone RðdmaxÞ ¼ dmax=a:

5. GENERALIZATIONS

In this section, we outline the extension of the main results given in Section 2.3 to wider classes
of systems, namely to non-linear systems in the form of integrator chain and to linear systems of
relative degree one which are minimum phase and have positive high frequency gain. The proofs
of these more general results follow the same structure to the above proof for the scalar case, but
the details are substantively more involved. The proofs can be found in Reference [8], see also
Reference [9].
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5.1. Integrator chain

By an ‘integrator chain’, we mean the following SISO non-linear system:

Sðx0; y; dð�ÞÞ: ’xxiðtÞ ¼ xiþ1ðtÞ; 14i4n� 1

’xxnðtÞ ¼ yfðxðtÞÞ þ uðtÞ þ dðtÞ

yðtÞ ¼ x1ðtÞ

ð61Þ

Define the feedback law

uðtÞ :¼ �aTxðtÞ � #yyðtÞfðxðtÞÞ ð62Þ

where a ¼ ½a1; . . . ; an�T is chosen such that the matrix

A ¼

0 1 0 . . . 0

0 0 1 0 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

�a1 �a2 �a3 . . . �an

2
6666666664

3
7777777775

ð63Þ

is Hurwitz. Let P ;Q be symmetric positive definite matrices satisfying the Lyapunov equation
ATP þ PA ¼ �Q and define the weighting vector b :¼ ðP þ PTÞB; where B :¼ ð0; . . . ; 0; 1ÞT: The
signal #yy :Rþ ! R in (62) represents the adaptive estimator of y and is updated by the online
adaptive law:

’#yy#yyðtÞ ¼ axðtÞTbfðxðtÞÞ; #yyð0Þ ¼ 0 ð64Þ
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Figure 2. Tracking for Example 4.1.
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It can be shown that the controller X; consisting of the feedback law (62) and the adaptive law
(64), stabilizes systems Sðx0; y; dð�ÞÞ of form (61) when D ¼ f0g:

However, in the presence of bounded disturbances, we need to modify adaptive law (64).
Based on the description of the dead-zone modification described in Section 2.2.1, we define the
dead-zone region O0ðdmaxÞ:

O0ðdmaxÞ ¼ fx j xTPx4Z20g ð65Þ

where

Z0 :¼ RðdmaxÞ ¼

ffiffiffiffiffiffiffiffiffi
%llðP Þ

q
%
lðQÞ

jbj dmax ð66Þ

Consequently, the dead-zone controller is defined as follows:

XDðdmaxÞ: uðtÞ ¼ �aTxðtÞ � #yyðtÞfðxðtÞÞ

’#yy#yyðtÞ ¼ DO0ðdmaxÞðxÞaxðtÞ
TbfðxðtÞÞ; #yyð0Þ ¼ 0

ð67Þ

The projection operator defined in Section 2.2.2 can be used for integrator chain system (61)
since y 2 R: A slight modification of (10) yields

XP ðymaxÞ: uðtÞ ¼ �aTxðtÞ � #yyðtÞfðxðtÞÞ

’#yy#yyðtÞ ¼ ProjPðymaxÞðaxðtÞ
TbfðxðtÞÞÞ; #yyð0Þ ¼ 0

ð68Þ

5.1.1. Performance comparison. In order to generalize Theorems I and II, to non-linear systems
of form (61), we need to establish parameter drift. To this end, we add an extra assumption to
(2), and consider the following conditions on the function fð�Þ :Rn ! R:

ðaÞ x ¼ 0 , fðxÞ ¼ 0

ðbÞ xTbfðxÞ50

ðcÞ
@fðxÞ
@xn

����
x¼0

> 0

ðdÞ infx2Rn
jfðxÞj
jxj

5b > 0

ð69Þ

These conditions specify that the uncontrolled system ðu ¼ 0Þ has an unstable equilibrium at the
origin, and that the non-linearity has at least linear growth, and that a certain positivity
condition holds. Of these four conditions, (b) is the most restrictive. The following theorem
shows the extension of our main results to non-linear systems in the form of an integrator
chain (61).

Theorem 5.1

Consider the system Sðx0; y; dð�ÞÞ and the controllers XDðdmaxÞ and XP ðymaxÞ defined by (61), (67)
and (68) respectively. Consider the transient performance cost functional (14). Then
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1. If fð�Þ satisfies conditions 69-a,b,c, then 8dmax5e; 9ynmax5d s.t. 8ymax5ynmax;

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ > PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ

2. If fð�Þ satisfies conditions 69-d, then 9d > 0 s.t. 8ymax5d 9dn
max5e such that 8dmax5dn

max;

PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XDðdmaxÞÞ > PðSðX0ðgÞ;DðdÞ;DðeÞÞ;XP ðymaxÞÞ

Proof

See Reference [8]. &

5.2. Linear systems

Suppose S is a SISO linear time invariant plant described by

y ¼
bmsm þ bm�1sm�1 þ � � � þ b0
sn þ an�1sn�1 þ � � � þ a0

ðuþ dÞ ð70Þ

where ai; bj; 04i4n� 1; 04j4m; are unknown constants and dð�Þ belongs to a class of
bounded disturbances D�L1½0;1Þ: We assume that only output yð�Þ is available for
measurement. A minimal state space realisation of the plant in canonical observer form can be
obtained as follows:

Sðx0; y; dð�ÞÞ: ’xxðtÞ ¼ AxðtÞ þ BðuðtÞ þ dðtÞÞ; xð0Þ ¼ x0

yðtÞ ¼ CxðtÞ
ð71Þ

in which xðtÞ;B;CT 2 Rn; A 2 Rn�n; and

A ¼

�an�1 1 0 . . . 0

�an�2 0 1 0 0

..

. ..
. ..

. . .
. ..

.

�a1 0 0 . . . 1

�a0 0 0 . . . 0

2
6666666664

3
7777777775
; B ¼

0ðr� 1Þ

bm

..

.

b1

b0

2
6666666664

3
7777777775
; C ¼ ½1 0 � � � 0� ð72Þ

where r ¼ n� m is the relative degree of the system and

y ¼ ða0; . . . ; an�1; b0; . . . ; bmÞ ð73Þ

represents the uncertain system parameters. Consider the following assumptions:

C1. The plant is minimum phase, i.e. bmsm þ bm�1sm�1 þ � � � þ b0 is Hurwitz.
C2. The plant order n is known; the plant is of relative degree one (i.e. r ¼ 1), and the high-

frequency gain is positive (i.e. bm ¼ bn�1 > 0).
It was shown [13] that disturbance free ðD ¼ f0gÞ systems of form (71), i.e. Sðx0; y; dð�ÞÞ which
satisfy C1, C2, are stabilized by the following simple adaptive high-gain controller:

X : uðtÞ ¼ �#ddðtÞyðtÞ

’#dd#ddðtÞ ¼ yðtÞ2 #ddð0Þ ¼ 0
ð74Þ
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The above controller is a basis for ‘non-identifier-based’ adaptive controllers and #ddð�Þ
is called ‘tuning function’. Special features of such direct adaptive controllers are their
simplicity and the absence of any plant identification mechanism. For an early survey see
Reference [14].

In the presence of bounded disturbances, the dead-zone modification can be defined in the
standard form as described in Section 2.2.1. However, as an alternative}to avoid discontinuous
switching, we use so-called ‘smooth dead-zone’ defined by

D0O0ðdmaxÞðyÞ ¼
0; y 2 O0ðdmaxÞ

jyj � Z0; y =2 O0ðdmaxÞ

(
ð75Þ

leading to the modified adaptive law of form [14]

XD0 ðdmaxÞ: uðtÞ ¼ �#ddðtÞyðtÞ

’#dd#ddðtÞ ¼ D0O0ðdmaxÞðyÞ jyðtÞj;
#ddð0Þ ¼ 0; Z0 ¼ dmax

ð76Þ

The definition of projection modification in ‘non-identifier-based’ case is as follows: define

dy ¼ inffd50 j A� *ddBC is Hurwitz 8*dd5dg ð77Þ

and let dmax be a strict upper bound for dy: Define the set PðdmaxÞ :¼ ½0; dmax� and let Tm be the
first time instance that #dd hits the boundary dmax: The projection controller is defined by

XP ðdmaxÞ: uðtÞ ¼ �#ddðtÞyðtÞ

’#dd#ddðtÞ ¼ yðtÞ2; #ddð0Þ ¼ 0 8t 2 ½0; Tm�

#ddðtÞ ¼ dmax 8t 2 ½Tm;1Þ

ð78Þ

5.2.1. Performance comparison. Consider the following cost functional:

PðSðX0ðgÞ;L;DðeÞÞ;XÞ ¼ sup
x02X0ðgÞ

sup
y2L

sup
d2DðeÞ

ðjjxð�ÞjjL1 þ jjuð�ÞjjL1 þ jj ’uuð�ÞjjL1Þ ð79Þ

where

X0ðgÞ :¼ fx0 j jjx0jj4gg; g > 0

DðeÞ :¼ fdð�Þj jjdð�ÞjjL14eg; e50
ð80Þ

and L is any compact subset of DðdÞ; where

DðdÞ :¼ fy 2 R2n j A� dBC is Hurwitz and C1 and C2 holdg; d50 ð81Þ

and y is given by (73). Note that there are elements on the boundary of DðdÞ which do not satisfy
C1 and C2 and for which the closed loop is not stable, hence generating an infinite cost.
Therefore the second supremum cannot be taken over DðdÞ instead we take the supremum over a
compact subset L of DðdÞ; which necessarily does not contain any elements on the boundary of
DðdÞ which violate C1 and C2.

The following theorem shows the generalization of the main results to minimum phase linear
systems of relative degree one with known high-frequency gain:
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Theorem 5.2

Consider the system Sðx0; y; dð�ÞÞ and the controllers XDðdmaxÞ and XP ðymaxÞ defined by (71), (76)
and (78) respectively, where C1 and C2 hold. Let L� DðdÞ be compact. Consider the transient
performance cost functional (79). Then,

1. for all dmax5e; there exists dnmax5d such that for all dmax5dnmax;

PðSðX0ðgÞ;L;DðeÞÞ;XP ðdmaxÞÞ > PðSðX0ðgÞ;L;DðeÞÞ;XD0 ðdmaxÞÞ

2. there exists d > 0 such that for all dmax5d; there exists dn
max5e so that for all dmax5dn

max;

PðSðX0ðgÞ;L;DðeÞÞ;XD0 ðdmaxÞÞ > PðSðX0ðgÞ;L;DðeÞÞ;XP ðdmaxÞÞ

Proof

See either Reference [8] or [9]. &

6. CONCLUDING REMARKS

By considering a non-singular performance cost functional for a simple class of scalar nonlinear
systems, we have established two rigourous results comparing the performance of the dead-zone
and the projection based robust adaptive control systems:

* The dead-zone based controller outperforms the projection based controller when the a
priori information on the uncertainty level is sufficiently conservative.

* The projection based controller outperforms the dead-zone based controller when the a
priori information on the disturbance level is sufficiently conservative.

Extensions of these results to more physically meaningful classes of systems (e.g. minimum
phase linear systems with relative degree one and of positive high-frequency gain, and non-linear
systems in the form of integrator chain) were outlined in Section 5.

This case study has shown that a quantitative cost based approach is a theoretically tractable
approach to assess relative benefits of different robust adaptive controllers. A related result can
be found in Reference [15] where a robust backstepping design is compared to an adaptive
backstepping design w.r.t. to a non-singular transient performance cost functional. It should be
observed that the comparison of the transient performance cannot be sensibly posed without
employing a non-singular cost to formulate the problem, and there are only a few other
published results on non-singular performance bounds for adaptive controllers in the
References [11, 16, 17].

The emphasis in this paper has been on comparisons between controllers when applied
to a simple plant. This enabled the mechanism underlying the trade-offs to be elucidated
in a clear manner. It should be observed that many adaptive control designs (e.g.
backstepping designs) with the same robust modifications reduce to the controllers
considered here when applied to the scalar plant. Therefore, we have shown that these
trade-offs between designs are present for a wide class of common adaptive control approaches.
We anticipate that these trade-offs persist in much more general settings, in particular
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there are a number of immediate directions in which the results can be fruitfully generalized,
for example:

* Relaxation of assumption 69-b which is required in the current comparative proofs for
the integrator chain. Currently, the proof of parameter drift relies on the assumption
xTbfðxÞ50 which restricts the choices of fð�Þ:

* Generalization of the result to strict feedback systems, for example for backstepping
controllers.

* Relaxation of the requirement of a matched disturbance in the non-scalar state cases.
* Establishing whether the same results can be given for the alternative costs, for example,

P ¼ jjxð�ÞjjL1 þ jjuð�ÞjjL1 :
* Extension of the techniques developed for the comparison to other robust adaptive

algorithms, e.g. s-modification, relative dead-zone, etc.

The aim is to establish good characterizations of the classes of problem in which one
controller should be used in preference to another. By providing a framework to address these
questions, the results of this paper represents a step towards these more general results.
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