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Towards a performance theory of robust adaptive control

Ahmad Sanei and Mark French®"

School of Electronics and Computer Science, University of Southampton, Southampton SO17 1BJ, U.K.

SUMMARY

We consider standard robust adaptive control designs based on the dead-zone and projection
modifications, and compare their performance w.r.t. a worst case transient cost functional penalizing
the ™ norm of the output, control and control derivative. If a bound on the .#* norm of the disturbance
is known, it is shown that the dead-zone controller outperforms the projection controller if the a priori
information on the uncertainty level is sufficiently conservative. The second result shows that the projection
controller is superior to the dead-zone controller when the a priori information on the disturbance level is
sufficiently conservative. For conceptual clarity the results are presented on a non-linear scalar system with
a single uncertain parameter and generalizations are briefly discussed. Copyright © 2004 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

It is well known that adaptive controllers are susceptible to phenomena such as parameter drift
even when small input disturbances are present. To overcome such problems, a number of
standard techniques are widely utilized, such as the dead-zones modification, the s-modification
or the projection modification [1-6].

Each of these techniques have advantages and drawbacks. For example, as is well known,
dead-zone modifications generally require a priori knowledge of the disturbance level, and only
achieve convergence of the output to some pre-specified neighbourhood of the origin (whilst
keeping all signals bounded). In particular, if the disturbances vanish, then dead-zone
controllers do not typically achieve convergence of the output to zero: the convergence remains
to the pre-specified neighbourhood of the origin. On the other hand, it is also well known that
projection modifications generally achieve boundedness of all signals, and furthermore have the
desirable property that if no disturbances are present, then the output converges to zero—
however, an arbitrarily small £ disturbance can completely destroy any convergence of the
output. An extensive discussion of g-modification can be found in Reference [7].
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404 A. SANEI AND M. FRENCH

This illustrates that in the case of asymptotic performance, there are some well-known
advantages and disadvantages of the various robust-adaptive schemes. However, there are many
situations in which we cannot definitively state whether, e.g. a projection or dead-zone
controller is superior even when only considering asymptotic performance. Furthermore, the
known results, as with most results in adaptive control, are confined to non-singular
performances, i.e. without any consideration of the control signal.

The goal of this paper is to compare dead-zone and projection based adaptive controllers with
respect to a transient performance measure Z. Furthermore, the transient performance measure
will be non-singular (i.e. penalize both the state (x) and the input () of the plant); specifically we
will consider cost functionals which penalize the state (||x(:)|| o~ ), control (]|u(-)|| »~) and control
rate (]|u(-)|| ~.). In the case of a scalar non-linear plant, we will identify circumstances in which a
dead-zone based adaptive controller is superior to the projection based adaptive controller with
respect to 2, and vice versa. A scalar system has been chosen on which to develop the results to
illustrate the trade-offs between the designs in the simplest manner: however note that there is a
certain level of technical difficulty even with such simple plants.

In Section 5, we outline extensions to more general classes of systems, in particular to non-
linear integrator chains, and to minimum phase linear systems of relative degree one with
positive high-frequency gain. The proofs of these more complex results are substantively more
involved and can be found in References [8, 9].

This is a new direction in adaptive control theory—to date there are few results in adaptive
control which consider transient performance costs which penalize control effort. The inherent
trade-offs which lie in the choice between designs are central to any quantitative control theory,
and it should be observed that such trade-offs can only be studied in a non-singular performance
framework.

We conclude by indicating the directions for future work.

2. STATEMENT OF THE PROBLEM AND MAIN RESULT

2.1. System and basic control design

Consider the following class of SISO non-linear system:
Z(x0,0,d(:)): X(1) = 0p(x(1)) + u(r) + d(1),  x(0) = xo (1

where x(-)u(-), 0 € R are the state vector, the control input, and unknown constant parameter,
respectively. d(-) belongs to a class of bounded disturbances ¥ = #*°[0, 00) and ¢(:) is a known
smooth real valued function which is assumed to satisfy some or all of the following conditions
at various points in the paper:

(@) x=0 < ¢(x)=0

o(x)
®=5_7° ?)
© infieg @‘ >f>0
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PERFORMANCE THEORY OF ADAPTIVE CONTROL 405

These conditions specify that the system with no inputs (z = d = 0) has an unstable equilibrium
at the origin, and that the non-linearity has at least linear growth.

It can be easily shown (see e.g. Reference [5]) that disturbance free (2 = {0}) systems of form
(1) are stabilized by the following simple adaptive controller:

E: u(t) = —ax(t) — 0(0)p(x(0))
0(t) = ox(D(x(1),  6(0) =0

where é(-) is an adaptive estimator of 6, « > 0 is the adaptation gain, and a > 0 is the control
gain.

(€)

2.2. Robust modifications to the control design

It is well known that even a small ¥* disturbance can cause the parameter estimate
é(-) to diverge, see e¢.g. References [1, 5]. Such a phenomenon is typically called ‘parameter drift’.
To overcome this problem, two distinct approaches have been proposed: (i) using an
appropriately rich reference input to achieve persistent excitation of the identifier and
hence convergence of the parameter estimator, and (ii) modification of the adaptation
law. In this section, we briefly explain the two common methods for modifying the adaptive
law which form the basis of this paper: the dead-zone and the parameter projection
modifications.

2.2.1. Dead-zone modification. The idea of dead-zone [6] is to modify the parameter
estimator so that the adaptive mechanism is ‘switched off’ when system trajectory x(-)
lies inside a region Q, where the disturbance has a destabilising effect on the dynamics.
A priori knowledge of the size of the disturbance is typically used to define the size of the
dead-zone. Let dy.x be the a priori known upper bound of the disturbance level, i.e.
dmax = |d(-)|| o~ for all d(-) € 2. For scalar systems (1), the dead-zone region Qy(dmax) can be
simply defined by Qo(dmax) = [~19,1o], Where 1y = 0(dmax) and ¢:R" — R". The modified
adaptive law is taken to be

Ep(dmax): u(t) = —ax(t) — 0()P(x(2))
A A dmax (4)
6 = 4Dy (4 (WOPE(D)  60) =0, g ==

where Dg(x) := 0if x € ® and Dg(x) := 1, elsewhere. We denote the respective closed loop system
by (Z(xo, 0,d(")), Ep(dmax)). The following theorem establishes the properties of such controllers:

Theorem 2.1

Consider the closed loop system (X(xg,0,d(-)), Ep(dmnax)) defined by (1), (4), where d(-) is
bounded. Assume that dpyax is such that ||d(-)|| g~ <dmax- Then for any xy € R, the following
properties hold:

DI. There exist a unique solution (x(-), é(~)) ‘RT > R
D2. x(-),u(-),8(:) are uniformly bounded as a continuous function of x, |0|, dmnax-
D3. x(t) - Qy as t — oo.
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406 A. SANEI AND M. FRENCH

Proof

Due to the discontinuity in the right-hand side of the differential equations defining the dead-
zone controller (4), the solution of the closed loop is considered in Filippov’s sense [10].*

The proof of D1, D3 is standard and can be found e.g. in Reference [11], see also References
[3,5,6]. An outline proof of D2 (which is directly required later in this paper) is as follows: Let
0(t) =0 — 0(7), and define the Lyapunov function

V0, 60) = 337 + 5007 ©

A routine calculation shows V(x(¢), 5(t)) = —ax(f)* + x(1)d(¢) for all x & Qo(dmax). Considering the
different situations of x inside, outside, or on the boundary of the dead-zone Qo(dmax),
eventually yield V(x(¢), 8(¢)) < Vo(xo, |0, dmax) for all =0, where

1 1
V00, 101, dmay) = 5 max (g, 1) + 5 0% (©)

From this and (4), (5) one can easily bound x(:), () uniformly as continuous functions of

VE) = VE)(X(), |0|>dmax):
X6)<V2W,  100)1< /24T, @)

Finally, the uniform boundedness of u(-) in terms of a continuous function of ¥(xy, 0], dmax)
follows from (3) and the continuity of ¢(-). O

2.2.2. Projection modification. The projection modification [4] is an alternative method to
eliminate parameter drift by keeping the parameter estimates within some a priori defined
bounds I1(0max) Where Omax is the a priori knowledge of the parametric uncertainty level, and is
defined as the strict upper bound of |0|. Consider the unmodified adaptive law é(t) = g(x(2), é(t)),
9(0) = 0. By this method we project g .= g(x(), é(t)) on the hyperplane tangent to boundary
OIT(Omax) at é(t) when é(t) is on the boundary oIl(0,x) and g pointing outward. The general
definition of the projection can be found in Reference [12]. For scalar systems where 0 € R, a
simplified version of parameter projection can be obtained by defining I1(0max) = [—Omax> Omax],
and

, |9 101<Omax or Gg<0
Projrg,,.(9,0) = . . ®)
0, 10| = Omax and 6g >0
The modified adaptive law is taken to be
0(t) = Projn,,(9.0), 6(0) =0 ©)
Consequently, the projection controller Ep(0,x) for systems (1) is defined as follows:

Ep(Omax): u(t) = —ax(t) — 0()p(x(2))

. 3 (10)
0(1) = Projpy g, (x(Dp(x(1)),  6(0) =0

¥Such a dead-zone has been chosen for simplicity, however, in practical situations, principled approaches to avoiding
chattering are available, see for example the hysteresis dead-zone approach of Reference [8]-where analogous results to
those presented in this paper for the standard dead-zone can be found.
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The robustness of the respective closed loop system (X(xo, 0,d(+)), Ep(fmax)) 1s given by the
following theorem:

Theorem 2.2

Consider the closed loop (X(xg, 0, d(+)), Ep(Omax)) defined by (1), (10). Assume Oy, is such that
|0] < Omax. Then, for any xy € R:

P1. The solution (x(-), 6(-)): R* > R? exists.
P2. x(*),u(-),0(:) are uniformly bounded as a continuous function of xo, ||d||, Omax.

Proof

Since the right-hand side of the closed loop (Z(xo,0,d(+)),Ep(Omax)) is locally Lipschitz, an
absolutely continuous global solution (x(-), é(-)) exists once the boundedness of solution has
been shown. Let é(t) =60- é(t), and define the same Lyapunov function as (5). By a well-known
property of the projection operator —0(¢) Proj(x(¢)¢(x)) < — 0()x(¢)p(x) (see e.g. Reference [12]),
a routine calculation shows

VG0, 00)< — k(Y G0, 00) = V*(Omass 1) (1n
where
: g el
P Ounas 1) 1= 5 O+, (12)

and 0<k<a/2. It follows that V(x(z), 0(1)) <0 for all ¥ > V*. Therefore,
V(x(2), 6(6) <V (%0, |||, Ommax) = max{¥(xo,0), V*(Omax. I} V=0 (13)

The uniform boundedness of x(-), u(-) as a continuous function of ¥ (xo, ||d||, Omax) follows from
(10), (13) and continuity of ¢(-). O

2.3. Statement of the main results

The ultimate goal in control theory is to design control laws which achieve good performance for
any member of a specified class of systems. Consider a system X which belongs to the set of all
admissible systems &*. The performance of a controller E is given by a cost functional J of some
measurable signals (state/output/input). The goal of this paper is to establish a comparison
between dead-zone and projection methods. We are interested in a worst case scenario, i.c. a
performance # which is defined over the power set of #* and is formulated as a supremum of
all cost functionals. Furthermore, the performance measure will be non-singular, i.e. penalize
both the state (x) and the input (u) of the plant; specifically, we will consider cost functionals of
the form

P(E(X0(7),A0), Z(€)),E) = sup sup sup ([xC)|lg~ + [[uC)ll g~ + [aC)lle~)  (14)
x0eZo(y) 0eA() de(e)
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408 A. SANEI AND M. FRENCH

where
Y(e) = {d() e L7 |ld()l| g~ <e}

A(0) = {0 e R||01<d} (15)
Zo(y) = {x0 € R [Ixoll <7}
for some ¢,6>0 and y > 0.
The following theorems are the main results of the paper:
Theorem 1

Suppose ¢(-) satisfies conditions 2-a—2-c. Consider the system X(xg, 0,d(-)) and the controllers
Ep(dmax) and Ep(Onax) defined by (1), (4) and (10), respectively. Consider the transient
performance cost functional (14). Then for all dyax >¢, there exists 0% > such that for all

max =
%
gmax = Hmax’

P(E(Zo(7), AD), Z(2)), Ep(Omax)) > P(E(Z0(7), A(D), Z(€)), Ep(dimax)) (16)

This theorem can be interpreted as stating that if the a priori knowledge of the parametric
uncertainty level 0, is sufficiently conservative (0pax = 01";%), then the dead-zone based design
will outperform the projection based design.

70 2

Projection Dead-zone

Dead-zone Projection

*

(~)y 0, d" max o

max max

Figure 1. Statement of the main results: Theorem I (left), Theorem II (right).
Theorem I1

Suppose ¢(-) satisfies conditions 2-c. Consider the system XZ(xy,0,d(-)) and the controllers
Ep(dmax) and ZEp(Onax) defined by (1), (4) and (10), respectively. Consider the transient
performance cost functional (14). Then there exists d > 0 such that for all 0,4 =9, there exists

dk . =e¢ so that for all dpax=>d,,,
PEZ0(7), AD), Z(¢)), Ep(dmax)) > P(E(Z0(7), A9), Z()), Ep(Omax)) amn

This theorem can be interpreted as stating that above a certain uncertainty level ¢, if the
a priori knowledge dn,x of the disturbance level is sufficiently conservative (dmax =di5,, ), then the
projection design will outperform the dead-zone design.

In fact, as it has been shown in Figure 1, we will prove the stronger results that the ratio
between the two costs can be made arbitrarily large (Figure 1). That is, for Theorem I:

PE0(7), A(9), Z()), Ep(Omax))

— — 00 aS Omax = 00 Vdmax=¢ 18
PE T o), ), D)), Ep(dmar) (1)
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Alternatively, for Theorem II, we have
P(E(Zo(7), AS), Z(¢)), Ep(dmax))
,@(Z(%o(y), A(é): 9(8))’ EP(gmax))

Note that if appropriate sign changes are made to the controller, equivalent results also hold if
the sign is changed in condition 2-b, i.e. if d¢(x)/dx|,_y <O0.

— 00 aS dmax = 00 VOmax =90 (19)

3. PROOF OF THEOREM I

Firstly, we show that £ = oo for the unmodified design (3) (Proposition 3.3). From this
we can show that the projection modification design, Zp(0max) (10) has the property that
P — 00 as Omax — 00 (Proposition 3.4). Finally, we show that 2 < oo for the dead-zone design,
Ep(dmax) (4) and that # is independent of 0.« (Propositions 3.5). This suffices to establish
Theorem 1.

Proposition 3.1

Suppose ¢(:) satisfies conditions 2-a—2-c. Consider the closed loop system (Z(x,0,d(-)),E)
defined by (1), (3), where d(¢) = ¢, for some ¢#0. Then

x(t)—>Oast—>ooc>0A(t)—>ooast—>oo (20)

Proof

—) Suppose for contradiction 6(f)~>00 as ¢ — co. Then 6(f) » 0*<oo, since 0(f) is
monotonically increasing by (2). Therefore by continuity of (1), (x(7), 0(t)) = (0, 0*) is an
equilibrium point of the closed loop (Z(xo, 8, d(-)), ). Hence (0, 0*) must be a solution of the
following equations:

—ax(t) + (0 — 6)p(x(1)) +&e =0

wx(n(x(1)) = 0

Clearly, given ¢#0 and assumption 2-a, (21) has no solution, hence contradiction.
Therefore, 6(f) - oo as t - o0.
<) Defining the Lyapunov function ¥ (x(¢)) = x(¢)* /2, we have that

@21

V(x(1)) = —ax()’ + ex(t) + p(2) (22)
where in the interest of brevity we have denoted
(1) = ¢(x, $,0) = (0 — 00)x()p(x(1)) (23)
It follows that V(x(f)) is decreasing if
ax(t)? /2 — ()= & /2a (24)
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410 A. SANEI AND M. FRENCH

Now, we claim the convergence of x(-): if x(£)-~0 as ¢ — oo then either 1. liminf,_,
|x(#)] > 0 or 2. lim inf,_, «, |x(¢)] = O:

1. Suppose liminf, . [x(£)] > 0. Then there exists & >0 s.t. [|x(¢)>¢ for
all ¢. Observing that conditions 2-a and 2-b imply that x¢(x) > 0 for all x#0, it
follows by (23) and 2-c that ¢@(f) > —oco as é(t) — 00. Hence by (22),
V(x(f)) > —0o as t — 0o, i.e. V(x(f)) » —oo. This contradicts the positive
definiteness of V().

2. If lim inf,_ «, [x(¢)] = 0, then there exists ¢ >0 and a positive divergent sequence
{t} ;> such that V(x(t;)) > 0 and [x(z)| > €. Since by (23), (1) — —00 as k — o0,
it follows that (24) holds at time #;, hence contradiction.

Therefore, x(f) — 0 as t — oo. O

Proposition 3.2

Suppose ¢(-) satisfies conditions 2-a—2-c. Consider the closed loop system (Z(x,6,d(-)),E)
defined by (1), (3), where d(¢) = ¢, for some e#0. If x(¢) is bounded and uniformly continuous,
then

x(t) > 0, 6(f) > o0 as t > 00 (25)

Proof

Suppose for contradiction x(¢)—~0 as t - oo. Then there exists a M > 0 and a positive divergent
sequence {f};> for which x(#;) > M. Since, by assumption, x(¢) is uniformly continuous, then,
for e = M /2 we have

M
dJo>0st Vrel0,w], Vi>0 |x(t) —x(+ 1) <7 (26)
Therefore, |x(#) — x(t + 1)|<M/2 and since x(#)>M, we have that x(# + 1) >M/2, ie.
x(t)=M/2 for all ¢ €[4, t; + w]. Now by (2), the boundedness of x(), and the continuity of
¢(-), we have that ¢(x(¢)) = > 0 for some S, i.c.

AN >0 s.t. ax(t)p(x(1))=N Vi € [ty, t + I] 27)

It follows that

/tﬁo ox(t)p(x(r)) dt = No (28)

t

With no loss of generality, we may assume #; — # = . It follows that

0t + w) = /0 e f(7) dr = /0 o (1) (x(t)) de = kNS (29)

SO é(tk + w) - 00 as k — 0o, hence é(t) — 00 as t — oo. It follows by Proposition 3.1 that
x(t) > 0 as t - 0o, hence contradiction. From this and Proposition 3.1, the claim of the
proposition follows. O
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Proposition 3.3

Suppose ¢(-) satisfies conditions 2-a—2-c. Consider the closed loop (Z(xo, 0, d(+)), Z) defined by
Equations (1) and (3) and the transient performance cost functional (14). Then

PEZ (1), AD), Z(¢)), E) = o0 (30)
Proof

Let xo € Zo(y), 0 € A(d), and choose d(f) = ¢#0. Denote limsup, ., by lim. Suppose for
contradiction 2(XZ(xo, 0,d(-)),E) < oco. Consider x(¢). There are two cases: either

. lim |x(¢)] = oo or 2. lim |x(t)| <o00:

(1) Suppose lim |x(¢)| = 00, i.e. lim | — ax(f) + (0 — 9(t))q§(x(t)) + ¢&| = o0. Therefore, either
(a) lim |x(r)| = o0, Wthh implies that |[x(-)|| o~ = 0o, hence contradiction, or
(b) lim |x(¢)| < 0o, therefore lim |u(f)| = oo, i.e. |ju(- )|| o~ = 00, hence contradiction.

(2) Suppose lim |x(f)|<oco i.e. x(f) is uniformly continuous. Again there are two
possibilities: either a) lim |[x(¢)] = oo, or b) lim |x(¢)| < oo:
(a) Suppose lim |x(¢)] = oo, which implies that ||x(-)|| o~ = 00, hence contradiction.
(b) Suppose lim |x(f)| < o0, i.e. x(7) is bounded. Therefore, by Proposition 3.2

x(t) > 0, 6(t) > 00 as t — 0o (31)

Considering lim #(¢), by applying (31), we observe that

Tim 4(t) =Tim [( ax(t) + (0 — 6)PC(D) + ¢) (—a +éa) a¢(x))
T x(r)¢(x(r))2]
=hm{ (9(r)¢<x(r))—s)(aw(t)a‘f’(’“))] 32)

Now there are two possibilities: either (i) 0(t)¢(x(t))ﬁL>? (including the possibility
that lim,_, 0(t)¢(x(t)) does not exist), or (i1) lim,_, 0(t)¢(x(t)) =&

(1) Suppose lim;_, G(I)qb(x(t)) does not exist or H(t)db(x(t))%s as t — 00. Since

¢()

a+0()—= 5 00 as x(f) > 0, 6() - o0 (33)

it follows by (2-b) that ||u(-)|| g~ = 00; hence contradiction.
(i1) Suppose lim;_,~, 0(¢)¢(x(¢)) = &. By (31) we have that

V6*>0 3T >0 st 6(t)>6* Vi>T. (34)
Now we choose d,(+) as follows
&, t<T,
(1) = (35)
—e, t>T

Note that dy(¢f) = d(¢) for all +<T. With this choice, by smoothness of ¢(:),
continuity of x(-) and causality, we have that

lim x(t) =x(7),  lim (1) = 6(T) (36)
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412 A. SANEI AND M. FRENCH

where lim,_,r+ denote lim,,7, 7. It follows that

a</><x)) 2 90,

(Zlir% a(t)) — () = 23( +00) (37)

By assumption 2-b, difference (37) can be made arbitrarily large by choosing a
suitable 6*. Then either #(T) is large or lim,_ 7+ u(¢) is large. Therefore, ||u(-)|| o~
can be made arbitrarily large; hence contradiction.
The proof is completed since 2(Z(Z (), A(D), Z(¢)), E) = P(Z(xo, 0,d(-)), E) = o0. O
Proposition 3.4

Suppose ¢(-) satisfies conditions 2-a—2-c. Consider the closed loop system (X(xo,0,d(")),
Ep(0max)) defined by Equations (1) and (10). Then

PEZ (1), A), Z(€)), Ep(Omax)) = 00 aS Omax — 00 (38)

Proof
It is convenient to define

2012, E) = (IOl 0,77 + 1Ol 0,77 + 1O #~p0,77) (39)
Now let M > 0. By Proposition 3.3, there exists xyg € 2, d(-) € Z(¢), 0 € A(J) so that

P10,00)(Z(x0,0,d(-), B) =2M (40)

It follows that there exists 7 > 0 s.t. 2, T](E(xo, 0,d(-)),E) =M. Since O,y diverges, by choosing
Omax = 20(T ), we have that 0, > H(T ), i.e. the unmodified and the projection designs are
identical on [0, 7]. Therefore,

P(X(Z0(7), AO), Z(¢)), Ep(Omax)) = Zjo,1(E(x0, 0, d (), Ep(Omax)) = M (41)
Since this holds for all M > 0, this completes the proof. O

Proposition 3.5

The closed loop (Z(xo, 0, d(+)), Ep(dmax)) defined by (1) and (4) has the property
y(z(%ﬂO("/); A(6), 2(¢)), Ep(dmax)) <00 Vdmax > € (42)

Proof

Let xp € Zo(y), 0 € A(9) and d € Z(¢). The uniform boundedness of signals x(-), é(-), u(-) as a
continuous function of V(xg,|0|, dnax) follow from Theorem 2.1. Therefore by (1), x() is
uniformly bounded in terms of a continuous function of ¥;(xo, |0|, dmax). So

0
i) = ~ax(t) ~ 60 22 x0) — o Do, x09(x0)° 3)
is uniformly bounded as a continuous functlon of Vy(xo, 0], dmax). That is
P(Z(x0, 0, d(")), Ep(dmax)) <M (Vo(x0, 0], dmax)) (44)
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PERFORMANCE THEORY OF ADAPTIVE CONTROL 413

where M(-) is continuous. The proof is completed by taking the supremum over system
arguments xo, 0, d, hence

Q(Z(QZO(V), A(é), @(8))7 ED(dmax)) <00 Vdmax > ¢ O 45)

Proof of Theorem I

This is a simple consequence of Propositions 3.4 and 3.5. O

4. PROOF OF THEOREM 1II
In order to prove Theorem II, first we give the following propositions:

Proposition 4.1
Suppose ¢(-) satisfies condition 2-c. Consider the closed loop system (Z(xo, 0, d(-)), Ep(dmax))
defined by (1), (4). Then 36 > 0 such that

,@(Z(%O(y),A(5), @(b))’ ED(dmax)) — 00 a8 dpax — X0 (46)

Proof

Note that by (4), [|Q|| = 00 as dmax — o0 (c.f. to the discussion in Section 4.1). Let xg € Zo(y),
0 € A(d) and d € Z(¢). Suppose xg € Qo (i.e. y<n,). We define 7 as follows:

{oo if x(r) e Qy V=0

(47)

inf{tr=0]x(¢)] = ny} otherwise
Note that by dead-zone definition (4), é(t) =0 for all ¢ €0, ), hence é(t) =0 for all £ €]0,71)
since 0(0) = 0. Therefore,
x(t) = —ax(t) + 0p(x(t)) + d(r) Vte[0,7) (48)
Condition 2-c can be rewritten in the following form:

X

P(x)
It follows that there exists 6 = 2aM such that if 8§ = 9, then Vx(¢) > 0,

_ x _ Jx|
—ax + 0p(x) = <a(l)(x) + 9> ox) = <a e

It follows that if d(f) = ¢, then |x(¢)| > ¢ for all ¢ € [0, 1) i.e. the trajectory x(¢) hits the boundary
0Qp 1n finite time, hence 1< oco. It follows that

()|~ = ()] = 0€0 (51)

If xo & Qo then we are outside the dead-zone, i.e. |[x()|| o~ =|xo| =10Qo|. The proof is completed
by taking di.x — 00, i.e. |Qy| — oco. Hence,

sup
xeR

<M <0 (49)

+ 0) $EI=aMlp@ >0 (50)

P(E(Z (1), AD), Z(¢)), Ep(dmax)) = P(E(x0, 0, d(-)), Ep(dimax)) = 00 O (52)
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Proposition 4.2

Consider the closed loop system (XZ(xg, 0, d(+)), Ep(Omax)) defined by (1), (10). Consider the
transient performance cost functional defined in (14). Then

P(E(Z0(7), A0), Z(¢)), Ep(Omax)) <00 VOmax =0 (53)

Proof

Let xo € Zo(y), 0 € A(6) and d € Z(¢). A direct application of property P2 of Theorem 2.2
guarantees the uniform boundedness of signals x(:),0(-), u(-) of the closed-loop system
(Z(x0,0,d(-),ZEp(6max)) as a continuous function of xo,||d||, Omax. Therefore by (1), x(-) is
uniformly bounded in terms of a continuous function of x, ||d||, Omax. Hence

i) =~ (a+ 6252 )50) - a9a(0) Projt)6x0) (9

is uniformly bounded in terms of a continuous function of x, ||d||, Omax. It follows that there
exists a continuous function M (xo, ||d||, Omax), such that

P(E(x0, 0, d(-), Ep(Omax)) < M (x0, lld|l, Omax) < 00 (55)
The claim of proposition follows by taking the supremum over system parameters xg, 0, d as in

(15) on both sides of (55) and observing that, by uniform boundedness, the right-hand side
remains bounded for all O, = 6. O

Proof of Theorem I

This is a simple consequence of Propositions 4.1 and 4.2. O

The proof of above theorem is heavily based on the very natural assumption that the size of
the dead-zone is a divergent function of a priori information on the disturbance level. In
particular, 1y := 9(dmax) = dmax/a implies that 2(Z(Zo(y), A(0), Z(¢)), Ep(dmax)) = 00 a8 dmax —
oo. In the following section we show that the other choices of #, also yield the similar results.

4.1. Choices of dead-zone

In this section, we consider alternative choices for the dead-zone, and variations on the
definition of the controller. For brevity, only an outline of the relevant proofs are discussed, see
Reference [8] for a fuller discussion. Let Qy == [—ny, 7], Wwhere ny := 0(dmax), and define Z =
P(E(Z0(7), A(d), D(¢)), E) as in (14). There are three distinct possibilities for 7, = 0(dmay)’

(1) 179 = 0(dmax) = 00 as dmax = 00. It is straightforward to observe that 2 = oo by
Proposition 4.1.

(i1) ng = 0(dmax) & 0 as dmax = 00. By shrinking the dead-zone, we have a sequence
of modified controllers Ep(dnax) tending to unmodified controller E. It follows that as
dmax — 00, the performance of the sequence of modified closed loops 2(Z(Zo(y), A(0),
2(¢)),Ep(dmax)) tends to the performance of that of unmodified closed loop

$Other cases such as oscillatory but bounded g(-) can be handled suitably by considering monotonic subsequences.
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PE(Xo(y), A0), Z(¢)), E) for which by Proposition 3.3, # = oo, therefore,
P(E(Z0o(y), A(D), Z(¢)), Ep(dmax)) = 00 aS dmax — X0 (56)

(i) 1y = 0(dmax) <c as dmax — 00. Recall the closed loop (Z(xg, 0, d(-)), Ep(dmax)) defined by (1),
(4). We have shown in Theorem 2.1 that the choice of Qf = [—n§, n¥], where 7 = 0(dimax) =
dmax/a, suggested by Lyapunov theory, suffices to establish D1-D3. However, it is well
known that the Lyapunov method only provides a sufficient condition for stability and in
fact there are systems for which x(r) — Qg = [—c, ¢] where ¢ <#j. However, in the following,
we will illustrate that this is not true if the controllers generalized for tracking problems.
Consider system (1) and define e(¢) == x(f) — xer(f) Where xr(+) is a reference signal. The
objective is for x(-) to approximately track the reference signal x.(-), i.e. e(f) —» Qp as
t - oo. Let us define the following tracking controller:

u(t) = —ae(t) — 0(6)p(x(1)) + Xrer (1) (57)
0(t) = Do, ()e(Dp((1)) 6(0) = 0 (58)

Observe that given x.; = 0, the tracking controller is identical to the dead-zone controller
(4). In the presence of bounded disturbances, a routine calculation yields to

&(r) = —ae(t) + (0 — 0(D)P(x(1) + d(1) (59)

The choice of 7y = dmax/a is suggested by Lyapunov analysis and implies e(f) —» Qo as
t — o0o. However, inspired by the above explanation one may choose 5, := ¢. The following
example illustrates the closed loop response to such a choice.

Example 4.1
Consider the closed loop interconnection system defined by (1), (57), and (58), where
o(x(@) =x(@), a=1, 0=2, d(-)=100, c¢=10, y.r = 10sin(?) (60)

The behaviour of the closed loop signals have been shown in Figure 2.

As illustrated in Figure 2, the tuning function é(-) drifts. Comparing this situation to that of
unmodified controller (3), one can easily build a similar setup as Proposition 3.3 to achieve
2 = oo. Therefore, this provides a motivation for the choice of dead-zone 9(dmax) = dmax/a-

5. GENERALIZATIONS

In this section, we outline the extension of the main results given in Section 2.3 to wider classes
of systems, namely to non-linear systems in the form of integrator chain and to linear systems of
relative degree one which are minimum phase and have positive high frequency gain. The proofs
of these more general results follow the same structure to the above proof for the scalar case, but
the details are substantively more involved. The proofs can be found in Reference [§], see also
Reference [9].
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Figure 2. Tracking for Example 4.1.

5.1. Integrator chain

By an ‘integrator chain’, we mean the following SISO non-linear system:

Z(x0,0,d()): Xi(1) = xi1(2),
Xn(1) = 0p(x(1)) + u(t) + d(1)
() = x1(1)

I<isn—1

Define the feedback law

u(t) = —a"x(t) = 0()p(x(1))
where a = [a), ..., a,]" is chosen such that the matrix
[0 1 0 ... 0]

0 0 1 0 0

0 0 0o ... 1

—d] —dp; —az ... —dp]

(61)

(62)

(63)

is Hurwitz. Let P, O be symmetric positive definite matrices satisfying the Lyapunov equation
ATP + P4 = —Q and define the weighting vector b = (P + P")B, where B = (0,...,0,1)". The
signal 0:R" — R in (62) represents the adaptive estimator of 0 and is updated by the online

adaptive law:

0(t) = ax()) bp(x(1),  6(0) =0

Copyright © 2004 John Wiley & Sons, Ltd.

(64)
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It can be shown that the controller E, consisting of the feedback law (62) and the adaptive law
(64), stabilizes systems X(xg, 0, d(:)) of form (61) when 2 = {0}.

However, in the presence of bounded disturbances, we need to modify adaptive law (64).
Based on the description of the dead-zone modification described in Section 2.2.1, we define the
dead-zone region Q(dimax):

Qo(dmax) = x| XTBC< ”Ié} (65)
where
\/ A(P)
Ny = Q(dmax) = m |6 dmax (66)

Consequently, the dead-zone controller is defined as follows:
Ep(dmar): u(t) = —a"x(t) — B(O)P(x(1))
0(1) = Doty @)ox(D) bP(x(1)),  0(0) =0

The projection operator defined in Section 2.2.2 can be used for integrator chain system (61)
since 6 € R. A slight modification of (10) yields

Ep(Omax): u(?) = —a"x(t) — 0()P(x(2))

6(t) = Projr,., (O bo(x(®), 6(0) =0

(67)

(68)

5.1.1. Performance comparison. In order to generalize Theorems I and II, to non-linear systems
of form (61), we need to establish parameter drift. To this end, we add an extra assumption to
(2), and consider the following conditions on the function ¢(-): R" — R:

@x=0 < ¢@x)=0

(b) xThp(x) >0

LGl (69)
ax” x=0

(€3]

x|

©

(d) infycpr =p>0

These conditions specify that the uncontrolled system (# = 0) has an unstable equilibrium at the
origin, and that the non-linearity has at least linear growth, and that a certain positivity
condition holds. Of these four conditions, (b) is the most restrictive. The following theorem
shows the extension of our main results to non-linear systems in the form of an integrator
chain (61).

Theorem 5.1

Consider the system Z(xy, 8, d(-)) and the controllers Zp(diax) and Ep(Oimax) defined by (61), (67)
and (68) respectively. Consider the transient performance cost functional (14). Then
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1. If ¢(-) satisfies conditions 69-a,b,c, then Vdmax =>¢, 305, >0 s.t. VOmax = 0%,
P(E(Z0(7), A), Z(¢)), Ep(Omax)) > P(Z(ZL0(7), A(D), Z(¢)), Ep(dmax))
2. If ¢(-) satisfies conditions 69-d, then 30 > 0 s.t. VOmax =0 3d}%,, >¢ such that Ve, >d

9(2(%0(3’): A(é)a @(P))a ED(dmax)) > @(2(9”0()})’ A(5)9 9(‘0)): EP(QmaX))

Proof
See Reference [§]. O

5.2. Linear systems

Suppose Z is a SISO linear time invariant plant described by

bys™ + bmflsmi1 + -+ b()/
= d 70
y S”+an_]s’1—1—|-"'+ao (- ) ( )
where a;,b;, 0<i<n—1, 0<,j<m, are unknown constants and d(-) belongs to a class of
bounded disturbances ¥ = £™[0,00). We assume that only output y(-) is available for
measurement. A minimal state space realisation of the plant in canonical observer form can be
obtained as follows:

X(x0, 0,d(-)): X(¢) = Ax(£) + B(u(t) + d(1)), x(0) = xo

(71)
() = Cx(1)
in which x(¢),B,CT e R", 4 e R™", and
[—a,.; 1 0 ... 0] [0(p — 1)
—a,-2 01 0 O b
A= , B= " , C=[1 0 --- 0] (72)
—daj 0o 0 ... 1 b1
L —ao 0 0 ... 0] L by |
where p = n — m is the relative degree of the system and
9:(00;--~;an—15b0,---,bm) (73)

represents the uncertain system parameters. Consider the following assumptions:

C1. The plant is minimum phase, i.e. b,,s" + b_1s" "' + -+ 4 by is Hurwitz.

C2. The plant order n is known; the plant is of relative degree one (i.e. p = 1), and the high-
frequency gain is positive (i.e. b, = b,—1 > 0).

It was shown [13] that disturbance free (2 = {0}) systems of form (71), i.e. X(xo, 0, d(-)) which

satisfy C1, C2, are stabilized by the following simple adaptive high-gain controller:

L u(t) = —3(0)y(t)
3(t) = w1y 8(0)=0

[1]

(74)
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The above controller is a basis for ‘non-identifier-based’ adaptive controllers and 5(-)
is called ‘tuning function’. Special features of such direct adaptive controllers are their
simplicity and the absence of any plant identification mechanism. For an early survey see
Reference [14].

In the presence of bounded disturbances, the dead-zone modification can be defined in the
standard form as described in Section 2.2.1. However, as an alternative—to avoid discontinuous
switching, we use so-called ‘smooth dead-zone’ defined by

09 Y€ QO(dmax)
D, = 75
) {|y| — gy ¢ Q(day) "

leading to the modified adaptive law of form [14]
Ep (dmar): u(t) = —5(0)(0)
3(t) = Digy gy YOl 5(0) =0, 1l = dinax
The definition of projection modification in ‘non-identifier-based’ case is as follows: define

89 = inf{6>0|4 — 6BC is Hurwitz V¥6>4} (77)

(76)

and let d,.4 be a strict upper bound for Jy. Define the set [1(dax) == [0, dmax] and let 7,, be the
first time instance that ¢ hits the boundary d,,x. The projection controller is defined by

Ep(Omax): ult) = —3(1)1(2)
5(t) = W, 8(0)=0 Vrel0,T,] (78)
5(f) = Omax V1 € [T}y, 00)

5.2.1. Performance comparison. Consider the following cost functional:
PE(Fo(y), A, Z(¢)),E) = sup sup SUP) (ROl g~ + Ol + [laC)l 2~) (79)

x0Z0(y) OeA ded(e

where
Zo(y) = {xo | lxoll <y}, y>0
0 ol 1lxo (80)
P(e) = {d0) ldO)l| o~ <&}, &0
and A is any compact subset of A(J), where
A(d) = {0 € R*" |4 — 6BC is Hurwitz and Cl and C2 hold}, >0 (81)

and 0 is given by (73). Note that there are elements on the boundary of A(d) which do not satisfy
Cl and C2 and for which the closed loop is not stable, hence generating an infinite cost.
Therefore the second supremum cannot be taken over A(d) instead we take the supremum over a
compact subset A of A(J), which necessarily does not contain any elements on the boundary of
A(0) which violate C1 and C2.

The following theorem shows the generalization of the main results to minimum phase linear
systems of relative degree one with known high-frequency gain:
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Theorem 5.2

Consider the system X(xo, 0, d(-)) and the controllers Ep(dmax) and Ep(Onax) defined by (71), (76)
and (78) respectively, where C1 and C2 hold. Let A = A(J) be compact. Consider the transient
performance cost functional (79). Then,

1. for all dyax >¢, there exists 6% >4 such that for all Smay = 5*

max = max?

PEZ (), A, 2()), Ep(Omax)) > P(Z(X0(7), A, Z()), Ep (dmax))

2. there exists 0 > 0 such that for all dyay >0, there exists d,, >¢ so that for all dm. >d,,,
P(E(Z o), A, 2(e)), Ep(dimax)) > P(E(Z0(1), A, Z(2)), Ep(Omax))

Proof
See either Reference [8] or [9]. O

6. CONCLUDING REMARKS

By considering a non-singular performance cost functional for a simple class of scalar nonlinear
systems, we have established two rigourous results comparing the performance of the dead-zone
and the projection based robust adaptive control systems:

® The dead-zone based controller outperforms the projection based controller when the a
priori information on the uncertainty level is sufficiently conservative.

® The projection based controller outperforms the dead-zone based controller when the a
priori information on the disturbance level is sufficiently conservative.

Extensions of these results to more physically meaningful classes of systems (e.g. minimum
phase linear systems with relative degree one and of positive high-frequency gain, and non-linear
systems in the form of integrator chain) were outlined in Section 5.

This case study has shown that a quantitative cost based approach is a theoretically tractable
approach to assess relative benefits of different robust adaptive controllers. A related result can
be found in Reference [15] where a robust backstepping design is compared to an adaptive
backstepping design w.r.t. to a non-singular transient performance cost functional. It should be
observed that the comparison of the transient performance cannot be sensibly posed without
employing a non-singular cost to formulate the problem, and there are only a few other
published results on non-singular performance bounds for adaptive controllers in the
References [11, 16, 17].

The emphasis in this paper has been on comparisons between controllers when applied
to a simple plant. This enabled the mechanism underlying the trade-offs to be elucidated
in a clear manner. It should be observed that many adaptive control designs (e.g.
backstepping designs) with the same robust modifications reduce to the controllers
considered here when applied to the scalar plant. Therefore, we have shown that these
trade-offs between designs are present for a wide class of common adaptive control approaches.
We anticipate that these trade-offs persist in much more general settings, in particular
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there are a number of immediate directions in which the results can be fruitfully generalized,
for example:

® Relaxation of assumption 69-b which is required in the current comparative proofs for
the integrator chain. Currently, the proof of parameter drift relies on the assumption
xThp(x) =0 which restricts the choices of ¢(-).

® Generalization of the result to strict feedback systems, for example for backstepping
controllers.

® Relaxation of the requirement of a matched disturbance in the non-scalar state cases.

e Establishing whether the same results can be given for the alternative costs, for example,
P = xOll g~ + lluC)ll 2~

® Extension of the techniques developed for the comparison to other robust adaptive
algorithms, e.g. g-modification, relative dead-zone, etc.

The aim is to establish good characterizations of the classes of problem in which one

controller should be used in preference to another. By providing a framework to address these
questions, the results of this paper represents a step towards these more general results.

10.
. French M, Rogers E, Szepesvari Cs. Uncertainty, performance, and model dependency in approximate adaptive
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