Electronic Notes in Theoretical Computer Science 65 No. 1 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume65.html 17 pages

Institutionalising Many-Sorted Coalgebraic
Modal Logic

Corina Cirstea 12

Computing Laboratory
University of Ozford
Ozford, UK

Abstract

[4] describes a modal logic for coalgebras of certain polynomial endofunctors on
Set. This logic is here generalised to endofunctors on categories of sorted sets. The
structure of the endofunctors considered is then exploited in order to define ways
of moving from (coalgebras of) one endofunctor to (coalgebras of) another, and to
equip them with translations between the associated modal languages. Furthermore,
the resulting translations are shown to preserve and reflect the satisfaction of modal
formulae by coalgebras.

1 Introduction

The use of coalgebras in modelling state-based, dynamical systems [9] gener-
alises the use of transition systems as operational models for processes [8], with
the notion of bisimulation playing an important role in coalgebraic approaches.
Various kinds of modal logics can be used to reason about coalgebraic struc-
tures [6,5,7,4], in the same way as standard modal logic can be used to reason
about transition system structures (see e.g. [3]). These logics capture bisim-
ulation, in that logical equivalence of states coincides with the bisimulation
relation. However, these logics depend on the particular endofunctors used to
define the coalgebraic structures of interest, and different, but related endo-
functors give rise to different, but not yet formally related modal logics. The
aim of this paper is to provide an (institutional) framework for relating the
modal logics associated to a particular class of endofunctors, namely those
considered in [4]. (A similar, but more abstract such framework is described
in [1, Section 2]. The framework introduced here complies with the one in

[1].)

1 Research supported by St. John’s College, Oxford
2 Email: corina.cirstea@comlab.ox.ac.uk

(©2002 Published by Elsevier Science B. V.

CIRSTEA

[4] (see also [7]) describes a modal logic for coalgebras of (finite) Kripke
polynomial endofunctors, that is, endofunctors on Set constructed from con-
stant and identity functors using products, coproducts, exponentials with con-
stant exponent and (finite) powersets. The approach in [4] is here taken fur-
ther, on the one hand by generalising it to endofunctors on categories of sorted
sets, and on the other by providing support for modular specification. The
previously-mentioned generalisation is useful in situations where there is more
than one type of interest, with sorts being used to name these types, and with
the components of the endofunctors in question defining the (possibly interre-
lated) structures associated to these types. After defining Kripke polynomial
endofunctors and their associated logics in the setting of categories of sorted
sets, natural transformations arising from the structure of such endofunctors
are used to define ways of moving from one Kripke polynomial endofunc-
tor to another. Such natural transformations induce functors between the
categories of coalgebras associated to their domains and respectively their
codomains, as well as translations between the modal languages associated to
their codomains and respectively their domains. Moreover, the satisfaction of
modal formulae by coalgebras is preserved and reflected along these natural
transformations. That is, the resulting framework has the property of being an
institution [2]. The morphisms of this institution capture both refinement and
encapsulation relations between coalgebraic types, as illustrated by several ex-
amples. The previously-mentioned property of the satisfaction relation allows
specifications and their logical consequences to be carried along morphisms
between coalgebraic types.

The paper is structured as follows. Section 2 extends the approach in [4]
to endofunctors on categories of sorted sets. Section 3 defines ways of moving
from one endofunctor to another which preserve and reflect the satisfaction of
modal formulae by coalgebras. Section 4 summarises the results presented.

2 Coalgebraic Modal Logics for Kripke Polynomial End-
ofunctors on Categories of Sorted Sets

This section presents a generalisation of the coalgebraic modal logic intro-
duced in [4] to endofunctors on categories of sorted sets. In order to facilitate
the definition of a modular specification framework in the next section, the
components of such endofunctors are regarded as objects of a category whose
arrows, arising naturally from the structure of the functors, capture semantic
dependencies between coalgebraic types.

Definition 2.1 Let S denote a set (of sorts)®. The category of Kripke
polynomial functors on Set”, denoted KPg, is the least subcategory of

3 Given a set S, the category Set® of S-sorted sets and S-sorted mappings has objects
given by families A = (A;)ses with As € |Set| for s € S, and arrows from A to B given by
families (fs)ses with (fs : As — Bs) €]|Set|| for s € S.

2

CIRSTEA

[Set®, Set] such that:

KPg includes the subcategory of [SetS, Set] whose objects are constant func-

tors X+—2-D for X € |Set®| with D € |Set| finite and non-empty, and
whose arrows are natural transformations o : D = D' with (o : D —
D') €]|Set||, and with D and D’ finite and non-empty;

IKPg| contains the projection functors TI, : Set® — Set (taking S-sorted
sets/functions to their s-component), for s € S;

KPgs is closed under binary products and coproducts;

KPs is closed under exponentials of form F”, with D € |KPg| a constant
functor;

KPg is closed under powersets;

|| KPs || contains all natural transformations of form d : F = D (each of
whose components is a constant function yielding d as result) with F, D €
|KPs|, D a constant functor and d € D*.

Remark 2.2 Replacing the closure under powersets in Definition 2.1 with
closure under finite powersets yields a notion of finite Kripke polynomzial func-
tor on Set®. All the results in this paper are formulated for Kripke polynomial
functors, however, they also hold for finite Kripke polynomial functors.

Remark 2.3 An immediate consequence of the definition of KPg is the exis-
tence, in this category, of arrows of form:

mi: F1 X Fy = F; with ¢ € {1,2}, whenever F; € |KPg| for i = 1,2

(m,n2) : F = Fy x F whenever (1, : F = F;) €||KPg|| for i = 1,2

ki : F; = Fy + F, with i € {1,2}, whenever F; € |KPg| for i =1,2

[m1,m2] : F1 + F2 = F whenever (n; : F; = F) €||KPg]|| for i = 1,2

n* : F' = FP whenever (n: F'x D = F) €||KPg|| with D a constant functor
evalgp : F? x D = F whenever F, D € |KPg| with D a constant functor
P(n) : P(F) = P(F') whenever (n: F = F') €||KPs||

subject to the following equalities:

(i) mio(m,me) =mn fori=1,2

(i) [m,me) o ky =m; for i =1,2

(iii) evalgpo (n* X 1p) =7

In particular, KPg contains arrows of form:

m X ny: Fy x Fo = F} x F}, (given by (1, o w1, 19 0 m2)) whenever (n; : F; =
F.) €||KPg|| for i = 1,2

m +n2: F1+ Fy = F} +F, (given by [k o ny, kg 0 12]) whenever (n; : F; =
F.) €||KPg|| fori =1,2

* These natural transformations will be needed in the treatment of exponentials.

3

CIRSTEA

« 7P : F'” = FP (given by (1 o evalp p)*) whenever (1 : F' = F) €| KPg ||
and D € |KPg| with D a constant functor

« Fo: FP" = FP (given by (evalr p o (1gpr x «))*) whenever F € |KPg| and
(a: D= D" €||KPg || with D, D" constant functors.

The notion of Kripke polynomial endofunctor (see [4]) now generalises to
categories of sorted sets as follows.

Definition 2.4 Let S denote a set (of sorts). A Kripke polynomial endo-
functor on Set® is an endofunctor T : Set® — Set® such that T, € |KPg| for
each s € S.

The objects of the category KP;, with 1 denoting a one-element set, are
precisely the Kripke polynomial endofunctors as defined in [4] (see also [7]). [4]
also defines a category, denoted KPF, whose objects are the Kripke polynomial
endofunctors on Set and whose arrows are paths between such endofunctors,
with a path from F to F’ corresponding to F’ being used in the definition of (or
being an ingredient of) F. While arrows in the category KPF capture struc-
tural dependencies between Kripke polynomial endofunctors on Set, arrows
in the category KP; (and indeed, KPg, for an arbitrary S) capture semantic
dependencies between (the components of) Kripke polynomial endofunctors,
in that coalgebras corresponding to their codomains can be extracted from
coalgebras corresponding to their domains®. The former category is used in
[4] to define modal formulae over Kripke polynomial endofunctors (by means
of structural induction). The next definition generalises the notion of modal
formula introduced in [4] to Kripke polynomial endofunctors on sorted sets.
Instantiating it to Kripke polynomial endofunctors on Set yields a definition
equivalent to the one in [4], but which does not make use of the notion of
ingredient functor.

Definition 2.5 Let T : Set” — Set® denote a Kripke polynomial endofunctor.
For F € |KPg]|, the set Formt(F) of modal formulae over T of type F is
defined inductively (on the structure of F) as follows:

e | € Formt(F)

* (¢ = 1) € Formt(F) if ¢ € Form(F) and ¢ € Form+(F)
d € Formy(D) ifd € D

nexts ¢ € Formy(Il,) if ¢ € Formy(T,), with s € S

(7] € Formt(Fy x Fy) if ¢ € Form(F;), with i € {1,2}
[ki]p € Formy(Fy 4 Fy) if ¢ € Formr(F;), with i € {1,2}
[ev(d)]¢ € Formt(FP) if d € D and ¢ € Form(F)

* [Ply € Formt(P(F)) if ¢ € Formy(F).

5 This observation will be exploited in Section 3 in order to obtain an institution of many-
sorted coalgebraic modal logics.

CIRSTEA

Also, for s € S, the set SForm(T), of state formulae over T of type s is
given by Form+(IL;).

Remark 2.6 If T is an endofunctor on Set and F is an ingredient of T (see
[4]), then modal formulae over T of type F are essentially the same as modal
formulae of sort F, as defined in [4] (w.r.t. T)S.

The formulae which interest us are the state formulae, defined above as
formulae of projection type (i.e. II; with s € S). These are formulae that
refer to the states of coalgebras, and are to be interpreted as predicates on
the carriers of coalgebras. The definition of such interpretations follows the
structure of the corresponding components (i.e. Ty).

Definition 2.7 Let T : Set® — Set® denote a Kripke polynomial endofunctor,
and let (C,v) denote a T-coalgebra. For F € |KPg|, the interpretation
[¢lt € P(FC) of a modal formula ¢ € Formt(F) in the coalgebra (C,~) is
defined inductively (on the structure of ¢ and F) as follows:

* [LIr =0

[— ¥ =[elf U¢]E (where, for X € P(FC), X is given by FC'\ X)
[d]}, = {d} ford € D

[next, o]} =75 ' ([¢]7,) with s € S

[[7ilel?, «r, = 7 ' ([¢]7,) with i € {1,2}

[[kilel, e, = millele,) U #;(F;C) with i € {1,2} and {j} = {1,2} \ {i}
[lev(d))elgn ={f: D —=FC | f(d) € [¢]¢ } ford € D

[[Plelpe = P(Iele)

An element ¢ € FC' is said to satisfy a modal formula ¢ € Formt(F) (written
¢ E o) if and only if ¢ € [¢]f. Also, the coalgebra (C,) is said to satisfy
the modal formula ¢ (written (C,7) E) if and only if J¢]f = FC. In
particular, given s € S, an element ¢ € Cj is said to satisfy a state formula

¢ € Formy(II,) if and only if ¢ €]} , while the coalgebra (C,) is said to
satisfy the state formula ¢ if and only if o]} = C,.

Remark 2.8 The above definition generalises a similar definition in [4] to
Kripke polynomial endofunctors on sorted sets.

Remark 2.9 The following are consequences of Definition 2.7: [T]¢ = C,
[=le = [ele, [V ¢le = [ele U [¥1F and [0 A v]e = [@le N [¢], where T,
—p, oV and ¢ Ay are given by L — L, 1 — ¢, 7¢p — 1) and respectively
—(p = —).

Definition 2.10 Let T : Set® — Set® denote a Kripke polynomial endofunc-
tor, and let F € |KPg|. The modal formulae ¢, € Formt(F) are said to be

6 The modal logic defined in [4] is also qualified as many-sorted. However, in [4], sorts are
used to refer to the ingredients of an endofunctor on Set, whereas here, many-sortedness is
a feature of the underlying category, with sorts being used to denote the types of interest.

5

CIRSTEA

semantically equivalent (written ¢ = ¢) if and only if [¢]} = [¢]¢ for any
T-coalgebra (C, 7).

Remark 2.11 For a Kripke polynomial endofunctor T : Set® — Set”, one
can also define:

* (nexts)p ::= —next; ~p € Formy(Il;) for ¢ € Formy(Ty) with s € S

(mi) = [m;]— € Formt(Fy x Fy) for ¢ € Formt(F;) with i € {1,2}
(ki) := 2[ki|~p € Formt(F; + F2) for ¢ € Formt(F;) with i € {1,2}
(ev(d))p ::= —[ev(d)]~¢ € Formt(FP) for d € D and ¢ € Form+(F)

(P)p ::= =[P]—¢ € Formt(P(F)) for ¢ € Form(F)

(The above operators are generalisations of the operators in [7] to categories
of sorted sets.) Then, an immediate consequence of Definition 2.7 is that the
pairs of modal formulae nexts ¢ and (nexts)p, [m;]¢ and (m;)¢, and respectively

lev(d)]e and (ev(d))e are semantically equivalent. The same, however, can not
be said about the pairs [k;]¢ and (k;)¢, and respectively [Ply and (P)y, as,

for instance, [[k1]¢]f, ¢, = mi([e]f,) U r2(F2C) 2 mi([elf,) = [(w1)¢lF, e,
whereas [[Ple]pe = P(lelp) #{ X CFC | XN [elf #0} = [(P)elp)-
Example 2.12 Unlabelled transition systems are specified using the endo-
functor Trg : Set — Set given by Trg = P(Id).

Example 2.13 Given A € |Set|, A-labelled transition systems are specified
using the endofunctor Tyrs : Set — Set given by Trrs = P(A x Id).

Example 2.14 Unlabelled transition systems of finite depth are specified us-
ing the endofunctor Tgrs : Set — Set given by Ters = P(ld) X N, together with
the modal formulae:

next [m2]0 <> next [m|[P]L
next [m2](n + 1) <> next [m]((P)next [ma|n A [Plnext [m2](0V ...V n)), n €N

Renaming next [m|[P] to [succl, next [1](P) to <succ>, and next 73] to [depth],

and using the distributivity of next [mr;] over A w.r.t. semantic equivalence ”, we

obtain the following equivalent specification of unlabelled transition systems
of finite depth:

[depth]0 <+ [succ] L
[depth](n + 1) <+ <succ>[depthln A [succl [depth]l(0V ...V n), n €N

where:

¢ [succly & (V) (¢ € succo(c) = ¢ E ¢)
¢ E<suce>p & () (¢ € succe(c) and ¢ | @)
¢ |= [depthlyny < (Vn) (deptha(c) =n = n = ¢n)

T The distributivity of each of next and [m;] over A is a consequence of [4, Lemmas 3.3 and
4.3], but also follows directly from Definition 2.7 and Remark 2.9.

6

CIRSTEA

for any Tgrs-coalgebra C' = (C, (succe, depth)) and any ¢ € C. Thus, the
above formulae formalise the statement that a rooted transition system has
depth 0 precisely when its root has no successors, and has depth n+1 precisely
when its root has a successor of depth n, and the depth of any of its successors
does not exceed n.

Example 2.15 Lists whose elements belong to a set F are specified using the
endofunctor Tyrsr : Set — Set given by Trisr = (1 + E) x (1 + 1d) (with 1
denoting a one-element set), together with the modal formula:

next [m1|(k1) T <> next [mo](k1) T

After renaming next[m](k1) and next[m]{k;) to <headF> and respectively
<tailF>, the above modal formula becomes:

<headF>T ¢ <tailF>T

where:

¢ = <headF>p; < (Is) (heado(c) = ki(s) and s = @)
¢ | <tailF>p; < (Is) (taile(e) = ki(s) and s = 1)

for any Tiprsr-coalgebra C' = (C, (headr, tailc)) and any ¢ € C. Thus, the
specification of lists formalises the observation that a list has no head if and
only if it has no tail.

3 An Institution of Coalgebraic Modal Logics

The arrows of the category KPg capture semantic dependencies between (the
components of) Kripke polynomial endofunctors. In the following, such arrows
will be used to define ways of moving from one Kripke polynomial endofunctor
to another which preserve and reflect the satisfaction of modal formulae by
coalgebras. Such an approach provides support for modular specification, as
it allows specifications and their (global) semantic consequences to be carried
over from less complex coalgebraic types to more complex ones. For instance,
this will allow us to obtain a specification of labelled transition systems of
finite depth by simply translating the specification of unlabelled transition
systems of finite depth in Example 2.14 along a natural transformation which
adds labels to the type structure. And moreover, anything that was proved
previously about unlabelled transition systems of finite depth remains true
when translated to labelled transition systems of finite depth.

Collections of (related) coalgebraic types are specified using many-sorted
cosignatures, while ways of moving from one such collection to another (larger
or more refined one) are specified using many-sorted cosignature morphisms.

Definition 3.1 A many-sorted cosignature is a tuple (S, T) with S a set
and T : Set® — Set® a Kripke polynomial endofunctor. A many-sorted

7

CIRSTEA

cosignature morphism from (S, T) to (S, T') is a tuple (f,n) with f: S —
S" and n : UT" = TU, such that II;n €| KPg || for each s € S. (Here
U : Set” — Set® denotes the functor taking S’-sorted sets/functions to the
S-sorted sets/functions whose s-component is given by the f(s)-component of
the S’-sorted set/function in question, for s € S.) The category of many-sorted
cosignatures and many-sorted cosignature morphisms is denoted Cosign.

Remark 3.2 The endofunctor U : Set® — Set” satisfies [I,U = Iy for each
s € S. As aresult, the natural transformation 11,7 is of form 7, : T}(s) = T,U,
for each s € S.

Many-sorted cosignature morphisms (f,n) : (S, T) — (S’, T') induce reduct
functors U, : Coalg(T') — Coalg(T), with U, taking a T'-coalgebra (C’,~") to
the T-coalgebra (UC’, ncr o Uy'). This yields a functor Coalg : Cosign — Cat®®,
taking a many-sorted cosignature to its category of coalgebras and a many-
sorted cosignature morphism to the induced reduct functor.

We will show in the following that many-sorted cosignature morphisms
also induce translations of state formulae over their domain to state formulae
over their codomain. The definition of such translations mirrors the defini-
tion of state formulae over a Kripke polynomial endofunctor: in the same
way as defining state formulae over a Kripke polynomial endofunctor T in-
volved first defining modal formulae over T of arbitrary type F and then in-
stantiating F with II,, defining a translation of state formulae over T along
a many-sorted cosignature morphism »n : (S, T) — (S’,T') will involve first
defining translations (w.r.t. n) of modal formulae over T of arbitrary type F
along arbitrary natural transformations 7 : F' = FU and then instantiating 7
with 1y, : IIys) = II;U. The resulting translations will, in general, depend
not only on the natural transformation 7 but also on the underlying natural
transformation 7. Consequently, translating along identity natural transfor-
mations 7 will not leave modal formulae unchanged, unless the underlying
n is itself an identity natural transformation. Furthermore, identity natural
transformations of form 7 = 1p,,, will play a crucial role in defining the
above-mentioned translations; it will be these natural transformations which
will ultimately ensure moving from modal formulae over T to modal formulae
over T'.

For a particular natural transformation 7, the definition of the translation
along 7 (w.r.t. a fixed n) is driven by the need to ensure that the interpre-
tations of formulae are preserved along the translation. This property of the
translations will later allow us to prove that the defining condition of institu-
tions holds in our framework.

Definition 3.3 Let (f,n) : (S,T) — (5',T') denote a many-sorted cosigna-
ture morphism. For F € |KPg|, F' € |KPg | and (7 : F' = FU) €||KPs ||®, the

® Note that F € |KPg| implies FU € |[KPg/|. This follows from ITI,U = Iy, for s € S (see
Remark 3.2).

CIRSTEA

translation along 7 w.r.t. n of modal formulae ¢ over T of type F to modal
formulae over T’ of type F’ is defined inductively (on the structure of ¢ and
7) as follows:

() (@) L1
(b) (¢ =)= (¢! = ¢) if oyl and gty

(ii) If 7 is given by an identity natural transformation, the following subcases
can be distinguished:
(a) If 7 is given by 1py : D = DU = DU:

d (1py)y d

(b) If 7 is given by I, Hye) =) = LU with s € S:

(1)
nexts<p»M>nextf(s) o' if gmmmp’

where 7, : T}(s) = T,U.
(C) If 7 is given by 1F1U><F2U . F1U X F2U = F1U X FQU = (F1 X FQ)UZ

[om0 1o i 5% itk i e {1,2)

(d) If 7is given by 1F1U+F2U . F1U + FQU = F1U + FQU == (F1 + FZ)U:

lilpbrt 2 e aor i @50 o i i e {1, 2}

(e) If 7 is given by 1y : (FU)P = (FU)P = FPU:

1 n
(o ()] len(d)] ! if orledn, o

(f) If 7 is given by 1pry) : P(FU) = P(FU) = (P(F))U:
[,P](p(l’P(FU))n [Pl if ¢ (Tru)n o
(iii) (a) If 7 is given by a: D' = D = DU:
Qn d
d a((i\’{:d
(b) If 7 is given by d : F = D = DU:
d, T if d=d
d— :
1 if d'#d
(c) If 7 is given by m; : F} x F, = F;U with i € {1, 2} and with F, = F;U:

© (mi)n [Wi]gﬁl if @ (lFiU)ﬂ g0/

(d) If 7 is given by (ry, ») : F = F{UXxFyU = (F; xF9)U with 7; : F = F;U
fori=1,2:

CIRSTEA

(T1,m2)n

[l o i o o e {1,2)
(e) If 7 is given by k; : F;U = F1U + FoU = (F; + F2)U with ¢ € {1, 2}:
1f,
or i, {9 G =iand o oy
T if j#1
(f) If 7 is given by [, 7] : F1 + Fo = FU with 7, : F; = FU for i =1, 2:

s0|[ﬁ—2>[/<ol]<pl A [Kalpo if T 0 for i = 1,2

(g) If 7 is given by ¢* : F' = (FU)P? = FPU with ¢ : F' x D = FU:

* ll,d ’
[ev(d)]@&g)’ if s e Dy > !

(h) If 7 is given by evalpy p : (FU)P? x D = FU:
prevtruriy A (fmold = [leo(@]e) i oy,

deD
(Note that here it is essential that the set D be finite.)
(i) If 7 is given by P(() : P(F’) = P(FU) = (P(F))U with ¢ : F' = FU:

[Pl 295, [Py if oy

(iv) If 7 is given by 1y o5 : F = FU, with 73 : F; = FU and 7o : F' = F; in
|KPg ||, and if 7, has not yet been defined?:

(T1)n

¢ if P51 and 901(v,

(T1072)y

¥

Also, for s € S, the translation along 7 of state formulae over T of type s to
state formulae over T’ of type f(s), denoted 7, : SForm(T), — SForm(T') 4(s), is
given by (1Hf(s))77 : Formr(II;) — Formy (ITf(,)) (where i, M) = I1,V).

(i) of Definition 3.3 defines the translations of complex formulae along
arbitrary natural transformations 7 in terms of the translations of their sub-
formulae along the same natural transformations. (ii) of Definition 3.3 trans-
lates modal formulae over T to modal formulae over T', but of a similar kind.
This is done by taking 7 = 1g and using structural induction on F’. The inter-
esting case here is F' = IIy(,. (iii) of Definition 3.3 translates modal formulae
over T to modal formulae over T" along arbitrary natural transformations 7,
by considering the various shapes these formulae can take depending on the
form of 7. For instance, the translation of a modal formula of type F; along
m : F1U x F; = F;U requires the first component of any state satisfying it to
satisfy the translation of the given formula along 1¢,y. On the other hand, the
translation of a modal formula of type F; + Fy along x; : F;U = (F; + F3)U
depends on which coproduct component the given formula refers to. If the

? This condition ensures that 7, is only defined once, by preventing the definition of 7, to
be based on equalities of form 7 = 7y o (7,() or 7 = [1,(] 0 k1.

10

CIRSTEA

formula refers to the first coproduct component, its translation requires what-
ever the original formula required of states coming from the first coproduct
component, but translated along 1g y. If the formula refers to the second
coproduct component, its translation does not require anything. The trans-
lation of a modal formula of form [ev(d)]e along ¢* : F' = FPU is obtained
by first translating ¢ along ¢ : F' x D = FU to, say, ¢/, and then ”extract-
ing” from ¢’ a formula of type F’ which holds in a state f’ precisely when ¢
holds in the state (f’,d). Also, the translation of a modal formula ¢ along
evalpy p : (FU)P x D = FU requires any state (f,d) satisfying it to be such
that f(d) satisfies the translation of ¢ along 1gy. Finally, (iv) of Definition 3.3
defines the translations along compositions of natural transformations in terms
of the translations along the natural transformations being composed.

The correctness of Definition 3.3 is justified by the following result.

Proposition 3.4 Let (f,n) : (S, T) — (S',T") denote a many-sorted cosig-
nature morphism, and let (1 : F' = F) €||KPg || (hence (ry : FU = FU) €]
KPg). Then, (Tu)1,, © (Lru)y = (Tu)y = (Lru)y © Tip-

Formr(F) — ™2, Form+, (FU)

TITJ/ (TU)U l(TU)lT’

Formt(F') ————— Formy:(F'U)
(Tery)n

Proof. The statement follows by structural induction on 7. a

Corollary 3.5 Let (f,n): (S, T) = (5", T') denote a many-sorted cosignature
morphism, and let (11 : F1 = F) €||KPg|| (hence (11y : F1U = FU) €||KPg ||)
and (1o : F' = F1U) €| KPg || be such that (Tiy o T2), is defined in terms
of (Tiy)y and (72)1,, using (w) of Definition 3.8. Then, (72)i,, © (Tiy)y =
(Tiu 0 72)y = (72)y © (1)1

Form(F) — Y7 Form (F, U)
(T1u0T2)y .
(Tl)l-l—l l(n)l_r,

FormT(Fl)—>(>) FormT/(F')
m2)n

Proof. Definition 3.3 and Proposition 3.4 are used. O

Remark 3.6 The following are consequences of Definition 3.3 and of Corol-
lary 3.5:

* e HEE e i

o [rle FE ([l A T,]T) = [kile! if - = {1,230\ {4}

o lev(d)p —T s g = [eo(d))¢ if P

o [ev(d)])p "2 = [ev(a(d))]¢! if erEm o

11

CIRSTEA

(The natural transformations 71 X 7 : F} X F, = F{U x FoU, 71 + 75 ¢ F} +
F\, = FLU+FU, 72 : F'P = (FU)? and (FU)* : (FU)?" = (FU)? are as in
Remark 2.3.)

The translation of formulae along cosignature morphisms is compatible
with the equalities (i)—(iii) in Remark 2.3, in a sense made precise below.

Proposition 3.7 Let (f,n): (S, T) — (S',T") denote a many-sorted cosigna-
ture morphism. Then, the following hold up to semantic equivalence'® :

(i) (m1,72)y 0 (mi)1y = (7i)y for (ri : F = F;U) €||KPg ||, i =1, 2:

71,72

Forme (F;) — T Form (Fy x Fy) — ™% Formy (F)

)
(ii) (Ki)1q, © [11,Toly = (Ti)y for (13 : Fi = FU) €[|[KPg ||, i = 1,2:

Form (F) 01, Form (Fy + Fa) —Ts Form ()

(Ti)n
(iii) (7* % 1p), o (evalgp)iy =1, for (1 : F' x D = FU) €||KPg ||
(evalr,p)

T Formr(FP x D) xIph Formr: (F' x D)

Tn

Form+(F)

Proof. The statement follows directly from Definition 3.3. a

Definition 3.3 yields a functor SForm : Cosign — Set, taking a many-sorted
cosignature to the set of state formulae over it and a many-sorted cosignature
morphism to the induced translation.

Example 3.8 Given A € |Set|, A-labelled transition systems of finite depth
are specified using the endofunctor Tiprg : Set — Set given by Tiprs =
P(A x Id) x N, together with the translations of the modal formulae defin-
ing unlabelled transition systems of finite depth (see Example 2.14) along the
cosignature morphism defined by the natural transformation n ::= P(m) x N :
P(A x Id) x N= P(ld) x N. Specifically, these modal formulae are:

next [m2]0 <> next [m1|[P][ms] L
next [m2](n + 1) <> next [m|((P)[ma]next [ma]n A [P][m]next [m](0V ...V n)), n € N

or, after renaming next [m][P][m] to [succl, next [m](P)[ms] to <succ>, and
next [ms] to [depthl, and using the distributivity of next[m;] over A w.r.t. se-
mantic equivalence:

[depth]0 <> [succl L
[depth](n + 1) <> <succ>[depthln A [succl [depth]l(0V ...V n), n € N

10 Note that Corollary 3.5 can not be applied here.
12

CIRSTEA

For instance, the fact that the translation of the modal formula next [m][P] L
along the cosignature morphism defined by 7 is given by next [m][P][m2] L can
be inferred as follows:
1 (1Id)n 1
n (m2)n ['/TZ]J—
[PLL2 [P L
[m][P)L = [m][P][me] L

next [|[P]L {0, ext [7r1][P][m2] L

It is also worth noting that Tigrg can be obtained by taking the pushout in
Cosign of P(my) : Trs — Tirs and my @ Trg — Tgrg. For, the following is a
pullback diagram in KP:

T N 71(71'2)><1N
£~ SN
P(A x Id) P(1d) x N
T~ —

Example 3.9 Lists whose elements belong to a set £ and whose size does
not exceed m € N are specified using the endofunctor Tg rgr : Set — Set
given by Turrst = Trst X {0,...,m} (with Trsr being as in Example 2.15),
together with the translation of the modal formula defining lists over E (see
Example 2.15) along the cosignature morphism defined by 7 ::= 7y : Tyrisr =
Trist, and together with the following modal formulae:

next [m2]0 <> next [m][ma] (k1) T
next [mo|(n + 1) <> next [m|[ma](ko)next [ma|n, n € {0,...,m — 1}

(1)

In particular, the translation of the modal formula defining lists over E along
the cosignature morphism defined by 7 is obtained as follows:

T, Tl
(o) T2 (e VT () T 9 e VT
) TR) T i) TN) T
[m] (o) T [) [y] (1) T [mo] (o) T [[(1ia) T
next [m1](k1) T+ next [m][m] (k)T nexct [ma] (k1) T A% next][] (k1) T

next [m] (k1) T ¢ next [m2] (1) T 97 next [7ry][m1] (k1) T 4 next [m][ma] (1) T

After renaming next [m][m1](k1), next [m]|[m1](k2), next [m1][m2] (K1), next [m][me](k2)
and next 7] to <headF>, <headS>, <tailF>, <tailS> and respectively [sizel],

13

CIRSTEA

the specification of lists of size at most m becomes:

<headF>T <> <tailF>T
[size]0 <> <tailF>T (2)
[sizel(n + 1) > <tailS>[sizeln, n € {0,...,m — 1}

Example 3.10 A specification of arrays of size m can be obtained by suit-
ably extending the specification of lists of size not exceeding m given in Exam-
ple 3.9. Specifically, one can consider the cosignature (Set{’“LiSt’Array}, T), with
the components of the endofunctor T being given by Tyrige = TurzstIly X (1 +
E){l’“"m} and respectively Typray = II; X F{lm} (The second component of
Tavise specifies a list observer which takes an argument p € {1,...,m} and
returns the pth element of the list in case this element exists, or L otherwise.
Also, the second component of Tj.,.y specifies an array observer which takes
an argument p € {1,...,m} and returns the pth element of the array.) The
specification of arrays of size m then consists of the following formulae:

<headF> T < <tailF>T
[sizel0 <> <tailF>T
[sizel(n + 1) > <tailS>[sizeln, n € {0,...,m —1}
<elemF(1)>T ¢ <headF>T
<elemS(1)>e <+ <headS>e, e € F
<elemF(p+ 1)>T > <tailF>T V <tailS><elemF(p)>T, pe€ {l,...,m—1}
<elemS(p + 1)>e <> <tailS><elemS(p)>e, p € {1,...,m — 1},
eck

of type mList, together with the following formula:
[get (p)le <> [listl<elemS(p)>e, p € {l,...,m}, e€ FE (3)

o type Array, using the following abbreviations:

<headF> ::= nextyrist [Wl][ﬂl][ﬂl]wﬁ

<headS> ::= nextyrist [7T1][7T1][7T1]</€2>

<tailF> :i= nextypiss [m1][m][m2] (k1)

<tailS> ::= nextyrist [7T1][7T1][7T2]</€2>

[sizel] ::= nextypiss [m1][m2]

<elemF (p)> ::= nextyriss [m2][ev(p)](k1)

<elemS(p)> 1= neXtyrist [m2][ev(p)](K2)
[list] ::= neXtarray [T1]
[m2][ev

[get(p)] = neXtArray

In particular, the formula in (3) states that, for any position p € {1,...,m},
the pth element of an array is given by the pth element of the associated list. It

14

CIRSTEA

is worth noting that this formula actually constrains the lists used to represent
arrays to lists of size exactly m. The inclusion of the cosignature specifying
lists of size at most m into the (two-sorted) cosignature specifying arrays of
size m is then captured by a cosignature morphism (f,n), with f : {mList} —
{mList, Array} being the inclusion function, and with 7 : UT = T157U being
given by 71 : Tarise = Tarstlly (where U : Set{mtist:hrrayt _y Get ig given by
I1;). The translation of the modal formulae defining lists of size at most m
along this cosignature morphism leaves the formulae in (2) unchanged. Note,
however, that the meanings of <headF>, <tailF>, ...change when moving from
Turst to T, so for instance the formulae in (1) do in fact change when moving
from Tyirgr to T.

As mentioned previously, the translation of formulae along cosignature
morphisms preserves the interpretations of formulae.

Proposition 3.11 Let (f,n) : (S, T) — (5", T") denote a many-sorted cosig-
nature morphism, let (C',~') denote a T'-coalgebra, and let v = ner o Uy’ :
UC" — TUC'. Then, 75 ([¢]2) = [m(») g: for any F € |KPg|, F' € |KPg/],
(7:F = FU) €||KPg || and ¢ € Formt(F).

Proof. The statement follows by structural induction on ¢ and 7. Only a few
cases are considered here. The remaining ones (see Definition 3.3) are treated
similarly.

o If 7is given by 1y, :) = Ilys) = ILU with s € S:
[next; o], = 75" ([¢]7,) = (Vo) (50 ([9]7,)) =
() WP,) = Inextyiy (1) (DN, =

If 7is given by a: D' = D = DU:
o ([dlp) =o' ({d}) ={d' € D' |a(d) =d} = U {d}=

((H_d[[d' =1 ((X_d 4%, = [an()5 = [m ()]}

If 7 is given by m; : F} x F, = F;U with ¢ € {1,2} and with F, = F;U:
7o (lel) = 77 (Tel?) = 7 ([(Lew)n(9)]F,0) =
[l (Lr0)n(D)F, wr, = [m)n(O)IE cr, = [T (0)]E; wry

If 7 is given by K . FZU = F1U —+ F2U = (F1 + FQ)U with ¢ € {1,2}

I j =i and {1} = {1,2}\ {j}:

15

CIRSTEA

et ([Tt 4r,) = 57 (55 ([€DE,) U mi(FUCT)) = [, =
[(1e,0)n (@I b = [(5)n (K IE b = [ma([55]0)IE o
S If 5 £
ot ([lE, 4r,) = 57 (5 ([€]E,) U ks(FUCT)) = FUC! =
[Ty = [(5a)n(k10) L0 = Tr([K510) L
o If 7 is given by ¢* : F' = (FU)? = FPU with (: F' x D = FU:

7o ([lev(d)lelin) = (Ce) ™ ({ f : D = FUC" | f(d) € [¢]f }) =
{/eFC (M) elele ={f eFC | ¢ (fd) € [ele } =

(1, e (Gt (TelD) = [(1e dr (Gr(@))]E = [([ev(d)]) I _

In particular, the interpretations of state formulae in the T-reducts of T'-
coalgebras coincide with the interpretations of their translations in the original
T'-coalgebras — this follows by taking 7 = 1y, with s € S.

We are now ready for our main result.

Theorem 3.12 (Cosign, Coalg, SForm, =) is an institution.

Proof. The property of being an institution amounts to the following equiva-
lence holding for any many-sorted cosignature morphism 7 : (S, T) — (S', T'),
any T’-coalgebra (C',~') and any formula ¢ € SForm(T):

(C 7)Y Enle) & UC,Y)Eve

Showing that the above holds can be reduced to showing that, given 1 and

(C", 7", Telh, = [ns(e) AFYI’/(S) holds for any ¢ € SForm(T); and any s € S

(where v = ner o Uy/). For, then one can reason as follows: (C',7) E
7’]5((,0) = [[’I’]s((p) iZIf(s) = C}(s) = [[()0]]’1![3 = (UO’)S = UW<O’,,Y/>): ©
for any ¢ € SForm(T), and any s € S. But the previous claim follows from
Proposition 3.11, namely by taking F = Il;, F' = Iy and 7 = 1p,,, for
s € S. This concludes the proof. O

4 Conclusions

The main contributions of the paper can be summarised as follows. First,
a generalisation of the modal logic described in [4] to categories of sorted
sets was presented. This generalisation was introduced in such a way as to
allow one to formally capture ways of moving from one Kripke polynomial
endofunctor to another. Natural transformations arising from the structure of
such endofunctors were then used to define a category of cosignatures, whose
arrows were equipped with (backward) translations between the corresponding

16

CIRSTEA

categories of coalgebras, as well as with (forward) translations between the
corresponding sets of formulae. Finally, the resulting framework was shown
to be an institution, capturing both refinement and encapsulation relations
between coalgebraic types.

Acknowledgements

The author would like to thank the anonymous referees for their comments
and suggestions.

References

[1] C. Cirstea. On specification logics for algebra-coalgebra structures: Reconciling
reachability and observability. In M. Nielsen and U. Engberg, editors,
Foundations of Software Science and Computation Structures, volume 2303 of
Lecture Notes in Compute Science, pages 82-97. Springer, 2002.

[2] J. Goguen and R. Burstall. Institutions: Abstract model theory for specification
and programming. Journal of the ACM, 39(1):95-146, 1992.

[3] R. Goldblatt. Logics of Time and Computation, volume 7 of CSLI Lecture Notes.
Center for the Study of Language and Information, Stanford University, 1992.

[4] B. Jacobs. Many-sorted coalgebraic modal logic: A model-theoretic study.
Theoretical Informatics and Applications, 35(1):31-59, 2001.

[6] A. Kurz. Specifying coalgebras with modal logic. In B. Jacobs, L. Moss,
H. Reichel, and J. Rutten, editors, Coalgebraic Methods in Computer Science,
volume 11 of FElectronic Notes in Theoretical Computer Science, pages 57-71.
Elsevier Science, 1998.

[6] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277-317,
1999.

[7] M. RéBiger. Coalgebras and modal logic. In H. Reichel, editor, Coalgebraic
Methods in Computer Science, volume 33 of Electronic Notes in Theoretical
Computer Science, pages 299-320. Elsevier Science, 2000.

[8] J.J.M.M. Rutten. A calculus of transition systems (towards universal coalgebra).
Technical Report CS-R9503, CWI, 1995.

[9] J.J.M.M. Rutten. Universal coalgebra: a theory of systems. Theoretical
Computer Science, 249(1):3-80, 2000.

17

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 852.000]
>> setpagedevice

