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0.1 Objectives

Biological systems possess enviable information processing abilities, which

are rooted in the self-organization of context-sensitive building blocks. Molec-

ular computing can utilize this principle. Our objective in the present chap-

ter is to show that this opens up a realm of information processing that is

inaccessible to programmable machines. Our second objective is to present

a table top prototype that illustrates a methodology for pursuing this direc-

tion.

Algorithmic complexity theory provides a framework for elucidating the

comparative capabilities of programmable and nonprogrammable systems.

Programmable architectures are amenable to a more compressible descrip-

tion, concomitant to the fact that they must conform to a simple user man-

ual. To implement complex input-output behavior it is necessary to sup-

ply a complex program. The programmer therefore must be the source of

complexity. Biomolecular architectures are sharply different: complexity is

inherent. The capabilities are constructed by orchestrating a repertoire of

complex components through an adaptive process. The number of functions

that can be implemented is limited by the time available for adaptation and

may not be larger than that in programmable systems. We will however

argue that the complexity of the actual achievable behavior is greater.

John von Neumann (1951) referred to such noncompressible complexity

in a discussion of the visual cortex:

It is not at all certain that in this domain a real object might not

constitute the simplest description of itself, that is, any attempt
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to describe it by the usual literary or formal-logical method may

lead to something less manageable and more involved.

In our case the real objects are proteins. We will show that it is possible

to utilize the conformational dynamics of proteins to process input signal

patterns, though at this stage not in a manner that transcends formal de-

scription.

0.2 Algorithmic Complexity Rationale

Digital computers are commonly referred to as general purpose machines.

The seeming implication is that with sufficient memory and speed it should

be possible to implement any computable process on such a machine. The

concept of computation universality, originally expressed in terms of the

Turing model of computation, captures this idea. For the present purposes

the Turing formalism can be equated to a digital machine with no a priori

limit on available memory and time. Such an idealized machine would be

capable of computing any computable function. Realizable machines are

of course finite. The memory available may not be sufficient to perform

the desired computation; or the computation might require an unacceptable

span of time. Here we are especially concerned with a further limitation:

the size of the program that can be presented to the machine is also subject

to practical restrictions.

The above distinction, between limits on processing capacity and pro-

gram size, has an important implication. Even if processing speed and

memory space could be increased indefinitely, a large class of information
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processing tasks would still be inaccessible. The programs, or maps describ-

ing the input-output behavior of the system, can be too large to practically

specify.

Let us take as a computer any system which, starting from a state that

encodes a problem description, will change to a state interpretable as the

solution of the problem. The limited precision and limited dynamic range

of the computer’s components, together with the requirement of a finite

response time, restrict any computer to a finite set of discernible inputs and

a finite repertoire of outputs.

A deterministic computer is a physical realization of a function that takes

an input signal pattern as argument and returns as the value the associated

output signal pattern. To make the computer perform a desired task it

is necessary to specify the appropriate function. The specification may be

provided explicitly by programming or, in case of an adaptable system,

implicitly through training. In either case the specification has to select the

desired system behavior from the set of potential behaviors.

Consider a deterministic computer that is supposed to respond to each

n-bit input pattern with an appropriate m-bit output pattern. The function

that maps the input into output can in principle (and for small values of n

also in practice) be described by a table. The table would have 2n rows, one

for every possible input, and each row would contain the pattern that the

computer should output in response to this input. Programming a computer

requires that the table it should implement be communicated to it.

The amount of information necessary to specify the input-output map is

given by the number of bits needed to select one specific table from the set
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of all possible tables. There are 2n rows corresponding to the possible inputs

in the table, and any one of the 2m possible outputs may be assigned to each

row. This gives rise to 2(m2n) possible tables. Selecting an arbitrary table

from this set requires a specification that is log2

[

2(m2n)
]

= m2n bits long

(Ashby 1968). The important implication is this: even for input patterns

of very moderate size it will almost always be impossible to program a

computer to perform a map arbitrarily selected from the set of possible

maps. For example, consider a pattern of the size of a single character on

a computer screen, say 10 × 10 black and white pixels (n = 100 bits) and

suppose we want to classify such tiny images according to whether or not

they contain a certain feature (meaning that m = 1 bit). This could require

a program 1020 giga bytes in length.

On the surface it might seem that for any particular job required it should

be possible to devise an appropriate program of practical size. The following

considerations from algorithmic complexity theory reveal that programming

a ‘general’ purpose computer is in fact practical only in very special situa-

tions.

In the example considered above every row of the table that describes

the classification of the 10 × 10 pixel images has a 1 bit entry indicating the

presence or absence of the feature. The content of the table corresponds to

a binary string of length equal to the number of rows in the table. Chaitin

(1966) asked the question, how long would a program need to be in order

to generate such a sequence? For our purpose we can take the ability to

generate the contents of the table as equivalent to the capacity to implement

the input-output map described by the table. Some classifications have short
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programs. If we want each input image to be classified according to whether

it is all black, then all but one row in the table contain the same bit. A

program much shorter than the explicit table will be sufficient to generate

the table. This corresponds to the fact that the table is highly compressible,

the program being a compressed description of the table. The algorithmic

complexity of the table is defined as the length, up to an additive constant,

of the shortest program required to generate it (Li and Vitányi 1997). The

additive constant reflects differences in machine architecture that from a

practical point of view can have immense impact as the constant becomes

large (Kampis 1991).

For most tables no significant compression is possible, as can be seen

from a simple counting argument (Chaitin 1974). Under the assumption

that (due to the capacity of the machine or its programmers) the longest

practical program is limited to a length of b bits, there exist only 2b distinct

programs. The fraction η of tables describing n bit inputs mapped to m bit

outputs which can be compressed to a b bit long specification is therefore at

most

η = 2(b−m2n)

Furthermore, this maximum value of η can only be achieved if the machine

architecture is not degenerate in the sense that two or more distinct pro-

grams yield identical input-output behavior.

The above equation shows that in practice only a very small fraction of

the conceivable information processing tasks can be implemented by pro-

gramming a putatively general purpose computer. However, the compress-
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ability of the tables is relative to the machine architecture on which they

are specified. Different architectures can bring different input-output behav-

iors within reach of practical specifications. An extreme example would be

a machine specifically constructed to solve a single large problem instance

(Zauner and Conrad 1996).

Every realizable information processing machine can only implement a

small subset of the possible input-output transforms and is therefore a spe-

cial purpose device (Zauner and Conrad 2000b). The common computers,

often naively assumed to be general purpose, are in fact specialized devices

that have been designed to implement the narrow class of highly compress-

ible input-output maps.

0.3 Tradeoff Principle

The comparative limits of programmable and nonprogrammable architec-

tures can be stated in terms of a tradeoff principle: programmability, effi-

ciency, and evolutionary adaptability are incompatible. A system, to achieve

high programmability, must trade off efficiency and evolvability.

A computing system is programmable if the initial state and a chosen

set of formally defined state transition rules can be explicitly invoked. The

programmer communicates the intended relations among the system states

to the system, which in turn interprets the rules in rigid adherence to a finite

user manual. If the programmability is bound into the material structure

of the system we will refer to it as structural. Material physical systems

generally have self-organizing dynamics, hence a will of their own that is
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incompatible with prescriptive programmability. The computer designer

must quench these self-organizing aspects in order to achieve a physical

realization of a formal system. Information processing systems however do

not need to be programmable; functionality can be molded through adaptive

procedures.

We can phrase the programmability-efficiency tradeoff in terms of inter-

actions. To be as generous as possible, let us make the assumption that

elementary particles can serve as active components in a computing system

and the system contains n such particles. The potential function of the

system can call on as many as n2 interactions. If the system is structurally

programmable the input-output behavior of components should remain the

same as more components are added. This is only possible if the compo-

nents have a fixed number of possible inputs. Thus the number of allowable

interactions scales as Cn, where C is a constant. The fraction of interactions

available for problem solving falls off as C/n as the number of components

increases. If the system is run in a serial mode, therefore in an effectively

programmable mode, the falloff is even faster, i.e., as K/n2, where K is the

number of components that can be active at any given time. If quantum

features are pertinent to the system’s problem solving, interference effects

among the possible states of the particles must also be considered, further

increasing the disparity between the potential complexity of natural systems

and systems configured to be structurally programmable. The assumption

that single particles could act in accordance with a finite user manual is

of course quite unreasonable. As the number of particles per component

decreases it becomes increasingly likely that the system will self-organize in
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a way that escapes a simple user manual description (Conrad 1995).

The tradeoff principle is intimately connected to the compression issues

considered in the previous section. The salient point is that all structurally

programmable architectures must have a highly compressible description in

order to conform to formal rules specified in a simple user manual. Con-

structing a formal component calls for a large number of particles, since

this requires quenching of self-organizing characteristics that deviate from

the user manual. A large number of such formal and hence low complexity

components is needed to build a system with complex behavior. Efficiency

in terms of necessary number of particles will therefore be low. In short, to

make a heavyweight architecture out of light weight components the system

must be large.

The conflict between structural programmability and evolutionary adapt-

ability can also be understood in terms of compression. In a program that

is a highly compressed description of the system’s behavior a change in any

single bit will in general have radical effects on the behavior of the modified

program. The program ordinarily describes an input-output table that is

much larger than the program. Any bit modification in the program will

in general alter many bits in the input-output table. The uncompressed

input-output table can of course always be changed gradually (bit by bit).

But it is only possible to act on this table through modifications of the pro-

gram, hence the gradualism requirement for evolutionary adaptability can-

not in general be satisfied. If biological systems were amenable to a highly

compressed description they would a fortiori be unsuitable for evolutionary

adaptation.
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The tradeoff principle does not assert that structural programmability

absolutely precludes evolutionary adaptability. Biological systems in nature

are clearly highly evolvable. In principle it should be possible to use a struc-

turally programmable machine to simulate the structure-function plasticity

that allows for this evolvability. As long as mutations are restricted to the

virtual level, rather than to the program as encoded in the state of the base

machine, it would be possible to duplicate the requisite evolvability. How-

ever, this comes at a computational cost; the computational work required

to simulate plastic structure-function relations puts a severe practical limit

on the degree of evolvability that can be retained. In effect the simulation

program is a decompression of some highly compressed program that could

do the same job as the simulated system. The decompression, if appropri-

ately introduced, reduces the fragility of the program.

The decompression has an equivalent in the interaction picture. Redun-

dancy in the number of components and interactions among them serves to

buffer the effect of mutation on features of the system critical for function

(Conrad 1979). This is not an entirely general fact; it is restricted to a sub-

class of systems with self-organizing dynamics. Protein folding, in particular,

fits this picture. As the length of the amino acid chain increases or as more

amino acids with similar properties are available for substitutions the chance

that a mutation will be acceptable increases. Without self-organization the

introduction of redundancy would only yield fault tolerance, not the topo-

logical distortability necessary for transformation of function (Conrad 1983).

The structure-function relations that enable high efficiency and high

evolvability require context sensitive components. This sensitivity of the
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components’ behavior to their environment is in sharp contrast to the pre-

cisely defined and therefore context free components of structurally pro-

grammable systems. Nevertheless, networks of context free components run

in a parallel mode can also exhibit self-organization, as in the case of artificial

neural networks. The self-organization, however, causes a loss of effective

programmability. With the main advantage of rigidly defined components

lost, there is no reason to restrict the architecture of the network to context

free components. Instead, context sensitive components that open the path

to high efficiency and high evolvability can be employed.

The tradeoff principle suggests that there are two sharply different modes

of computing: the high programmability mode versus the high efficiency,

high adaptability mode. Biological systems, since they are the products

of evolution, must operate in the latter. The remainder of this chapter

will focus on initial concrete steps in the direction of artificial systems that

operate in the biological mode.

0.4 Pertinent molecular properties

The tradeoff principle asserts that systems with nonprogrammable structure-

function relations are capable of implementing transforms that are too com-

plex to embody in general purpose (programmable) architectures. The phys-

ical dynamics of such systems, suitably interpreted, effectuates the compu-

tation. Conceivably many types of physical dynamics could be utilized in

this manner. Macromolecules afford a particularly powerful combination of

properties (see Table 1).
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The main property is folded shape. This requires long, nonconjugated

polymers (since rotation around single bonds is necessary). Carbon, the

atom of life, supports this requirement. Silicon, the only competitor for

carbon in this respect, is rather inferior (Henderson 1913; Conrad 1994b).

The C–C bond energy is about the same as for bonds with H or O. The

energy required to break the Si–Si bond is only about half as much as the

energy required to break Si–H and Si–O bonds. The number of carbon based

structures that are possible is accordingly much greater than is possible with

silicon (Sidgwick 1950; Edsall and Wyman 1958). The longer chains possible

with carbon allow for a greater variety of folded shapes.

The well known lock-key metaphor (Fischer 1894) for enzyme-substrate

recognition is based on this fact of folded shape. Proteins must be big

enough to have significant shape features (not true for individual atoms)

but small enough to scan each other’s shapes through diffusion (which we

can refer to as Brownian search). The shape fitting is in reality dynamic;

conformational motions are critical to the rate of complex formation and (in

the case of catalysis) complex decomposition. The conformational motions

are sensitive to a variety of milieu features (e.g., temperature, ions, control

molecules). The prototype device that we will shortly turn to utilizes this

context selectivity for signal pattern recognition.

As in all chemical reactions, thermal fluctuation (heat motion) is sine

qua non. The term Brownian search, used above, is intended to suggest its

computational significance. Recall the discussion of complexity: complexity

must either be provided in a program fed to a system from the outside or it

must have self-organizing dynamics, therefore nonprogrammable structure-
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function relations. Protein folding and complex formation are prime exam-

ples. The heat bath is a potent source of complexity. The amino acid se-

quence draws on thermal fluctuations to explore itself in the folding process.

The folded structure draws on thermal fluctuations to explore molecules with

which it interacts in the complex formation process. In general physical self-

organization is based either on energy minimization or entropy maximiza-

tion. The randomness of the heat bath is an essential ingredient in both

cases. If entropy maximization is the controlling feature the fluctuations

allow the system to assume a greater number of structural forms. If energy

minimization dominates thermal energy must be given up to the heat bath

in an irreversible way. From the point of view of algorithmic complexity

theory the complexity of a pattern or process increases as the size of the

shortest program required to generate it increases, i.e., as its description

becomes less compressible. Of all phenomena considered in physics perhaps

the heat bath has the most incompressible description.

The combinatorial variety of carbon compounds is another powerful

virtue. The number of possible amino acid or nucleotide sequences is hyper-

astronomically large. The important point is that the notion of a general

purpose system takes on a new guise. Conventional electronic machines

are constructed from simple standard building blocks, for example, NAND

gates. Biological systems, in contrast, are built from an extremely large vari-

ety of macromolecular species, each capable of performing a specific complex

transform. Cells and organisms with different input-output behaviors arise

through adaptive processes that modify the proteins in the repertoire or that

express these proteins in different combinations.
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The high evolvability of proteins is requisite for the efficacy of the adap-

tation process. Folding again is the key feature, since it allows for structure-

function malleability. As noted in the previous section, there is an intimate

connection between evolvability and complexity. If protein folding could

be described by an extremely compressed program, therefore were a simple

process from the algorithmic complexity point of view, then the structure-

function relations would approach programmability and would be fragile.

Most mutations would be cataclysmic. Evolutionary considerations thus

imply that folding and (chemical) complex formation are complex processes

in the algorithmic sense. At the same time the introduction of redundant

amino-acids in the sequence and the utilization of amino acids with high re-

placeability serve to buffer the effect of mutation on conformational features

critical for function (Conrad and Volkenstein 1981).

Sometimes the argument is put forward that biological molecules are

insufficiently reliable for computing. The opposite is actually the case. Sin-

gle molecules have definite ground states, as opposed to the macroscopic

switches from which conventional computers are built. The latter are built

from statistical aggregates of particles and are therefore subject to erosion.

The reliability issue is rather subtle, since it is clear that with solid state

components it is possible to perform many repetitive operations and to do so

rapidly. But if we want to build a reliable information processing system out

of nonlinear base components the capability for reproducing the nonlinearity

in a highly precise manner is absolutely critical. This is infeasible with con-

ventional electronic or other macroscopic components, simply because it is

impossible to exactly duplicate a statistical aggregate of particles, let alone
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preserve their nonlinear characteristics on an operational time scale. The

discrete amino acid sequences that determine the function of proteins can be

precisely specified. This is sufficient, at least for a large class of sequences, to

uniquely determine the folded shape and the set of available conformational

states. The shape (or conformation) of course changes when the protein in-

teracts with its environment, but the existence of a ground state and, more

generally, discrete energy levels confer precision that is unobtainable with

macroscopic processing elements.

0.5 Example: protein solubility as a language

As a preliminary step, let us consider a transformation that is easy to imple-

ment with macromolecules but difficult with programmable machines. Prac-

tically speaking any ab initio calculation of the properties of even a small

cluster of particles outpaces programmable computational capabilities. For

the present purposes, however, we would like to consider an example of a

problem that typically arises in computer science, namely the problem of

deciding whether or not a sequence of symbols belongs to a given set of se-

quences. Such sets are considered in formal language theory. The question

is whether it is possible to construct a machine, subject to given constraints,

that can recognize the language. For example, the constraint might be that

the machine is a finite automaton (as are actual computers).

Consider a language L in which the elements are protein sequences that

satisfy a certain property (Davidson and Sauer 1994; Prijambada et al. 1996;

Yamauchi et al. 1998). The alphabet of such a language would be a set of
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amino acids, for instance the twenty amino acids that are the predominant

building blocks of natural proteins. We can choose solubility S in water as

the property that has to be satisfied by a sequence p composed of the amino

acids that constitute the alphabet (Σ). The conditions c of the process must

be fixed e.g., temperature, pressure, pH and cosolutes (Laidler and Bunting

1973; Cacace, Landau, and Ramsden 1997). Formally we can write

L = {p ∈ Σ∗ : Sc(p) > x, |p| ≤ w}

where L denotes the language, x is a fixed solubility threshold (
massprotein

masssolvent
),

and we assume that length (|p|) of the sequence of amino acids does not

exceed some constant w. The important point is that Sc is a physical and

not a formal condition.

In principle a computer of sufficient size and speed should be able to an-

swer the question whether a given sequence p is a member of L. In practice

however, performing physics calculations to answer the membership ques-

tion for the above language by implementing formal rules is not efficient. To

decide the membership of a sequence in this language, the properties of the

(possibly folded) amino acid sequence need to be known, thus the language

encodes the protein folding problem. Calling on calculational methods of

physics to solve this problem is clearly daunting. However, it is also pos-

sible to decide the membership by actually synthesizing the protein with

the sequence in question and measuring its solubility. The synthesis and

measurement procedure could be automated. The resulting machine can

easily decide for any particular sequence presented to it whether it belongs

to L, in effect performing a computation that may well exceed the practical
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capabilities of presently available general purpose machines.

0.6 Macro-Micro Interface

Language recognition problems of the type considered above can be viewed

as pattern recognition problems. The patterns might be computer codes that

have to be compiled. Or they might be objects in the world, say chairs. If

all (and only) chairs were marked with a standard printed ‘C’, then it would

be easy for a digital computer to say ‘yes’ whenever it is presented with a

chair and ‘no’ whenever it is presented with some other object. Without

such preprocessing, however, no existing computer program can do this job.

The morphology of chairs is too ambiguous and variable. The required

program, though it might exist, is too complex to express in a reasonably

compressed way, even assuming that we knew how to write it at all. Yet,

humans perform this transformation with relative ease.

The protein solubility example was intended to show that molecules can

be used to perform transformations that are refractory to programmable

machines. But of course this is far from using this power to address any

problem of interest. To do so, the molecular level needs to be connected to

the external world and the transformation needs to be adapted into a useful

function.

We will return to the adaptation issue in section 0.9. Here it is per-

tinent to consider the general requirements for input and output (Conrad

1984; Conrad 1990). In biological cells the signals that represent the pat-

terns to be recognized could come either from the internal milieu or the
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environment. The former case is pertinent to regulation and the latter to

perception-action activities. Three levels of scale are involved: macro, meso,

and micro. The signals from the environment are generally macroscopic on

some dimension of scale (energy, mass, dissipation, time, space) or represent

features of the world that are macroscopic. The nerve impulse, for example,

is a macroscopic signal. Signals inside the cells, say diffusion of substances,

can be either macroscopic or mesoscopic. The signals constitute the milieu

patterns, or context, to which proteins and other biological macromolecules

respond. Since these molecules must be sufficiently large to have significant

shape features (and shape dynamics) they can be classified as mesoscopic.

But the nuclear coordinates couple with the electronic coordinates, so that

we also have to think in unambiguously microscopic terms (Conrad 1994a).

In short we have downward flow of influence from the macro to the meso to

the micro.

This downward flow is complemented by an upward flow, triggered by

the response of the macromolecule or macromolecular aggregate, say a cat-

alytic response in the case of an enzyme or a mechanical response in the

case of a contractile unit. For the present purposes it is sufficient to think

in terms of enzymes. The chemical changes produced in the milieu link the

activity of different enzymes. The linking chemicals can be thought of as sig-

nals, either because they provide context or because they serve as common

intermediates. The communication between the processing macromolecules

is thus essentially at a mesoscopic level. Macromolecules can also commu-

nicate through direct conformational interactions, in which case the signal

energies are in the micro domain. Biological cells are replete with receptors
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that convert signals representing macro features of the external environment

to internal signals that can be brought into the web of meso and micro level

processing.

The amount of computational work performed at the meso and micro

level should be as great as possible, due to the thermodynamic cost of pro-

ducing macroscopic signals. Enzymes, as catalysts, are thermodynamically

reversible; their pattern recognition work is free, driven only by the heat

bath. The dissipation in a typical biochemical reaction can range from 10

to a 100 kT . A nerve impulse might cost 105 to 1010 kT , depending on the

size of the neuron. To the extent that processing is kept as close as possible

to the micro level the amount of information processing obtainable is vastly

enhanced.

Macro-micro communication links are essential for any computational

system that utilizes the activity of individual molecules, as opposed to sys-

tems that employ only statistical aggregates of particles. The signal pro-

cessing activities of the medium can itself have significant nonlinear dynam-

ics • Reference to Rambidi’s Chapter •. The whole medium, not just the

controlling macromolecules can then contribute to the input-output trans-

form. But the controlling macromolecular components are critical, since the

recognition-action events would otherwise be slow and difficult to mold for

different functionalities. The addition of new signal substances and macro-

molecular species to the medium need not and in general does not yield

an additive response. This nonlinear component interaction is where the

potential for performing powerful context sensitive transforms resides.
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0.7 Prototype System

Recall (from section 0.4) that protein molecules are flexible chains of amino

acids. Many sequences will curl up into a compact three-dimensional shape

(cf., e.g. White, Handler, and Smith 1968; Stryer 1988). The folded shape is

stabilized by electrostatic interactions among its atoms, but possesses at the

same time a defined agility that enables it to assume numerous conforma-

tional states. Under given physiological conditions a subset of these states

is favored (Frauenfelder, Park, and Young 1988; Freire 1998). A change in

physiochemical context can induce a switch to a different favored state. This

prevalent protein behavior has two points of significance for novel informa-

tion processing devices. The first is that proteins have substantial freedom

to select the specific stimuli to which they respond and to associate these

with a response in an essentially arbitrary way. The intricate conforma-

tional dynamics constitutes the second point, since this allows the protein

to fuse information in a complex nonlinear fashion that would require large

numbers of conventional components to duplicate.

The nonlinear conformational dynamics harbors the computational re-

source we seek to exploit, but at the same time precludes direct engineering

of a prototype system. An alternating sequence of exploratory and selective

steps can be used instead to sculpt desired functionality. In general there

are three levels open to exploration: the coding of the input signals, the

amino acid sequence and operational conditions that control the protein’s

capacity to fuse input signals, and the choice and interpretation of the out-

put (Fig. 1). The output could, for example, be mediated by fluorescence
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probes attached to the protein. If the protein is an enzyme, however, its

catalytic activity is most often critically dependent on conformational state

and therefore provides a sensitive probe for conformation change. Changes

in physiochemical context that alter the preferred conformational state of

the enzyme will hence modulate the speed of the reaction catalyzed by the

enzyme.

Enzymes that catalyze reactions involving NAD (nicotinamide adenine

dinucleotide) are particularly convenient in this regard, since the oxidized

form and the reduced form of NAD have quite different absorbance in the ul-

tra violet (UV) range. Changes in the concentration of NADH can therefore

be observed with little effort by a spectrophotometer.

We used an easy to tend enzyme, malate dehydrogenase (MDH), which

participates in the citric-acid cycle and is widely available. MDH catalyzes

the oxidation of malate to oxalacetate while reducing NAD+ to NADH.

For our purposes we can view MDH as an implementation of a function

that takes selected features of its physiochemical milieu as arguments and

maps these into absorbance values. Different compositions of the reaction

milieu are thereby grouped by MDH into classes of UV absorbance levels

(Zauner and Conrad 2000a). The aim is to associate input signals with

milieu features in a way that results in a useful classification.

The number of potential milieu factors that could conceivably be used

to encode input signals is virtually boundless and of course not limited to

chemicals of known physiological significance. Only in exceptional cases can

mechanistic kinetic models predict the outcome of a specific signal encoding.

Furthermore, the cases where mechanistic models apply are likely to be of
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limited interest from a computational point of view, since the possibility

of formulating such models indicates the realm of low complexity behavior.

Instead, empirical models of factor interactions mediated by the protein

are employed to discover signal encodings that yield interesting response

characteristics.

Sampling the protein’s performance under different milieu conditions

allows for the construction of a response surface for a small number of the

potentially operative factors (Box and Draper 1987; Cornell 1990). Fig. 2

shows such a response surface for MDH with respect to changes in the MgCl2

and CaCl2 concentration.

The response surface, once established, can be used to analyze various

signal encodings. Different encoding schemes are evaluated according to a

performance measure. For pattern classification tasks the minimum differ-

ence in the response to signal patterns that should be grouped into separate

classes can serve as the performance measure, to be referred to as signal

strength. Only encodings yielding a positive signal strength allow for the

implementation of the desired function; in general an encoding that maxi-

mizes signal strength is advantageous.

As a concrete example, consider the exclusive-or (XOR) operation (Tab. 2).

This can be viewed as a simple arithmetic operation adding two bits with-

out carry. It is also the simplest pattern classification problem that is not

linearly separable. For this reason it is used as a benchmark for learning in

natural and artificial systems (Griffith et al. 1968; Minsky and Papert 1969;

Ellacott and Bose 1996). The XOR operation groups patterns into one out-

put category when both inputs signals are the same and into another when
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the signals are different. The signal strength ∆s for the XOR operation can

therefore be expressed as

∆s = Min (r(01), r(10)) − Max (r(00), r(11))

where the function r denotes the response to the signal pattern (e.g, 00,

01,. . . ).

With this performance measure we can ask which signal encoding best

adapts the enzymatic system to the desired input-output behavior, here the

XOR operation. The empirical response surface shown in Fig. 2 is used

as the response function r. The question is how much MgCl2 and CaCl2

should be used for the input signals to maximize the signal strength ∆s.

Several encoding methods are possible. For example, MgCl2 can be used as

the signal carrier on one input line and CaCl2 as carrier for the other input

line. The XOR operation, however, is commutative and hence there is no

need to encode the signals arriving from different input lines by different

carrier substances. It is therefore possible, for example, to encode 1-signals

independent of the input line by a mixture of MgCl2 and CaCl2 and 0-signals

by a different mixture or the absence of ions. For encodings that use the

same carrier substance for both input lines, only signal encodings up to half

the concentration range covered by the response surface can be evaluated,

since the carrier substances are additive with respect to their contribution

to the reaction milieu. Signal strengths for different encoding methods are

shown in Fig. 3 as functions of the MgCl2 and CaCl2 concentrations used

to represent the signals.

The areas of positive signal strength in Fig. 3 suggest that an enzymatic
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XOR based on MDH is feasible. To realize such a device, and more generally

to explore enzymes as active components for the implementation of pattern

classifiers, we constructed the experimental set-up shown in Fig. 4. Small

piston pumps, each composed of a 3 cm3 syringe and two one-way valves,

deliver input signals from reservoirs to a mixing chamber. The two signal so-

lutions, one representing 0-signals and the other 1-signals, contain the same

amount of L-malate, a substrate in the reaction catalyzed by MDH. The so-

lution representing the 1-signal in addition contains MgCl2, while 0-signals

are represented by the absence of MgCl2. By injecting a defined amount of

MDH/NAD+ solution into the mixing chamber a reaction is initiated. The

reaction progresses while the mixture is pumped to a spectrophotometer and

the absorbance of the NADH produced during the transit time is recorded

as the output response.

Fig. 5 illustrates the details of an improved version of the prototype in

which the spectrophotometer cuvette (Cv) serves as the mixing chamber,

thus permitting shorter response times and increased reliability. The injec-

tion of the enzyme solution (R1/Sy1) activates microswitches (Ms1, Ms2)

that provide a trigger signal for the timing of the measurement used as the

output response. A syringe (Sy4) takes up the air displaced when the cuvette

(Cv) is filled. Several T-valves (T4–T6), a water reservoir (R4) and a peri-

staltic pump serve to clear the system between consecutive signal processing

cycles.

The XOR was also implemented with the improved set-up (Fig. 5).

The device was required to classify 135 consecutively presented 2-bit in-

put patterns. The response time, i.e., the time period from injecting the
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enzyme/NAD solution until the output measurement is taken, was set to

10 s. All 135 input patterns gave rise to response levels that permit correct

classification by a single thresholding operation. The choice of 10 s is due to

the limits of our table top instrumentation, not to the underlying process.

The prototype demonstrates that enzymes can be used to transform pattern

classifications that are not linearly separable into simpler, linearly separa-

ble problems. More importantly, it points to the feasibility of developing

novel computational systems that operate on the basis of high complexity

conformational processors.
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Recipe

Materials

UV-spectrophotometer (λ = 339 nm); analytic scale; adjustable micropipettes

(200 µl, 1 ml); pH meter; timer.

Malate dehydrogenase from porcine heart, as ammonium sulfate sus-

pension (store refrigerated); NAD+ (oxidized β-nicotinamide adenine dinu-

cleotide), as free acid (store refrigerated or frozen); l-malic acid, as free acid;

MgCl2 as magnesium chloride hexahydrate (MgCl2·6H2O); MOPS (3-[N-

morpholino]propanesulfonic acid); glycine (aminoacetic acid), as free acid;

10 N HCl and 10 N NaOH (for pH adjustment); pure (distilled) H2O. Below

‘water’ always refers to pure H2O.

Method

1. Basis Solution for signals (120 mM glycine, 7.5 mM l-malic acid, 1 l):

Dissolve 9 g glycine in about 950 ml water. Add 1 g l-malic acid and

allow to dissolve while stirring. Adjust to pH 10.5 with 10 N NaOH.

Fill with water to a final volume of 1000 ml.

2. MgCl2 Solution (4 M MgCl2, 50 ml): Dissolve 40.66 g MgCl2·6H2O in

15 ml hot water. Let the solution cool to room temperature. Fill with

water to 50 ml.

3. Signal solutions: Add 5 ml of water to 100 ml of the signal basis
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solution (1). The resulting solution is used for 0-signals.

Add 5 ml of the MgCl2 solution (2) to 100 ml of the signal basis

solution (1). The resulting solution is used for 1-signals.

4. Enzyme solution (MDH/NAD+, 10 ml): Dissolve 20.93 g MOPS in

about 300 ml water, then fill up to 475 ml. Adjust pH to 7.4 with 10

N NaOH. Fill up with water to a final volume of 500 ml. This is the

0.2 M MOPS buffer.

Weigh 36 mg of NAD+ into a test tube that can hold 10 ml fluid and

is wide enough to access with the 1 ml micropipette. Add 10 ml of the

0.2 M MOPS buffer and shake to dissolve the NAD+. Add about 20

µl malate dehydrogenase suspension and shake. If the response time

for the signal processing is found to be too slow, more of the enzyme

suspension can be added to the solution.

5. The volume of the signal solutions and the reaction solution may need

to be adjusted for the particular spectrophotometer used. The mini-

mum volume required to cover the beam path can be determined by

marking the beam at λ ≈ 540 nm on a white piece of paper fixed to the

cuvette. If this volume is larger than 2.1 ml, the volume for the signals

and the enzyme solution (6 and 8) should be adjusted proportionally.

6. The input signal pattern is composed of two 0.8 ml portions taken in

any combination from the two signal solutions (3). The signal solutions

are pipetted into a cuvette.

7. Set the spectrophotometer to continuously record absorbance at λ =
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339 nm.

8. To start the processing pipette 0.5 ml of the enzyme solution (4) into

the cuvette containing the signal solutions (6). A timer is started and

the cuvette content mixed (e.g., by inverting the sealed cuvette or by

stirring when the enzyme solution is added.).

9. Record the progress of the reaction for various combinations of the

input signals by repeating steps 6 to 8.

Choose a response time that will separate 00 and 11 input patterns

from 01 and 10 inputs and determine the threshold level from the

corresponding absorbance values.

10. Signals can now be processed using the time and threshold determined

in the calibration step (9).

Note: The above protocol can serve as a starting point to explore other

signaling substances. It is quite robust and could easily be adapted (e.g.,

replacing the micropipettes with disposable syringes) for classroom use.

0.8 Multienzyme Response Surfaces: A Simulated

Example

The XOR demonstration points to the possibility of using networks of en-

zymes to create computationally richer response surfaces. This would only

be of interest if the response of the individual components of the network
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interact in a nonlinear fashion. Placing multiple enzyme species in a com-

mon milieu can then lead to a response surface that is quite different from

the summation of the surfaces yielded by the enzymes taken in isolation.

We have developed a software simulation tool to investigate the interac-

tion of conformational, kinetic (reaction-diffusion), structural, and dynamic

(force) interactions of protein networks in three dimensional space that for

the present purposes can be used to illustrate this nonadditivity (Zauner

1996; Zauner and Conrad 1997).

The basic concept of the simulator is as follows. The simulation space, a

three dimensional lattice, contains two classes of components: macrocompo-

nents and microcomponents. The former represent proteins and the latter

milieu substances, i.e., metabolites on which the proteins act catalytically,

as well as control molecules and ions that trigger conformational changes.

The microcomponents are represented by the integer number present in each

unit cell. Each catalytic or diffusional event is associated with an integer

increment or decrement of this number.

The macrocomponents are represented in the simulation space by dodec-

ahedra, each consisting of up to twelve coupled finite state automata that

model active protein domains. Recognition, binding, control, and catalytic

properties are assigned to the states of these domains. The state transitions

of the domains correspond to conformational changes. Transition probabil-

ities depend on the local milieu, therefore on the microcomponents present

in the location of the dodecohedra and on adjacent macrocomponents. The

local milieu can change through reaction (catalyzed by macrocomponents)

and by diffusion. The whole system forms a loop encompassing context,
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conformation, and action. Milieu molecules and adjacent macrocomponents

provide the context in which enzymes function. This influences conforma-

tion. Conformation controls action, including catalysis and structure for-

mation. Catalysis and structure formation in turn control context, and so

on (Fig. 7).

For illustrative purposes we consider two toy reactions running separately

and then consider the response of the combined reaction. The first reaction,

catalyzed by enzyme e1, is

A + B
e1⇀↽ C + D

We assume that e1 has ten conformational states that differ in the catalytic

activity that they confer. The transition probabilities and activity associated

with the different states are illustrated in Fig. 8. R and S in the figure denote

substances used as milieu signals. The product D is chosen as output signal.

The response surface of e1 with respect to R and S, illustrated in Fig. 9,

shows that even a relatively small number of conformational states can yield

a nontrivial surface.

For the second reaction, catalyzed by enzyme e2, we take

A + E
e2⇀↽ F + 2D

Here we assume that e2 has only four conformational states. As shown in

the state transition diagram (Fig. 10) the enzyme is sensitive to the same

two signaling substances, R and S, as e1. The response surface is shown in

Fig. 11.

Now suppose that both enzymes are introduced into the reactor. As can

be seen from the reaction schemes above e1 and e2 will then compete for
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substrate A and both will contribute to the output signal D. Furthermore

they affect each other’s conformational transitions via the products C, D,

and F (see Figs. 8 and 10). The resulting response surface is shown in

Fig. 12. The response obtained by combining the enzymes cannot be easily

predicted from knowledge of the response of the individual enzymes. This

nonadditivity precludes the possibility of using a simpler user manual to

anticipate the effect of adding components on the input-output map of the

system. From our point of view this means that it should be possible to

build up molecular signal processing modules that can implement transforms

that cannot be achieved by linking the processing components in a context

independent way. The joint system self-organizes into a de novo transform.

0.9 Architectures and Adaptive Procedures

The tabletop prototype discussed in the previous section can be thought of

as an extreme abstraction of the recognition-action dynamics of a biological

cell. The cell is crudely pictured as a mixing chamber. The syringes roughly

correspond to receptors that serve to introduce signaling substances into the

chamber. The enzyme is the primary processing component, acting on the

medium to trigger an output signal that could potentially control an action.

As noted above, more enzymes and signaling substances could be added.

Alternative designs are possible, for example, designs with enzymes that are

embedded in a matrix in an ordered way. The potential nonadditivity of the

superposed response surface increases, thereby increasing the complexity of

the transformation. The goal is to create a repertoire of high complexity
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basis functions for implementing input-output transforms that cannot be

accommodated by programmable architectures (as discussed in section 0.2).

Three issues arise: how to migrate the tabletop prototype to a chip, how

to generate a useful repertoire of transformations, and how to use these chips

as molecular co-processors for a conventional architecture or to organize

them into novel architectural designs.

Current advances in lab-on-a-chip technology open up a number of possi-

ble migration pathways. Fig. 13 visualizes one of these (Zauner and Conrad

1997). This comprises two layers, a molecular layer that contains the macro-

molecules and milieu components and an optoelectronic layer that serves as

the input-output interface. The molecular layer could be a sealed fluid film,

gel matrix, or Langmuir-Blodgett film (Blodgett 1935). Proteins could be

embedded in the film and materials moved around using microfluidic tech-

niques (Hadd et al. 1997; Chohen et al. 1999; Unger et al. 2000). Specific

molecular components are selected to couple the molecular layer to the op-

toelectronic layer for input and output. A pattern of light signals introduces

the pattern to be classified. The induced pattern of milieu features is then

fused by the conformational dynamics of the embedded proteins. The re-

sulting conformation change produces spectroscopically identifiable signals,

either directly or indirectly through catalytic change in the concentration

of a light absorbing substance. The optoelectronic layer would include inte-

grated optics (e.g. waveguides, gratings) for coupling to the molecular layer

and could incorporate integrated circuits for interfacing with a conventional

electronic environment. Activities of multiple proteins in the molecular layer

could be used for readout, but this depends on spectrophotometers with par-
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allel capabilities in an appropriate wavelength range to come on line. The

choice of parameters for readout of the dynamics constitutes the interpreta-

tion.

The second issue concerns the adaptation of the physical dynamics and

the interpretation. The tuning of our tabletop prototype was done by vary-

ing the substances used for coding of the inputs and essentially by ad hoc

variation of the substrate concentration. A response surface was then con-

structed that could be used to elicit different functionalities, attention being

focused in the present case on the two-variable logic functions (since only two

input lines were used). The number of signal substances could be increased.

The number of enzyme species included could be increased and their type

varied. New macromolecular species could be evolved with specific capabil-

ities, using for example protein engineering techniques (Beaudry and Joyce

1992; Gao et al. 1997). The combinatorics clearly grows explosively, as

they do in natural biological evolution. Response surface methodology (Box

and Draper 1987) can be used to prune this gigantic search space. The

surfaces would be explored for features that could be used for useful input-

output transformations and the next steps of variation focused on the most

interesting regions of the surface. The whole process can be automated.

The technology is available for this development program, but needless

to say the evolution of suitable transforms must be a long term, continuing

process. As a first step we envisage the development of a limited class of

modules that can serve as molecular co-processors for conventional machines.

These could be used as preprocessors to transform complex input patterns

into rigidly defined output patterns that can be rapidly processed by digital
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techniques. The conventional architecture would provide the procedural

capabilities, but these would be complemented and synergized by the self-

organizing dynamics of the molecular co-processors.

As more molecular basis functions become available it should be possible

to build up an architecture with a more neuromolecular character. Artifi-

cial neural networks are essentially built up out of a set of fairly simple

transforms. The situation in the brain is arguably quite different. The neu-

ronal units exhibit a diversity of capabilities that draw on internal molecular

dynamics. Complex interweavings of self-organization and procedural pro-

cesses mediate what, according to our earlier considerations, are the high

complexity programs that cannot be accommodated by conventional archi-

tectures.

Our group has developed a virtual system, referred to as the artificial

neuromolecular (ANM) architecture, along this line (Chen 1993). Briefly,

the system consists of neurons controlled by an internal signal integration

mechanism modeled after the neuronal cytoskeleton. Read-in elements rep-

resent molecules of the input layer in a molecular chip; read-out elements

correspond to molecules that trigger output firing. Neurons fire when a

locus occupied by a read-out element is sufficiently activated. The input-

output transform performed by the neuron is adapted by varying internal

parameters (read-in locations, read-out locations, structure of the signal in-

tegration network), and connections to other neurons. A repertoire of special

purpose transforms is thus created. Memory manipulation mechanisms that

are essentially procedural in nature are then used to orchestrate the different

neuron types into assemblages capable of executing yet higher complexity
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transforms, again using a variation-selection evolutionary technique.

The ANM architecture has been applied to a variety of 64-bit pattern

recognition problems (the input interface being currently limited in this

way). These include maze navigation (Chen and Conrad 1994), Chinese

character recognition (Chen and Conrad 1997), and most recently hepatitis

diagnosis (Chen 2000). The power of the system lies in its computational

adaptability properties. It is a virtual system run on top of a conventional

base machine. It uses the limited resources of a low complexity machine to

achieve computational adaptability, but this must be at the expense of other

desirable features that programs using the same resources differently might

exhibit. The molecular processing in the neurons, in particular the read-out,

is of course nominal. The read-outs are just threshold elements. It would

be too computationally costly to simulate the conformational dynamics that

allows context sensitive fusion of milieu features. The reasonable supposition

is that implementing the architecture with real molecules would enormously

increase the complexity of the programs that it is capable of embodying,

thereby affording concomitant expansion of the problem domains that it is

capable of managing.

0.10 Transformal Computing

The processing capabilities of the prototype described in this chapter are

of course extremely modest, indeed even minimal, in comparison to the

architectural projections of the previous section. It is to be regarded only

as an initial step designed to concretize the conformation-driven computing
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concept and to demonstrate its technological feasibility at the level of what

might be called macroscopic fluidics. The step to lab-on-a-chip integration

can readily be seen.

The important question concerns the basic claim, namely that the con-

formation-driven approach should provide access to computational processes

that cannot practically fit into a conventional architecture. The term trans-

formal computing is apt. How would we even recognize whether a com-

putational system performs an operation that is refractory to digital (i.e.,

formal) machines?

The famous thesis of Church and Turing asserts, in its strong form, that

all processes in nature can be brought into the circle of formal computation

(Hofstadter 1980). This is an open question. Whether the answer is affirma-

tive or negative is not the issue with which we are concerned here. It is the

practical question that is relevant. Many examples could be cited: human

aesthetic judgments, legal judgments, ethical rules (like the Golden Rule),

or any decision that involves an indefinitely large number of situations. Ar-

guably an unambiguous description of such general decision rules by formal

rules (i.e., by a program in the Turing sense) is infeasible. We here enter

the realm of what was referred to above as transformal computations.

We of course do not expect the conformation-driven technology pro-

posed here to perform such complex human operations either. Constructing

an artificial brain that comes close to the human brain, even under the rea-

sonable assumption that conformational processing plays a key role in the

human mental process, exceeds by far any expectations that we would care

to project. The proper question is: can conformational processors perform
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transformations that exceed the practical capabilities of formal machines;

and how could such transformations be identified.

Take as a concrete example the functioning of an assembly line. Automa-

tion is limited by the speed of visual processing and by the fact that quality

control problems are often ambiguous. If conformational processors were

evolved and harvested that could preprocess ambiguous patterns in a man-

ner that made them suitable for processing by vision algorithms this would

constitute what in practice might be called a transformal computation.

By choosing to look at the benchmark XOR operation we have a fortiori

precluded the possibility of finding a transformal transformation. Our ob-

jective was to demonstrate that even a single enzyme species could do more

processing that is standardly attributed to the threshold elements utilized

in many current neural net models. Our working hypothesis that we can

use the conformation-driven approach to escape the practical limitations of

programmable machines is based on three considerations: the complexity ar-

guments indicating that systems with self-organizing dynamics can perform

more complex operations than systems with programmable architectures,

the technological feasibility of fabricating conformation-driven modules that

utilize self-organizing dynamics, and the feasibility of using an evolutionary-

response surface methodology for developing a repertoire of high complexity

basis transforms that can be embedded in or conjoined with higher level

architectures. This is a three point landing on theory, technology, and ar-

chitecture. The pieces are present; bringing them together should yield

computational capabilities complementary to and synergistic with digital

capabilities.
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Table Captions

Table 1: Computationally important properties of macromolecules

Table 2: Exclusive-or logic function

Figure Captions
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Figure 1: Schematic illustration of signal fusion mediated by conformational

dynamics.

Figure 2: Empirical response surface of MDH with respect to CaCl2 and

MgCl2. The dots are at concentrations where measurements were made. The

surface is obtained by interpolation. • PERMISSION may be required •

Figure 3: Signal strengths for the XOR operation under different signal en-

coding schemes. The contour lines indicate areas of positive signal strengths,

therefore concentrations that make the XOR feasible. Bold contour lines in-

dicate an increase in signal strength of 0.1, the outermost line being 0. (A)

Input line 1 releases MgCl2 when a 1-signal arrives on this line. Input line

2 releases CaCl2 under the same condition. When the input is 0 no ions

are released. Encoding the input lines by different signal substances makes

it possible to utilize the whole concentration range of the response surface.

(B) Here both signal lines are encoded the same way, with MgCl2 repre-

senting the 1-signal and CaCl2 representing the 0-signal. (C) Input lines 1

and 2 have the same encoding. The 0- and 1-signals are both encoded with

CaCl2 concentrations that consequently must be different in order to obtain

a positive signal strength. The symmetry of the graph reflects the symme-

try of the XOR operation with respect to negation of the input signals (cf.

Table 2). (D) In this case the 1-signal is encoded by a mixture of MgCl2

and CaCl2 for both signal lines. The 0-signal is encoded by the absence of

these ions. • PERMISSION may be required for (D) •
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Figure 4: Experimental setup for first version of the tabletop XOR module.

Figure 5: Flow diagram for direct injection version of the XOR module.

Fig. 4 shows an earlier version utilizing a mixing chamber separate from the

cuvette. • PERMISSION may be required •

Figure 6: Experimental run illustrating repeated operation of the XOR mod-

ule. The absorbance output separates the the 01/10 inputs from the 00 and

11 inputs.

Figure 7: Schematic of interactions supported by the CKSD simulator (for

simplicity limited to a three enzyme system). The enzymes (labeled by e1,

e2, and e3) have from one to three states (labeled by the qi). States rep-

resent conformations. Arrows connecting states represent conformational

transitions. These are typically influenced by the milieu components (dashed

arrows) and also may be influenced by direct interactions between two en-

zymes (dashed arrow from e2 to e1). Specific conformational states catalyze

milieu reactions (indicated by bent arrows). Enzymes in complementary

conformational states may self-assemble to form quaternary structures (in-

dicated by the double arrow between e1 and e2). Note that the transitions of

distant enzymes may be coupled through their catalytic effect on the milieu.

Figure 8: Conformational transition used to simulate enzyme e1. The di-

agram is not based on any actual enzyme. The numbers below the state

name indicate the relative catalytic activity of the state. Capital letters

on the transitions refer to metabolites and signal molecules. The transition

probabilities in the presence of these molecules is specified by superscripts.
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Figure 9: Simulated response surface for enzyme e1 with respect to signaling

substances R and S. The product D is used as the output value. The values in

the diagram show the actual number of molecules present in the simulation

space. The latter contained 200 e1 enzymes distributed on a 61 × 61 × 21

lattice.

Figure 10: Conformational transition diagram for enzyme e2. See caption

of Fig. 8 for explanation.

Figure 11: Simulated response surface for enzyme e2. The space contained

300 e2 enzymes; cf. Fig. 9.

Figure 12: Combined response surface resulting from interaction between

enzymes e1 and e2.

Figure 13: Hypothetical molecular co-processor combining microfluidics and

integrated optoelectronics. • PERMISSION required: Optical memory &

Neural Networks •
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Tables

Table 1

Property Draws on Confers

folded shape long flexible chains, weak
bonding, rotation around
single bonds

specificity, self-assembly

conformational
dynamics

folded shape milieu sensitivity,
allosteric control

well defined
ground state

individual molecules (not
statistical ensembles)

precisely duplicatable
nonlinearity,
specific shape

Brownian
motion

specific shape, low mass,
heat bath

cost free search

high
evolvability

combinatorial variety,
high dimensionality

diverse repertoire of spe-
cialized functions

specificity with
speed

defined shape, Brownian
motion

low dissipation
pattern recognition

supramolecular
structure

self-assembly, free energy
minimization

rich, extended
3D-architecture

diverse
specificities

building block principle,
heat bath, folded shape

heterogeneous organiza-
tion, dynamic complexity
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Table 2

Input 1 0 1 0 1

Input 2 0 0 1 1

Output 0 1 1 0
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